Factors Influencing the Risk of Major Amputation in Patients with Diabetic Foot Ulcers Treated by Autologous Cell Therapy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35450383
PubMed Central
PMC9017448
DOI
10.1155/2022/3954740
Knihovny.cz E-zdroje
- MeSH
- adenosinmonofosfát MeSH
- amputace MeSH
- buněčná a tkáňová terapie MeSH
- chronická kritická ischemie končetin MeSH
- diabetes mellitus * MeSH
- diabetická noha * chirurgie MeSH
- hojení ran MeSH
- ischemie chirurgie MeSH
- lidé MeSH
- retrospektivní studie MeSH
- rizikové faktory MeSH
- výsledek terapie MeSH
- záchrana končetiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosinmonofosfát MeSH
INTRODUCTION: Autologous cell therapy (ACT) is one of the last options for limb salvage in patients with chronic limb-threatening ischemia (CLTI) and diabetic foot ulcers (DFU). However, some patients may still undergo a major amputation even after ACT, but the risk factors for this are not known. Therefore, the aim of our study was to assess the risk factors for major amputation in patients with CLTI and DFU during a 2-year follow-up after ACT. METHODS: One hundred and thirteen patients after ACT were included in our study and divided into two groups: Group 1 with major amputation (AMP; n = 37) and Group 2 without amputation (nAMP, n = 76). The risk factors for major amputation were evaluated before ACT and included factors relating to the patient, the DFU, and the cell product. RESULTS: The AMP group had significantly higher C-reactive protein (CRP) levels compared to the nAMP group (22.7 vs. 10.7 mg/L, p = 0.024). In stepwise logistic regression, independent predictors for major amputation were mutation of the gene for methylenetetrahydrofolate reductase (MTHFR) with heterozygote and homozygote polymorphism 1298 (OR 4.33 [95% CI 1.05-17.6]), smoking (OR 3.83 [95% CI 1.18-12.5]), and CRP > 10 mg/L (OR 2.76 [95% CI 0.93-8.21]). Lower transcutaneous oxygen pressure (TcPO2) values were observed in AMP patients compared to the nAMP group at one month (24.5 vs. 33.2, p = 0.012) and at 3 months (31.1 vs. 40.9, p = 0.009) after ACT. CONCLUSION: Our study showed that the risk for major amputation after ACT in patients with CLTI and DFU is increased by the presence of MTHFR heterozygote and homozygote gene mutations, smoking, and higher CRP at baseline. Lower TcPO2 at one and 3 months after ACT may also have a predictive value. Therefore, it is necessary to stop smoking before ACT, treat any infection, and, above all, consider antiaggregation or anticoagulant treatment after the procedure.
1st Faculty of Medicine Charles University Prague Czech Republic
2nd Faculty of Medicine Charles Unviersity Prague Czech Republic
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Transplant Surgery Department Institute for Clinical and Experimental Medicine Prague Czech Republic
Zobrazit více v PubMed
Dalla Paola L., Cimaglia P., Carone A., et al. Limb salvage in diabetic patients with no-option critical limb ischemia: outcomes of a specialized center experience. Diabetic Foot & Ankle . 2019;10(1):p. 1696012. doi: 10.1080/2000625X.2019.1696012. PubMed DOI PMC
Gorecka J., Kostiuk V., Fereydooni A., et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research & Therapy . 2019;10(1):p. 87. doi: 10.1186/s13287-019-1185-1. PubMed DOI PMC
Thorud J. C., Plemmons B., Buckley C. J., Shibuya N., Jupiter D. C. Mortality after nontraumatic major amputation among patients with diabetes and peripheral vascular disease: a systematic review. The Journal of Foot and Ankle Surgery . 2016;55(3):591–599. doi: 10.1053/j.jfas.2016.01.012. PubMed DOI
Stern J. R., Wong C. K., Yerovinkina M., et al. A meta-analysis of long-term mortality and associated risk factors following lower extremity amputation. Annals of Vascular Surgery . 2017;42:322–327. doi: 10.1016/j.avsg.2016.12.015. PubMed DOI
Baltzis D., Eleftheriadou I., Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy . 2014;31(8):817–836. doi: 10.1007/s12325-014-0140-x. PubMed DOI
Biscetti F., Pitocco D., Straface G., et al. Glycaemic variability affects ischaemia-induced angiogenesis in diabetic mice. Clinical Science (London, England) . 2011;121(12):555–564. doi: 10.1042/CS20110043. PubMed DOI
Biscetti F., Straface G., de Cristofaro R., et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes . 2010;59(6):1496–1505. doi: 10.2337/db09-1507. PubMed DOI PMC
den Dekker A., Davis F. M., Kunkel S. L., Gallagher K. A. Targeting epigenetic mechanisms in diabetic wound healing. Translational Research . 2019;204:39–50. doi: 10.1016/j.trsl.2018.10.001. PubMed DOI PMC
Conte M. S., Bradbury A. W., Kolh P., et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. European Journal of Vascular and Endovascular Surgery . 2019;58(1):S1–S109.e33. doi: 10.1016/j.ejvs.2019.05.006. PubMed DOI PMC
Firnhaber J. M., Powell C. S. Lower extremity peripheral artery disease: diagnosis and treatment. American Family Physician . 2019;99(6):362–369. PubMed
Biscetti F., Nardella E., Bonadia N., et al. Association between plasma omentin-1 levels in type 2 diabetic patients and peripheral artery disease. Cardiovascular Diabetology . 2019;18(1):p. 74. doi: 10.1186/s12933-019-0880-7. PubMed DOI PMC
Aboyans V., Sevestre M. A., Désormais I., Lacroix P., Fowkes G., Criqui M. H. Epidemiology of lower extremity artery disease. Presse Médicale . 2018;47(1):38–46. doi: 10.1016/j.lpm.2018.01.012. PubMed DOI
Farber A., Eberhardt R. T. The current state of critical limb ischemia. JAMA Surgery . 2016;151(11):1070–1077. doi: 10.1001/jamasurg.2016.2018. PubMed DOI
Kokkinidis D. G., Giannopoulos S., Haider M., et al. Active smoking is associated with higher rates of incomplete wound healing after endovascular treatment of critical limb ischemia. Vascular Medicine . 2020;25(5):427–435. doi: 10.1177/1358863X20916526. PubMed DOI PMC
Biscetti F., Porreca C. F., Bertucci F., et al. TNFRSF11B gene polymorphisms increased risk of peripheral arterial occlusive disease and critical limb ischemia in patients with type 2 diabetes. Acta Diabetologica . 2014;51(6):1025–1032. doi: 10.1007/s00592-014-0664-1. PubMed DOI
Biscetti F., Straface G., Bertoletti G., et al. Identification of a potential proinflammatory genetic profile influencing carotid plaque vulnerability. Journal of Vascular Surgery . 2015;61(2):374–381. doi: 10.1016/j.jvs.2014.08.113. PubMed DOI
Dubsky M., Jirkovská A., Pagáčová L., et al. Impact of inherited prothrombotic disorders on the long-term clinical outcome of percutaneous transluminal angioplasty in patients with diabetes. Journal Diabetes Research . 2015;2015, article 369758:5. doi: 10.1155/2015/369758. PubMed DOI PMC
Poduri A., Mukherjee D., Sud K., Kohli H. S., Sakhuja V., Khullar M. MTHFR A1298C polymorphism is associated with cardiovascular risk in end stage renal disease in North Indians. Molecular and Cellular Biochemistry . 2008;308(1-2):43–50. doi: 10.1007/s11010-007-9610-7. PubMed DOI
Sproston N. R., Ashworth J. J. Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology . 2018;9:p. 754. doi: 10.3389/fimmu.2018.00754. PubMed DOI PMC
Fujii M., Terashi H., Yokono K., Armstrong D. G. The degree of blood supply and infection control needed to treat diabetic chronic limb-threatening ischemia with forefoot osteomyelitis. Journal of the American Podiatric Medical Association . 2021;111(2) doi: 10.7547/18-185. PubMed DOI
Biscetti F., Ferraro P. M., Hiatt W. R., et al. Inflammatory cytokines associated with failure of lower-extremity endovascular revascularization (LER): a prospective study of a population with diabetes. Diabetes Care . 2019;42(10):1939–1945. doi: 10.2337/dc19-0408. PubMed DOI
Xie B., Luo H., Zhang Y., Wang Q., Zhou C., Xu D. Autologous stem cell therapy in critical limb ischemia: a meta-analysis of randomized controlled trials. Stem Cells International . 2018;2018:12. doi: 10.1155/2018/7528464.7528464 PubMed DOI PMC
Benoit E., O'Donnell T. F., Jr., Iafrati M. D., et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. Journal of Translational Medicine . 2011;9(1):p. 165. doi: 10.1186/1479-5876-9-165. PubMed DOI PMC
Dubsky M., Jirkovska A., Bem R., Nemcova A., Fejfarova V., Jude E. B. Cell therapy of critical limb ischemia in diabetic patients - state of art. Diabetes Research and Clinical Practice . 2017;126:263–271. doi: 10.1016/j.diabres.2017.02.028. PubMed DOI
Monteiro-Soares M., Boyko E. J., Jeffcoate W., et al. Diabetic foot ulcer classifications: a critical review. Diabetes/Metabolism Research and Reviews . 2020;36, article e3272(Suppl 1) doi: 10.1002/dmrr.3272. PubMed DOI
Guo Z., Yue C., Qian Q., He H., Mo Z. Factors associated with lower-extremity amputation in patients with diabetic foot ulcers in a Chinese tertiary care hospital. International Wound Journal . 2019;16(6):1304–1313. doi: 10.1111/iwj.13190. PubMed DOI PMC
Gurney J. K., Stanley J., York S., Rosenbaum D., Sarfati D. Risk of lower limb amputation in a national prevalent cohort of patients with diabetes. Diabetologia . 2018;61(3):626–635. doi: 10.1007/s00125-017-4488-8. PubMed DOI
Kurniawati A., Ismiarto Y. D., Hsu I. L. Prognostic factors for lower extremity amputation in diabetic foot ulcer patients. Journal of Acute Medicine . 2019;9(2):59–63. doi: 10.6705/j.jacme.201906_9(2).0003. PubMed DOI PMC
Kalbaugh C. A., Strassle P. D., Paul N. J., McGinigle K. L., Kibbe M. R., Marston W. A. Trends in surgical indications for major lower limb amputation in the USA from 2000 to 2016. European Journal of Vascular and Endovascular Surgery . 2020;60(1):88–96. doi: 10.1016/j.ejvs.2020.03.018. PubMed DOI
Maufus M., Sevestre-Pietri M. A., Sessa C., et al. Critical limb ischaemia and the response to bone marrow-derived cell therapy according to tcPO2 measurement. VASA . 2017;46(1):23–28. doi: 10.1024/0301-1526/a000590. PubMed DOI
Moll S., Varga E. A. Homocysteine and MTHFR mutations. Circulation . 2015;132(1):e6–e9. doi: 10.1161/CIRCULATIONAHA.114.013311. PubMed DOI
Gemmati D., Serino M. L., Trivellato C., Fiorini S., Scapoli G. L. C677T substitution in the methylenetetrahydrofolate reductase gene as a risk factor for venous thrombosis and arterial disease in selected patients. Haematologica . 1999;84(9):824–828. PubMed
Lupi-Herrera E., Soto-López M. E., Lugo-Dimas A. D. J., et al. Polymorphisms C677T and A1298C of MTHFR gene: homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clinical and Applied Thrombosis/Hemostasis . 2019;25, article 1076029618780344 doi: 10.1177/1076029618780344. PubMed DOI PMC
Chai A. U., Abrams J. Homocysteine: a new cardiac risk factor? Clinical Cardiology . 2001;24(1):80–84. doi: 10.1002/clc.4960240113. PubMed DOI PMC
Yang Q., He G. W. Imbalance of homocysteine and H2S: significance, mechanisms, and therapeutic promise in vascular injury. Oxidative Medicine and Cellular Longevity . 2019;2019:11. doi: 10.1155/2019/7629673.7629673 PubMed DOI PMC
Clark D., 3rd, Cain L. R., Blaha M. J., et al. Cigarette smoking and subclinical peripheral arterial disease in blacks of the Jackson Heart Study. Journal of the American Heart Association . 2019;8(3, article e010674) doi: 10.1161/JAHA.118.010674. PubMed DOI PMC
Kianoush S., Yakoob M. Y., al-Rifai M., et al. Associations of cigarette smoking with subclinical inflammation and atherosclerosis: ELSA-Brasil (the Brazilian longitudinal study of adult health) Journal of the American Heart Association . 2017;6(6) doi: 10.1161/JAHA.116.005088. PubMed DOI PMC
Zakariah N. A., Bajuri M. Y., Hassan R., et al. Is procalcitonin more superior to hs-CRP in the diagnosis of infection in diabetic foot ulcer? The Malaysian Journal of Pathology . 2020;42(1):77–84. PubMed
Barani J., Nilsson J. Å., Mattiasson I., Lindblad B., Gottsäter A. Inflammatory mediators are associated with 1-year mortality in critical limb ischemia. Journal of Vascular Surgery . 2005;42(1):75–80. doi: 10.1016/j.jvs.2005.03.025. PubMed DOI
Pignone M. Management of elevated low density lipoprotein-cholesterol (LDL-C) in primary prevention of cardiovascular disease. 2021, https://www.uptodate.com/contents/management-of-elevated-low-density-lipoprotein-cholesterol-ldl-c-in-primary-prevention-of-cardiovascular-disease.