Efficacy of autologous cell therapy on limb salvage in patients with chronic limb-threatening ischemia: 16-year single-center experience

. 2025 Jul 15 ; 16 (1) : 362. [epub] 20250715

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40660298

Grantová podpora
Programme EXCELES, Project No. LX22NPO5104 European Union Next-Generation EU

Odkazy

PubMed 40660298
PubMed Central PMC12261576
DOI 10.1186/s13287-025-04493-1
PII: 10.1186/s13287-025-04493-1
Knihovny.cz E-zdroje

BACKGROUNDS: Autologous cell therapy (ACT) could be a treatment option for patients with chronic limb-threatening ischemia (CLTI) when standard vascular intervention is impossible. This study aimed to analyze risk factors affecting therapeutic success and identify patients with diabetes most responsive to ACT. METHODS: In this prospective study, 129 treatments were provided to 118 limbs in 107 no-option CLTI patients with diabetes. Bone marrow was obtained, and stem cells were processed and injected into the calf muscles of the affected limb. After 16 years, we analyzed the influence of baseline factors related to patients (diabetes parameters, comorbidities, medications), limb ischemia (TcPO2 value, Graziani and GLASS classifications), ulcer (descriptions according to Wagner, WIfI, SINBAD and Texas classifications), and infection (the value of CRP, the presence of the osteomyelitis, resistant bacteria and clinical signs of infections). Outcomes were limb salvage (LS) and amputation-free survival (AFS), which were assessed using Cox regression models. RESULTS: Major amputation was performed in 41 out of 118 limbs (31.8%). The use of immunosuppressive therapy (HR 2.48, CI 1.30-4.73), higher stages of GLASS FP (femoropopliteal) score (HR 1.58, CI 1.31-1.90) in the univariate model, and signs of clinical infection (HR 2.21, CI 1.01-4.839) in the multivariable model significantly impacted LS. Shorter AFS was associated with a higher GLASS FP score (HR 1.28, CI 1.13-1.46), dialysis (HR 2.05, CI 1.33 - 3.16 ), hypoalbuminemia (HR 0.93, CI 0.89-0.98), signs of clinical infection (HR 1.99, CI 1.26-3.15) in the univariable model, and immunosuppression (HR 2.31, CI 1.09-4.95) in the multivariable model. CONCLUSION: Decisions to manage patients with no-option CLTI should be based on involvement of the peripheral circulation, the presence of infection and co-morbidities. Those with minimal impairment of the FP segment, with the best possible nutritional status and without signs of infection would benefit the most. Furthermore, we should be careful with dialysis patients and those on immunosuppressive therapy.

Zobrazit více v PubMed

Criqui MH, Matsushita K, Aboyans V, Hess CN, Hicks CW, Kwan TW, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: A scientific statement from the American heart association. Circulation. 2021;144(9):e171–91. 10.1161/CIR.0000000000001005. PubMed PMC

Soyoye DO, Abiodun OO, Ikem RT, Kolawole BA, Akintomide AO. Diabetes and peripheral artery disease: A review. World J Diabetes. 2021;12(6):827– 38. doi: [10.4239/wjd.v12.i6.827]. PubMed PMC

Fitridge R, Chuter V, Mills J, Hinchliffe R, Azuma N, Behrendt CA, et al. The intersocietal IWGDF, ESVS, SVS guidelines on peripheral artery disease in people with diabetes mellitus and a foot ulcer. J Vasc Surg. 2023;78(5):1101–31. 10.1016/j.jvs.2023.07.020. PubMed

Panunzi A, Madotto F, Sangalli E, Riccio F, Sganzaroli AB, Galenda P et al. Results of a prospective observational study of autologous peripheral blood mononuclear cell therapy for no-option critical limb-threatening ischemia and severe diabetic foot ulcers. Cardiovasc Diabetol. 2022;21(1):196. doi: [10.1186/s12933-022-01629-y]. PubMed PMC

Ventoruzzo G, Mazzitelli G, Ruzzi U, Liistro F, Scatena A, Martelli E. Limb salvage and survival in chronic Limb-Threatening ischemia: the need for a Fast-Track Team-Based approach. J Clin Med. 2023;12(18). 10.3390/jcm12186081. PubMed PMC

Yunir E, Kurniawan F, Rezaprasga E, Wijaya IP, Suroyo I, Matondang S et al. Autologous Bone-Marrow vs. Peripheral Blood Mononuclear Cells Therapy for Peripheral Artery Disease in Diabetic Patients. Int J Stem Cells. 2021;14(1):21–32. doi: [10.15283/ijsc20088]. PubMed PMC

Kohler C, Gaizauskaite K, Kotopoulos K, Kotelis D, Schmidli J, Makaloski V, et al. Amputation-Free survival, WIfI stage, and GLASS classifications in distal crural or pedal bypass for chronic Limb-Threatening ischemia. J Clin Med. 2024;13(22). 10.3390/jcm13226649. PubMed PMC

Dubsky M, Husakova J, Bem R, Jirkovska A, Nemcova A, Fejfarova V et al. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: A randomized controlled trial. Front Endocrinol (Lausanne). 2022;13:888809. doi: [10.3389/fendo.2022.888809]. PubMed PMC

Norgren L, Weiss N, Nikol S, Lantis JC, Patel MR, Hinchliffe RJ et al. PACE: randomized, controlled, multicentre, multinational, phase III study of PLX-PAD for critical limb ischaemia in patients unsuitable for revascularization: randomized clinical trial. Br J Surg. 2024;111(2). doi: [10.1093/bjs/znad437]. PubMed PMC

Suggested standards for reports dealing with lower extremity ischemia. Prepared by the ad hoc committee on reporting standards, society for vascular surgery/north American chapter, international society for cardiovascular surgery. J Vasc Surg. 1986;4(1):80–94. PubMed

Graziani L, Silvestro A, Bertone V, Manara E, Andreini R, Sigala A, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg. 2007;33(4):453–60. 10.1016/j.ejvs.2006.11.022. PubMed

Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg. 2019;69(6S):3S-125S e40. doi: [10.1016/j.jvs.2019.02.016]. PubMed PMC

Zhang B, Yao Z, Niu G, Yan Z, Zou Y, Tong X et al. Role of the Global Limb Anatomic Staging System in predicting outcomes of chronic limb-threatening ischemia in patients treated by drug-coated balloons. Quant Imaging Med Surg. 2023;13(3):1350-9. doi: [10.21037/qims-22-715]. PubMed PMC

Santema TB, Lenselink EA, Balm R, Ubbink DT. Comparing the Meggitt-Wagner and the university of Texas wound classification systems for diabetic foot ulcers: inter-observer analyses. Int Wound J. 2016;13(6):1137–41. 10.1111/iwj.12429. PubMed PMC

Monteiro-Soares M, Game F. Podcast on how to classify foot ulcers in people with diabetes (2023 update of the IWGDF guidelines on Classification). Diabetes Ther. 2024. 10.1007/s13300-023-01521-2. PubMed

Davidson-Pilon C. lifelines, survival analysis in Python (v0.30.0). Zenodo. 2024 [Available from: 10.5281/zenodo.14007206

[dataset] KM, Sojáková D, Dubsky M. Analysis Notebook and Data for the ACT15 paper (1.0). Zenodo 2025 [Available from: 10.5281/zenodo.15111180

Verwer MC, Wijnand JGJ, Teraa M, Verhaar MC, de Borst GJ. Long term survival and limb salvage in patients with Non-Revascularisable chronic limb threatening ischaemia. Eur J Vasc Endovasc Surg. 2021;62(2):225–32. 10.1016/j.ejvs.2021.04.003. PubMed

Meloni M, Izzo V, Da Ros V, Morosetti D, Stefanini M, Brocco E et al. Characteristics and Outcome for Persons with Diabetic Foot Ulcer and No-Option Critical Limb Ischemia. J Clin Med. 2020;9(11). doi: [10.3390/jcm9113745]. PubMed PMC

Sun Y, Zhao J, Zhang L, Li Z, Lei S. Effectiveness and safety of stem cell therapy for diabetic foot: a meta-analysis update. Stem Cell Res Ther. 2022;13(1):416. 10.1186/s13287-022-03110-9. PubMed PMC

Pu H, Huang Q, Zhang X, Wu Z, Qiu P, Jiang Y et al. A meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J Vasc Surg. 2022;75(4):1440-9 e5. doi: [10.1016/j.jvs.2021.10.051]. PubMed

Pham PT, Fukuda D, Yagi S, Kusunose K, Yamada H, Soeki T et al. Rivaroxaban, a specific FXa inhibitor, improved endothelium-dependent relaxation of aortic segments in diabetic mice. Sci Rep. 2019;9(1):11206. doi: [10.1038/s41598-019-47474-0]. PubMed PMC

Wu TC, Chan JS, Lee CY, Leu HB, Huang PH, Chen JS et al. Rivaroxaban, a factor Xa inhibitor, improves neovascularization in the ischemic hindlimb of streptozotocin-induced diabetic mice. Cardiovasc Diabetol. 2015;14:81. doi: [10.1186/s12933-015-0243-y]. PubMed PMC

Almenglo C, Mosquera-Garrote N, Gonzalez-Peteiro M, Gonzalez-Juanatey JR, Alvarez E. Edoxaban’s contribution to key endothelial cell functions. Biochem Pharmacol. 2020;178:114063. 10.1016/j.bcp.2020.114063. PubMed

Goette A, Mollenhauer M, Rudolph V, Lamparter M, Meier M, Bohm M. Pleiotropic effects of NOACs with focus on edoxaban: scientific findings and potential clinical implications. Herzschrittmacherther Elektrophysiol. 2023;34(2):142–52. 10.1007/s00399-023-00944-5. PubMed PMC

Atzemian N, Kareli D, Ragia G, Manolopoulos VG. Distinct pleiotropic effects of direct oral anticoagulants on cultured endothelial cells: a comprehensive review. Front Pharmacol. 2023;14:1244098. 10.3389/fphar.2023.1244098. PubMed PMC

Akter T, Annamalai B, Obert E, Simpson KN, Rohrer B. Dabigatran, wet AMD, results from retinal pigment epithelial cell monolayers, the mouse model of choroidal neovascularization, and patients from the medicare data base. Front Immunol. 2022;13:896274. 10.3389/fimmu.2022.896274. PubMed PMC

Fujii M, Terashi H, Yokono K, Armstrong DG. The degree of blood supply and infection control needed to treat diabetic chronic Limb-Threatening ischemia with forefoot osteomyelitis. J Am Podiatr Med Assoc. 2021;111(2). 10.7547/18-185. PubMed

Husakova J, Bem R, Fejfarova V, Jirkovska A, Woskova V, Jarosikova R et al. Factors Influencing the Risk of Major Amputation in Patients with Diabetic Foot Ulcers Treated by Autologous Cell Therapy. J Diabetes Res. 2022;2022:3954740. doi: [10.1155/2022/3954740]. PubMed PMC

Salybekov AA, Wolfien M, Kobayashi S, Steinhoff G, Asahara T. Personalized cell therapy for patients with peripheral arterial diseases in the context of genetic alterations: artificial Intelligence-Based responder and Non-Responder prediction. Cells. 2021;10(12). 10.3390/cells10123266 PubMed PMC

Loretelli C, Ben Nasr M, Giatsidis G, Bassi R, Lancerotto L, D’Addio F, et al. Embryonic stem cell extracts improve wound healing in diabetic mice. Acta Diabetol. 2020;57(7):883–90. 10.1007/s00592-020-01500-0. PubMed

Meyer N, Brodowski L, von Kaisenberg C, Schroder-Heurich B, von Versen-Hoynck F. Cyclosporine A and tacrolimus induce functional impairment and inflammatory reactions in endothelial progenitor cells. Int J Mol Sci. 2021;22(18). 10.3390/ijms22189696. PubMed PMC

Bianco R, Garofalo S, Rosa R, Damiano V, Gelardi T, Daniele G, et al. Inhibition of mTOR pathway by everolimus cooperates with EGFR inhibitors in human tumours sensitive and resistant to anti-EGFR drugs. Br J Cancer. 2008;98(5):923–30. 10.1038/sj.bjc.6604269. PubMed PMC

Simionescu A, Schulte JB, Fercana G, Simionescu DT. Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview. Int J Inflam. 2011;2011:958247. [10.4061/2011/958247]. PubMed PMC

Elezaby A, Dexheimer R, Wu D, Chan SY, Chen IY, Sayed N et al. Immunosuppression Drugs Exhibit Differential Effects on Endothelial Cell Function. bioRxiv. 2024. doi: [10.1101/2024.10.31.620858].

Elezaby A, Dexheimer R, Sallam K. Cardiovascular effects of immunosuppression agents. Front Cardiovasc Med. 2022;9:981838. [10.3389/fcvm.2022.981838]. PubMed PMC

Bargellini I, Piaggesi A, Cicorelli A, Rizzo L, Cervelli R, Iacopi E et al. Predictive value of angiographic scores for the integrated management of the ischemic diabetic foot. J Vasc Surg. 2013;57(5):1204-12. doi: [10.1016/j.jvs.2012.10.104]. PubMed

Leenstra B, Wijnand J, Verhoeven B, Koning O, Teraa M, Verhaar MC, et al. Applicability of transcutaneous oxygen tension measurement in the assessment of chronic Limb-Threatening ischemia. Angiology. 2020;71(3):208–16. doi: [10.1177/0003319719866958]. PubMed PMC

Kim TI, Aboian E, Fischer U, Zhang Y, Guzman RJ, Ochoa Chaar CI. Lower Extremity Revascularization for Chronic Limb-Threatening Ischemia among Patients at the Extremes of Age. Ann Vasc Surg. 2021;72:517– 28. doi: [10.1016/j.avsg.2020.08.135]. PubMed

Kawarada O, Yokoi Y, Higashimori A, Fujihara M, Sakamoto S, Ishihara M et al. Impact of end-stage renal disease in patients with critical limb ischaemia undergoing infrapopliteal intervention. EuroIntervention. 2014;10(6):753– 60. doi: [10.4244/EIJV10I6A129]. PubMed

Vlad LG, Grosser JA, Dodenhoff KA, Peoples AE, Aguilo-Seara G, Molnar JA. Examining albumin as a bioindicator of healing capability in patients with diabetic foot ulcers: a retrospective review. Wounds. 2023;35(6):E193-E6. doi: [10.25270/wnds/23012]. PubMed

Cheng P, Dong Y, Hu Z, Huang S, Cao X, Wang P, et al. Biomarker prediction of postoperative healing of diabetic foot ulcers: A retrospective observational study of serum albumin. J Wound Ostomy Cont Nurs. 2021;48(4):339–44. doi: [10.1097/WON.0000000000000780]. PubMed

Peacock MR, Farber A, Eslami MH, Kalish JA, Rybin D, Doros G et al. Hypoalbuminemia Predicts Perioperative Morbidity and Mortality after Infrainguinal Lower Extremity Bypass for Critical Limb Ischemia. Ann Vasc Surg. 2017;41:169– 75 e4. doi: [10.1016/j.avsg.2016.08.043]. PubMed

Founou RC, Founou LL, Essack SY. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One. 2017;12(12):e0189621. doi: [10.1371/journal.pone.0189621]. PubMed PMC

Cardoso NA, Cisneiros LL, Machado CJ, Cenedezi JM, Procopio RJ, Navarro TP. Bacterial genus is a risk factor for major amputation in patients with diabetic foot. Rev Col Bras Cir. 2017;44(2):147–53. doi: [10.1590/0100-69912017002007]. PubMed

Taha OA, Connerton PL, Connerton IF, El-Shibiny A. Bacteriophage ZCKP1: A Potential Treatment for Klebsiella pneumoniae Isolated From Diabetic Foot Patients. Front Microbiol. 2018;9:2127. doi: [10.3389/fmicb.2018.02127]. PubMed PMC

Toale C, Kelly A, Leahy F, Meagher H, Stapleton PJ, Moloney MA et al. Effect of Pseudomonas colonisation on lower limb venous ulcer healing: a systematic review. J Wound Care. 2022;31(2):186– 92. doi: [10.12968/jowc.2022.31.2.186]. PubMed

Raval AN, Schmuck EG, Tefera G, Leitzke C, Ark CV, Hei D et al. Bilateral administration of autologous CD133 + cells in ambulatory patients with refractory critical limb ischemia: lessons learned from a pilot randomized, double-blind, placebo-controlled trial. Cytotherapy. 2014;16(12):1720-32. doi: [10.1016/j.jcyt.2014.07.011]. PubMed PMC

Prasad M, Corban MT, Henry TD, Dietz AB, Lerman LO, Lerman A. Promise of autologous CD34 + stem/progenitor cell therapy for treatment of cardiovascular disease. Cardiovasc Res. 2020;116(8):1424-33. doi: [10.1093/cvr/cvaa027]. PubMed

Walter DH, Krankenberg H, Balzer JO, Kalka C, Baumgartner I, Schluter M et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: a randomized-start, placebo-controlled pilot trial (PROVASA). Circ Cardiovasc Interv. 2011;4(1):26–37. doi: [10.1161/CIRCINTERVENTIONS.110.958348]. PubMed

Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131(10):851– 60. doi: [10.1161/CIRCULATIONAHA.114.012913]. PubMed

Powell RJ, Comerota AJ, Berceli SA, Guzman R, Henry TD, Tzeng E et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J Vasc Surg. 2011;54(4):1032-41. doi: [10.1016/j.jvs.2011.04.006]. PubMed

Dubsky M, Fejfarova V, Bem R, Jirkovska A, Nemcova A, Sutoris K, et al. Main factors predicting nonresponders to autologous cell therapy for critical limb ischemia in patients with diabetic foot. Angiology. 2021;72(9):861–6. [10.1177/00033197211005614]. PubMed

Arango-Rodriguez ML, Mateus LC, Sossa CL, Becerra-Bayona SM, Solarte-David VA, Ochoa Vera ME et al. A novel therapeutic management for diabetes patients with chronic limb-threatening ischemia: comparison of autologous bone marrow mononuclear cells versus allogenic Wharton jelly-derived mesenchymal stem cells. Stem Cell Res Ther. 2023;14(1):221. doi: [10.1186/s13287-023-03427-z]. PubMed PMC

Klepanec A, Mistrik M, Altaner C, Valachovicova M, Olejarova I, Slysko R et al. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transplant. 2012;21(9):1909-18. doi: [10.3727/096368912X636948]. PubMed

Khodayari S, Khodayari H, Ebrahimi-Barough S, Khanmohammadi M, Islam MS, Vesovic M et al. Stem Cell Therapy in Limb Ischemia: State-of-Art, Perspective, and Possible Impacts of Endometrial-Derived Stem Cells. Front Cell Dev Biol. 2022;10:834754. doi: [10.3389/fcell.2022.834754]. PubMed PMC

Quiroz HJ, Valencia SF, Liu ZJ, Velazquez OC. Increasing the Therapeutic Potential of Stem Cell Therapies for Critical Limb Ischemia. HSOA J Stem Cells Res Dev Ther. 2020;6(1). doi: [10.24966/srdt-2060/100024]. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...