Viruses and Mitochondrial Dysfunction in Neurodegeneration and Cognition: An Evolutionary Perspective
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39417916
PubMed Central
PMC11486811
DOI
10.1007/s10571-024-01503-3
PII: 10.1007/s10571-024-01503-3
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteria, Cognition, Mitochondria, Neurodegeneration, Virus,
- MeSH
- biologická evoluce * MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- neurodegenerativní nemoci * metabolismus patologie patofyziologie MeSH
- viry MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondria, the cellular powerhouses with bacterial evolutionary origins, play a pivotal role in maintaining neuronal function and cognitive health. Several viruses have developed sophisticated mechanisms to target and disrupt mitochondrial function which contribute to cognitive decline and neurodegeneration. The interplay between viruses and mitochondria might be traced to their co-evolutionary history with bacteria and may reflect ancient interactions that have shaped modern mitochondrial biology.
Zobrazit více v PubMed
Bierne H, Cossart P (2012) When bacteria target the nucleus: the emerging family of nucleomodulins. Cell Microbiol 14(5):622–633. 10.1111/j.1462-5822.2012.01758.x PubMed DOI
Brandvain Y, Wade MJ (2009) The functional transfer of genes from the mitochondria to the nucleus: the effects of selection, mutation, population size and rate of self-fertilization. Genetics 182(4):1129–1139. 10.1534/genetics.108.100024 PubMed DOI PMC
Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68(3):560–602. 10.1128/MMBR.68.3.560-602.2004 PubMed DOI PMC
Buttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Ptacek R, Kream RM, Stefano GB (2022) Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms. Front Pharmacol 13:1095923. 10.3389/fphar.2022.1095923 PubMed DOI PMC
Chen Y, Shi Y, Wu J, Qi N (2021) MAVS: a two-sided CARD mediating antiviral innate immune signaling and regulating immune homeostasis. Front Microbiol 12:744348. 10.3389/fmicb.2021.744348 PubMed DOI PMC
Combs JA, Norton EB, Saifudeen ZR, Bentrup KHZ, Katakam PV, Morris CA, Myers L, Kaur A, Sullivan DE, Zwezdaryk KJ (2020) Human cytomegalovirus alters host cell mitochondrial function during acute infection. J Virol. 10.1128/JVI.01183-19 PubMed DOI PMC
Davis HE, McCorkell L, Vogel JM, Topol EJ (2023) Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 21(3):133–146. 10.1038/s41579-022-00846-2 PubMed DOI PMC
English J, Patrick S, Stewart LD (2023) The potential role of molecular mimicry by the anaerobic microbiota in the aetiology of autoimmune disease. Anaerobe 80:102721. 10.1016/j.anaerobe.2023.102721 PubMed DOI
Federici S, Nobs SP, Elinav E (2021) Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 18(4):889–904. 10.1038/s41423-020-00532-4 PubMed DOI PMC
Feng S, Liu Y, Zhou Y, Shu Z, Cheng Z, Brenner C, Feng P (2023) Mechanistic insights into the role of herpes simplex virus 1 in Alzheimer’s disease. Front Aging Neurosci 15:1245904. 10.3389/fnagi.2023.1245904 PubMed DOI PMC
Foo J, Bellot G, Pervaiz S, Alonso S (2022) Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol 30(7):679–692. 10.1016/j.tim.2021.12.011 PubMed DOI
Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11(7):1511–1520. 10.1038/ismej.2017.16 PubMed DOI PMC
Hu MM, Shu HB (2023) Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 20(12):1403–1412. 10.1038/s41423-023-01086-x PubMed DOI PMC
Huiting E, Bondy-Denomy J (2023) Defining the expanding mechanisms of phage-mediated activation of bacterial immunity. Curr Opin Microbiol 74:102325. 10.1016/j.mib.2023.102325 PubMed DOI PMC
Jang H, Boltz D, Sturm-Ramirez K, Shepherd KR, Jiao Y, Webster R, Smeyne RJ (2009) Highly pathogenic H5N1 influenza virus can enter the central nervous system and induce neuroinflammation and neurodegeneration. Proc Natl Acad Sci USA 106(33):14063–14068. 10.1073/pnas.0900096106 PubMed DOI PMC
Komarasamy TV, Adnan NAA, James W, Balasubramaniam V (2022) Zika virus neuropathogenesis: the different brain cells, host factors and mechanisms involved. Front Immunol 13:773191. 10.3389/fimmu.2022.773191 PubMed DOI PMC
Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL (2010) HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol 5(3):294–309. 10.1007/s11481-010-9205-z PubMed DOI PMC
Liu X, Palaniyandi S, Zhu I, Tang J, Li W, Wu X, Ochsner SP, Pauza CD, Cohen JI, Zhu X (2019) Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nat Commun 10(1):3020. 10.1038/s41467-019-10865-y PubMed DOI PMC
Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L (2023) Mitochondrial control of inflammation. Nat Rev Immunol 23(3):159–173. 10.1038/s41577-022-00760-x PubMed DOI PMC
Neumann S, El Maadidi S, Faletti L, Haun F, Labib S, Schejtman A, Maurer U, Borner C (2015) How do viruses control mitochondria-mediated apoptosis? Virus Res 209:45–55. 10.1016/j.virusres.2015.02.026 PubMed DOI PMC
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay ME, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS (2024) Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 26(2):194–206. 10.1038/s41556-023-01343-1 PubMed DOI PMC
Oh SJ, Yu JW, Ahn JH, Choi ST, Park H, Yun J, Shin OS (2024) Varicella zoster virus glycoprotein E facilitates PINK1/Parkin-mediated mitophagy to evade STING and MAVS-mediated antiviral innate immunity. Cell Death Dis 15(1):16. 10.1038/s41419-023-06400-z PubMed DOI PMC
Palmer CS (2022) Innate metabolic responses against viral infections. Nat Metab 4(10):1245–1259. 10.1038/s42255-022-00652-3 PubMed DOI
Pfeifer E, Rocha EPC (2024) Phage-plasmids promote recombination and emergence of phages and plasmids. Nat Commun 15(1):1545. 10.1038/s41467-024-45757-3 PubMed DOI PMC
Pfeifer E, Sousa JM, Touchon M, Rocha EP (2022) When bacteria are phage playgrounds: interactions between viruses, cells, and mobile genetic elements. Curr Opin Microbiol 70:102230. 10.1016/j.mib.2022.102230 PubMed DOI
Ranveer SA, Dasriya V, Ahmad MF, Dhillon HS, Samtiya M, Shama E, Anand T, Dhewa T, Chaudhary V, Chaudhary P, Behare P, Ram C, Puniya DV, Khedkar GD, Raposo A, Han H, Puniya AK (2024) Positive and negative aspects of bacteriophages and their immense role in the food chain. NPJ Sci Food 8(1):1. 10.1038/s41538-023-00245-8 PubMed DOI PMC
Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, Hilditch L, Jacques DA, Selwood DL, James LC, Noursadeghi M, Towers GJ (2013) HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503(7476):402–405. 10.1038/nature12769 PubMed DOI PMC
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R (2023) Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 11(6):1614. 10.3390/microorganisms11061614 PubMed DOI PMC
Shin HJ, Lee W, Ku KB, Yoon GY, Moon HW, Kim C, Kim MH, Yi YS, Jun S, Kim BT, Oh JW, Siddiqui A, Kim SJ (2024) SARS-CoV-2 aberrantly elevates mitochondrial bioenergetics to induce robust virus propagation. Signal Transduct Target Ther 9(1):125. 10.1038/s41392-024-01836-x PubMed DOI PMC
Sorouri M, Chang T, Hancks DC (2022) Mitochondria and viral infection: advances and emerging battlefronts. Bio 13(1):e0209621. 10.1128/mbio.02096-21 PubMed DOI PMC
Stefano GB (1986) Conformational matching: a possible evolutionary force in the evolvement of signal systems. In: Stefano GB (ed) CRC Handbook of comparative opioid and related neuropeptide mechanisms, vol 2. CRC Press Inc., Boca Raton, pp 271–277
Stefano GB (1988) The evolvement of signal systems: conformational matching a determining force stabilizing families of signal molecules. Comp Biochem Physiol C 90(2):287–294 PubMed DOI
Stefano GB, Buttiker P, Weissenberger S, Martin A, Ptacek R, Kream RM (2021) Editorial: The pathogenesis of long-term neuropsychiatric COVID-19 and the role of microglia, mitochondria, and persistent neuroinflammation: a hypothesis. Med Sci Monit 27:e933015. 10.12659/MSM.933015 PubMed DOI PMC
Stefano GB, Buttiker P, Weissenberger S, Ptacek R, Wang F, Esch T, Bilfinger TV, Raboch J, Kream RM (2022) Biomedical perspectives of acute and chronic neurological and neuropsychiatric sequelae of COVID-19. Curr Neuropharmacol 20(6):1229–1240. 10.2174/1570159X20666211223130228 PubMed DOI PMC
Stefano GB, Buttiker P, Weissenberger S, Esch T, Anders M, Raboch J, Kream RM, Ptacek R (2023) Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol 13:1130197. 10.3389/fcimb.2023.1130197 PubMed DOI PMC
To EE, Erlich JR, Liong F, Luong R, Liong S, Esaq F, Oseghale O, Anthony D, McQualter J, Bozinovski S, Vlahos R, O’Leary JJ, Brooks DA, Selemidis S (2020) Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice. Antioxid Redox Signal 32(13):929–942. 10.1089/ars.2019.7727 PubMed DOI PMC
Vellai T, Vida G (1999) The origin of eukaryotes: the difference between prokaryotic and eukaryotic cells. Proc Biol Sci 266(1428):1571–1577. 10.1098/rspb.1999.0817 PubMed DOI PMC
Venigalla SSK, Premakumar S, Janakiraman V (2020) A possible role for autoimmunity through molecular mimicry in alphavirus mediated arthritis. Sci Rep 10(1):938. 10.1038/s41598-019-55730-6 PubMed DOI PMC
Villion M, Moineau S (2013) Virology: phages hijack a host’s defence. Nature 494(7438):433–434. 10.1038/494433a PubMed DOI
Wang Z, Wu M (2015) An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci Rep 5:7949. 10.1038/srep07949 PubMed DOI PMC
Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B (2019) Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol J 16(1):15. 10.1186/s12985-019-1120-1 PubMed DOI PMC
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE (2024) Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. PLoS Biol 22(8):e3002723. 10.1371/journal.pbio.3002723 PubMed DOI PMC
Zimorski V, Mentel M, Tielens AGM, Martin WF (2019) Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic Biol Med 140:279–294. 10.1016/j.freeradbiomed.2019.03.030 PubMed DOI PMC
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J (2024) Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 9(1):124. 10.1038/s41392-024-01839-8 PubMed DOI PMC