Factors Influencing the Risk of Major Amputation in Patients with Diabetic Foot Ulcers Treated by Autologous Cell Therapy

. 2022 ; 2022 () : 3954740. [epub] 20220411

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35450383

INTRODUCTION: Autologous cell therapy (ACT) is one of the last options for limb salvage in patients with chronic limb-threatening ischemia (CLTI) and diabetic foot ulcers (DFU). However, some patients may still undergo a major amputation even after ACT, but the risk factors for this are not known. Therefore, the aim of our study was to assess the risk factors for major amputation in patients with CLTI and DFU during a 2-year follow-up after ACT. METHODS: One hundred and thirteen patients after ACT were included in our study and divided into two groups: Group 1 with major amputation (AMP; n = 37) and Group 2 without amputation (nAMP, n = 76). The risk factors for major amputation were evaluated before ACT and included factors relating to the patient, the DFU, and the cell product. RESULTS: The AMP group had significantly higher C-reactive protein (CRP) levels compared to the nAMP group (22.7 vs. 10.7 mg/L, p = 0.024). In stepwise logistic regression, independent predictors for major amputation were mutation of the gene for methylenetetrahydrofolate reductase (MTHFR) with heterozygote and homozygote polymorphism 1298 (OR 4.33 [95% CI 1.05-17.6]), smoking (OR 3.83 [95% CI 1.18-12.5]), and CRP > 10 mg/L (OR 2.76 [95% CI 0.93-8.21]). Lower transcutaneous oxygen pressure (TcPO2) values were observed in AMP patients compared to the nAMP group at one month (24.5 vs. 33.2, p = 0.012) and at 3 months (31.1 vs. 40.9, p = 0.009) after ACT. CONCLUSION: Our study showed that the risk for major amputation after ACT in patients with CLTI and DFU is increased by the presence of MTHFR heterozygote and homozygote gene mutations, smoking, and higher CRP at baseline. Lower TcPO2 at one and 3 months after ACT may also have a predictive value. Therefore, it is necessary to stop smoking before ACT, treat any infection, and, above all, consider antiaggregation or anticoagulant treatment after the procedure.

Zobrazit více v PubMed

Dalla Paola L., Cimaglia P., Carone A., et al. Limb salvage in diabetic patients with no-option critical limb ischemia: outcomes of a specialized center experience. Diabetic Foot & Ankle . 2019;10(1):p. 1696012. doi: 10.1080/2000625X.2019.1696012. PubMed DOI PMC

Gorecka J., Kostiuk V., Fereydooni A., et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing. Stem Cell Research & Therapy . 2019;10(1):p. 87. doi: 10.1186/s13287-019-1185-1. PubMed DOI PMC

Thorud J. C., Plemmons B., Buckley C. J., Shibuya N., Jupiter D. C. Mortality after nontraumatic major amputation among patients with diabetes and peripheral vascular disease: a systematic review. The Journal of Foot and Ankle Surgery . 2016;55(3):591–599. doi: 10.1053/j.jfas.2016.01.012. PubMed DOI

Stern J. R., Wong C. K., Yerovinkina M., et al. A meta-analysis of long-term mortality and associated risk factors following lower extremity amputation. Annals of Vascular Surgery . 2017;42:322–327. doi: 10.1016/j.avsg.2016.12.015. PubMed DOI

Baltzis D., Eleftheriadou I., Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Advances in Therapy . 2014;31(8):817–836. doi: 10.1007/s12325-014-0140-x. PubMed DOI

Biscetti F., Pitocco D., Straface G., et al. Glycaemic variability affects ischaemia-induced angiogenesis in diabetic mice. Clinical Science (London, England) . 2011;121(12):555–564. doi: 10.1042/CS20110043. PubMed DOI

Biscetti F., Straface G., de Cristofaro R., et al. High-mobility group box-1 protein promotes angiogenesis after peripheral ischemia in diabetic mice through a VEGF-dependent mechanism. Diabetes . 2010;59(6):1496–1505. doi: 10.2337/db09-1507. PubMed DOI PMC

den Dekker A., Davis F. M., Kunkel S. L., Gallagher K. A. Targeting epigenetic mechanisms in diabetic wound healing. Translational Research . 2019;204:39–50. doi: 10.1016/j.trsl.2018.10.001. PubMed DOI PMC

Conte M. S., Bradbury A. W., Kolh P., et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. European Journal of Vascular and Endovascular Surgery . 2019;58(1):S1–S109.e33. doi: 10.1016/j.ejvs.2019.05.006. PubMed DOI PMC

Firnhaber J. M., Powell C. S. Lower extremity peripheral artery disease: diagnosis and treatment. American Family Physician . 2019;99(6):362–369. PubMed

Biscetti F., Nardella E., Bonadia N., et al. Association between plasma omentin-1 levels in type 2 diabetic patients and peripheral artery disease. Cardiovascular Diabetology . 2019;18(1):p. 74. doi: 10.1186/s12933-019-0880-7. PubMed DOI PMC

Aboyans V., Sevestre M. A., Désormais I., Lacroix P., Fowkes G., Criqui M. H. Epidemiology of lower extremity artery disease. Presse Médicale . 2018;47(1):38–46. doi: 10.1016/j.lpm.2018.01.012. PubMed DOI

Farber A., Eberhardt R. T. The current state of critical limb ischemia. JAMA Surgery . 2016;151(11):1070–1077. doi: 10.1001/jamasurg.2016.2018. PubMed DOI

Kokkinidis D. G., Giannopoulos S., Haider M., et al. Active smoking is associated with higher rates of incomplete wound healing after endovascular treatment of critical limb ischemia. Vascular Medicine . 2020;25(5):427–435. doi: 10.1177/1358863X20916526. PubMed DOI PMC

Biscetti F., Porreca C. F., Bertucci F., et al. TNFRSF11B gene polymorphisms increased risk of peripheral arterial occlusive disease and critical limb ischemia in patients with type 2 diabetes. Acta Diabetologica . 2014;51(6):1025–1032. doi: 10.1007/s00592-014-0664-1. PubMed DOI

Biscetti F., Straface G., Bertoletti G., et al. Identification of a potential proinflammatory genetic profile influencing carotid plaque vulnerability. Journal of Vascular Surgery . 2015;61(2):374–381. doi: 10.1016/j.jvs.2014.08.113. PubMed DOI

Dubsky M., Jirkovská A., Pagáčová L., et al. Impact of inherited prothrombotic disorders on the long-term clinical outcome of percutaneous transluminal angioplasty in patients with diabetes. Journal Diabetes Research . 2015;2015, article 369758:5. doi: 10.1155/2015/369758. PubMed DOI PMC

Poduri A., Mukherjee D., Sud K., Kohli H. S., Sakhuja V., Khullar M. MTHFR A1298C polymorphism is associated with cardiovascular risk in end stage renal disease in North Indians. Molecular and Cellular Biochemistry . 2008;308(1-2):43–50. doi: 10.1007/s11010-007-9610-7. PubMed DOI

Sproston N. R., Ashworth J. J. Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology . 2018;9:p. 754. doi: 10.3389/fimmu.2018.00754. PubMed DOI PMC

Fujii M., Terashi H., Yokono K., Armstrong D. G. The degree of blood supply and infection control needed to treat diabetic chronic limb-threatening ischemia with forefoot osteomyelitis. Journal of the American Podiatric Medical Association . 2021;111(2) doi: 10.7547/18-185. PubMed DOI

Biscetti F., Ferraro P. M., Hiatt W. R., et al. Inflammatory cytokines associated with failure of lower-extremity endovascular revascularization (LER): a prospective study of a population with diabetes. Diabetes Care . 2019;42(10):1939–1945. doi: 10.2337/dc19-0408. PubMed DOI

Xie B., Luo H., Zhang Y., Wang Q., Zhou C., Xu D. Autologous stem cell therapy in critical limb ischemia: a meta-analysis of randomized controlled trials. Stem Cells International . 2018;2018:12. doi: 10.1155/2018/7528464.7528464 PubMed DOI PMC

Benoit E., O'Donnell T. F., Jr., Iafrati M. D., et al. The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. Journal of Translational Medicine . 2011;9(1):p. 165. doi: 10.1186/1479-5876-9-165. PubMed DOI PMC

Dubsky M., Jirkovska A., Bem R., Nemcova A., Fejfarova V., Jude E. B. Cell therapy of critical limb ischemia in diabetic patients - state of art. Diabetes Research and Clinical Practice . 2017;126:263–271. doi: 10.1016/j.diabres.2017.02.028. PubMed DOI

Monteiro-Soares M., Boyko E. J., Jeffcoate W., et al. Diabetic foot ulcer classifications: a critical review. Diabetes/Metabolism Research and Reviews . 2020;36, article e3272(Suppl 1) doi: 10.1002/dmrr.3272. PubMed DOI

Guo Z., Yue C., Qian Q., He H., Mo Z. Factors associated with lower-extremity amputation in patients with diabetic foot ulcers in a Chinese tertiary care hospital. International Wound Journal . 2019;16(6):1304–1313. doi: 10.1111/iwj.13190. PubMed DOI PMC

Gurney J. K., Stanley J., York S., Rosenbaum D., Sarfati D. Risk of lower limb amputation in a national prevalent cohort of patients with diabetes. Diabetologia . 2018;61(3):626–635. doi: 10.1007/s00125-017-4488-8. PubMed DOI

Kurniawati A., Ismiarto Y. D., Hsu I. L. Prognostic factors for lower extremity amputation in diabetic foot ulcer patients. Journal of Acute Medicine . 2019;9(2):59–63. doi: 10.6705/j.jacme.201906_9(2).0003. PubMed DOI PMC

Kalbaugh C. A., Strassle P. D., Paul N. J., McGinigle K. L., Kibbe M. R., Marston W. A. Trends in surgical indications for major lower limb amputation in the USA from 2000 to 2016. European Journal of Vascular and Endovascular Surgery . 2020;60(1):88–96. doi: 10.1016/j.ejvs.2020.03.018. PubMed DOI

Maufus M., Sevestre-Pietri M. A., Sessa C., et al. Critical limb ischaemia and the response to bone marrow-derived cell therapy according to tcPO2 measurement. VASA . 2017;46(1):23–28. doi: 10.1024/0301-1526/a000590. PubMed DOI

Moll S., Varga E. A. Homocysteine and MTHFR mutations. Circulation . 2015;132(1):e6–e9. doi: 10.1161/CIRCULATIONAHA.114.013311. PubMed DOI

Gemmati D., Serino M. L., Trivellato C., Fiorini S., Scapoli G. L. C677T substitution in the methylenetetrahydrofolate reductase gene as a risk factor for venous thrombosis and arterial disease in selected patients. Haematologica . 1999;84(9):824–828. PubMed

Lupi-Herrera E., Soto-López M. E., Lugo-Dimas A. D. J., et al. Polymorphisms C677T and A1298C of MTHFR gene: homocysteine levels and prothrombotic biomarkers in coronary and pulmonary thromboembolic disease. Clinical and Applied Thrombosis/Hemostasis . 2019;25, article 1076029618780344 doi: 10.1177/1076029618780344. PubMed DOI PMC

Chai A. U., Abrams J. Homocysteine: a new cardiac risk factor? Clinical Cardiology . 2001;24(1):80–84. doi: 10.1002/clc.4960240113. PubMed DOI PMC

Yang Q., He G. W. Imbalance of homocysteine and H2S: significance, mechanisms, and therapeutic promise in vascular injury. Oxidative Medicine and Cellular Longevity . 2019;2019:11. doi: 10.1155/2019/7629673.7629673 PubMed DOI PMC

Clark D., 3rd, Cain L. R., Blaha M. J., et al. Cigarette smoking and subclinical peripheral arterial disease in blacks of the Jackson Heart Study. Journal of the American Heart Association . 2019;8(3, article e010674) doi: 10.1161/JAHA.118.010674. PubMed DOI PMC

Kianoush S., Yakoob M. Y., al-Rifai M., et al. Associations of cigarette smoking with subclinical inflammation and atherosclerosis: ELSA-Brasil (the Brazilian longitudinal study of adult health) Journal of the American Heart Association . 2017;6(6) doi: 10.1161/JAHA.116.005088. PubMed DOI PMC

Zakariah N. A., Bajuri M. Y., Hassan R., et al. Is procalcitonin more superior to hs-CRP in the diagnosis of infection in diabetic foot ulcer? The Malaysian Journal of Pathology . 2020;42(1):77–84. PubMed

Barani J., Nilsson J. Å., Mattiasson I., Lindblad B., Gottsäter A. Inflammatory mediators are associated with 1-year mortality in critical limb ischemia. Journal of Vascular Surgery . 2005;42(1):75–80. doi: 10.1016/j.jvs.2005.03.025. PubMed DOI

Pignone M. Management of elevated low density lipoprotein-cholesterol (LDL-C) in primary prevention of cardiovascular disease. 2021, https://www.uptodate.com/contents/management-of-elevated-low-density-lipoprotein-cholesterol-ldl-c-in-primary-prevention-of-cardiovascular-disease.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...