Long-Term Respiratory and Neurological Sequelae of COVID-19

. 2020 Nov 01 ; 26 () : e928996. [epub] 20201101

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33177481

Since the initial reports of coronavirus disease 2019 (COVID-19) in China in late 2019, infections from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have spread rapidly, resulting in a global pandemic that has caused millions of deaths. Initially, the large number of infected people required the direction of global healthcare resources to provide supportive care for the acutely ill population in an attempt to reduce mortality. While clinical trials for safe and effective antiviral agents are ongoing, and vaccine development programs are being accelerated, long-term sequelae of SARS-CoV-2 infection have become increasingly recognized and concerning. Although the upper and lower respiratory tracts are the main sites of entry of SARS-CoV-2 into the body, resulting in COVID-19 pneumonia as the most common presentation, acute lung damage may be followed by pulmonary fibrosis and chronic impairment of lung function, with impaired quality of life. Also, increasing reports have shown that SARS-CoV-2 infection involves the central nervous system (CNS) and the peripheral nervous system (PNS) and directly or indirectly damages neurons, leading to long-term neurological sequelae. This review aims to provide an update on the mechanisms involved in the development of the long-term sequelae of SARS-CoV-2 infection in the 3 main areas of lung injury, neuronal injury, and neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and multiple sclerosis, and highlights the need for patient monitoring following the acute stage of infection with SARS-CoV-2 to provide a rationale for the prevention, diagnosis, and management of these potential long-term sequelae.

Zobrazit více v PubMed

Kannan S, Shaik Syed Ali P, Sheeza A, Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur Rev Med Pharmacol Sci. 2020;24(4):2006–11. PubMed

Wang F, Kream RM, Stefano GB. An evidence-based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monitm. 2020;26:e924700. PubMed PMC

Oldfield E, Malwal SR. COVID-19 and other pandemics: How might they be prevented? ACS Infect Dis. 2020;6(7):1563–66. PubMed

Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19) J Pathol. 2020;251(3):228–48. PubMed PMC

Helms J, Tacquard C, Severac F, et al. CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis) High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–98. PubMed PMC

George PM, Wells AU, Jenkins RG. Pulmonary fibrosis and COVID-19: The potential role for antifibrotic therapy. Lancet Respir Med. 2020;8(8):807–15. PubMed PMC

Stefano ML, Kream RM, Stefano GB. A novel vaccine employing non-replicating rabies virus expressing chimeric SARS-CoV-2 spike protein domains: functional inhibition of viral/nicotinic acetylcholine receptor complexes. Med Sci Monit. 2020;26:e926016. PubMed PMC

Singal CMS, Jaiswal P, Seth P. SARS-CoV-2, more than a respiratory virus: Its potential role in neuropathogenesis. ACS Chem Neurosci. 2020;11(13):1887–99. PubMed

Calabrese F, Pezzuto F, Fortarezza F, et al. Pulmonary pathology and COVID-19: Lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020;477(3):359–72. PubMed PMC

Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through post-mortem core biopsies. Mod Pathol. 2020;33:1007–14. PubMed PMC

Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420–22. PubMed PMC

Stefano GB, Esch T, Kream RM. Potential immunoregulatory and antiviral/SARS-CoV-2 activities of nitric oxide. Med Sci Monit. 2020;26:e925679. PubMed PMC

Shao C, Liu H, Meng L, et al. Evolution of severe acute respiratory syndrome coronavirus 2 RNA test results in a patient with fatal coronavirus disease 2019: A case report. Hum Pathol. 2020;101:82–88. PubMed PMC

Hsia CC, Hyde DM, Weibel ER. Lung structure and the intrinsic challenges of gas exchange. Compr Physiol. 2016;6(2):827–95. PubMed PMC

Miesbach W, Makris M. COVID-19: Coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin Appl Thromb Hemost. 2020;26 1076029620938149. PubMed PMC

McFadyen JD, Stevens H, Peter K. The Emerging threat of (Micro)thrombosis in COVID-19 and its therapeutic implications. Circ Res. 2020;127(4):571–87. PubMed PMC

Hui DS, Wong KT, Ko FW, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest. 2005;128:2247–61. PubMed PMC

Ngai JC, Ko FW, Ng SS, et al. The long-term impact of severe acute respiratory syndrome on pulmonary function, exercise capacity and health status. Respirology. 2010;15:543–50. PubMed PMC

Zhang P, Li J, Liu H, et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: A 15-year follow-up from a prospective cohort study. Bone Res. 2020;8:8. PubMed PMC

Chang YC, Yu CJ, Chang SC, et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT. Radiology. 2005;236:1067–75. PubMed

Wu X, Dong D, Ma D. Thin-section computed tomography manifestations during convalescence and long-term follow-up of patients with severe acute respiratory syndrome (SARS) Med Sci Monit. 2016;22:2793–99. PubMed PMC

World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int.

Cheung OY, Chan JWM, Ng CK, et al. The spectrum of pathological changes in severe acute respiratory syndrome (SARS) Histopathology. 2004;45:119–24. PubMed PMC

Zhao X, Nicholls JM, Chen Y-G. Severe acute respiratory syndrome-associated coronavirus nucleocapsid protein interacts with Smad3 and modulates transforming growth factor-beta signaling. J Biol Chem. 2008;283:3272–3280. PubMed PMC

Zuo W, Zhao X, Chen YG. SARS coronavirus and lung fibrosis. In: Lal S, editor. Molecular Biology of the SARS-Coronavirus. Berlin and Heidelberg: Springer; 2010. pp. 247–58.

Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020;42(1):3–11. PubMed

Chang CK, Hou MH, Chang CF, et al. The SARS coronavirus nucleocapsid protein-forms and functions. Antiviral Res. 2014;103:39–50. PubMed PMC

Chiappelli F. Towards neuro-CoViD-19. Bioinformation. 2020;16(4):288–92. PubMed PMC

Pezzini A, Padovani A. Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol. 2020;24:1–9. PubMed PMC

Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan. 2005;14(3):113–19. PubMed

Tsai LK, Hsieh ST, Chao CC, et al. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol. 2004;61(11):1669–73. PubMed

Lau KK, Yu WC, Chu CM, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342–44. PubMed PMC

Ding Y, Wang H, Shen H, et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J Pathol. 2003;200(3):282–89. PubMed PMC

Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine Mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–96. PubMed PMC

Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–75. PubMed PMC

Barrantes FJ. Central nervous system targets and routes for SARS-CoV-2: Current views and new hypotheses. ACS Chem Neurosci. 2020;11(18):2793–803. PubMed

Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555–62. PubMed PMC

Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv. 2020;6(31):eabc5801. PubMed PMC

McCray PB, Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813–21. PubMed PMC

Jacomy H, Talbot PJ. Vacuolating encephalitis in mice infected by human coronavirus OC43. Virology. 2003;315(1):20–33. PubMed PMC

Li K, Wohlford-Lenane C, Perlman S, et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712–22. PubMed PMC

Xiao L, Haack KK, Zucker IH. Angiotensin II regulates ACE and ACE2 in neurons through p38 mitogen-activated protein kinase and extracellular signal-regulated kinase 1/2 signaling. Am J Physiol Cell Physiol. 2013;304(11):C1073–79. PubMed PMC

Dubé M, Le Coupanec A, Wong AHM, et al. Axonal transport enables neuron-to-neuron propagation of human Coronavirus OC43. J Virol. 2018;92(17):e00404–18. PubMed PMC

Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 92(6):552–55. 202. PubMed PMC

Li YC, Bai WZ, Hirano N, et al. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 2012;163(2):628–35. PubMed PMC

Berth SH, Leopold PL, Morfini GN. Virus-induced neuronal dysfunction and degeneration. Front Biosci (Landmark Ed) 2009;14:5239–59. PubMed

Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) J Med Virol. 2020;92(7):699–702. PubMed PMC

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–98. PubMed

Desforges M, Le Coupanec A, Brison E, et al. Neuroinvasive and neurotropic human respiratory coronaviruses: potential neurovirulent agents in humans. Adv Exp Med Biol. 2014;807:75–96. PubMed PMC

Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–24. PubMed PMC

Nicholls JM, Butany J, Poon LL, et al. Time course and cellular localization of SARS-CoV nucleoprotein and RNA in lungs from fatal cases of SARS. PLoS Med. 2006;3(2):e27. PubMed PMC

Spiegel M, Schneider K, Weber F, et al. Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. J Gen Virol. 2006;87(Pt 7):1953–60. PubMed

Trojanowicz B, Ulrich C, Kohler F, et al. Monocytic angiotensin-converting enzyme 2 relates to atherosclerosis in patients with chronic kidney disease. Nephrol Dial Transplant. 2017;32(2):287–98. PubMed PMC

Abassi Z, Knaney Y, Karram T, Heyman SN. The lung macrophage in SARS-CoV-2 infection: A friend or a foe? Front Immunol. 2020;11:1312. PubMed PMC

Jose RJ, Manuel A. COVID-19 cytokine storm: The interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–47. PubMed PMC

The BASE Medicine Task Force. Facts and recommendations of SARS-CoV-2 and COVID-19: An update. Science Insights. 2020;35(1):194–215.

Kremer S, Lersy F, de Sèze J, et al. Brain MRI findings in severe COVID-19: A retrospective observational study. Radiology. 2020;16:202222. PubMed PMC

Wu K, Zou J, Chang HY. RNA-GPS predicts SARS-CoV-2 RNA localization to host mitochondria and nucleolus. Cell Syst. 2020;11(1):102–108.e3. PubMed PMC

Shenoy S. Coronavirus (Covid-19) sepsis: Revisiting mitochondrial dysfunction in pathogenesis, aging, inflammation, and mortality. Inflamm Res. 2020;7:1–9. PubMed PMC

Singh KK, Chaubey G, Chen JY, Suravajhala P. Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am J Physiol Cell Physiol. 2020;319(2):C258–67. PubMed PMC

Zhang AJ, Lee AC, Chu H, et al. SARS-CoV-2 infects and damages the mature and immature olfactory sensory neurons of hamsters. Clin Infect Dis. 2020 [Online ahead of print] PubMed PMC

Aghagoli G, Gallo Marin B, Katchur NJ, et al. Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit Care. 2020;13:1–10. PubMed PMC

Thomson BJ. Viruses and apoptosis. Int J Exp Pathol. 2001;82(2):65–76. PubMed PMC

Nainu F, Shiratsuchi A, Nakanishi Y. Induction of apoptosis and subsequent phagocytosis of virus-infected cells as an antiviral mechanism. Front Immunol. 2017;8:1220. PubMed PMC

Richard A, Tulasne D. Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis. Cell Death Dis. 2012;3:e277. PubMed PMC

Shojaei S, Suresh M, Klionsky DJ, et al. Autophagy and SARS-CoV-2 infection: Apossible smart targeting of the autophagy pathway. Virulence. 2020;11(1):805–10. PubMed PMC

Vallamkondu J, John A, Wani WY, et al. SARS-CoV-2 pathophysiology and assessment of coronaviruses in CNS diseases with a focus on therapeutic targets. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165889. PubMed PMC

Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the brain. Cell Mol Neurobiol. 2020;25:1–8. PubMed PMC

Trepson WL. Risk factors for Alzheimer’s disease. Science Insights. 2020;32(2):125–32.

Sochocka M, Zwolińska K, Leszek J. The infectious etiology of Alzheimer’s disease. Curr Neuropharmacol. 2017;15(7):996–1009. PubMed PMC

Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, et al. Environmental nanoparticles, SARS-CoV-2 brain involvement, and potential acceleration of Alzheimer’s and Parkinson’s diseases in young urbanites exposed to air pollution. J Alzheimers Dis. 2020 [Online ahead of print] PubMed

Chen X, Laurent S, Onur OA, et al. A systematic review of neurological symptoms and complications of COVID-19. J Neurol. 2020 [Online ahead of print] PubMed PMC

Heneka MT, Carson MJ, El Khoury J, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405. PubMed PMC

Guo T, Zhang D, Zeng Y, et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):40. PubMed PMC

Beitz JM. Parkinson’s disease: A review. Front Biosci (Schol Ed) 2014;6:65–74. PubMed

Das T, Hwang JJ, Poston KL. Episodic recognition memory and the hippocampus in Parkinson’s disease: A review. Cortex. 2019;113:191–209. PubMed PMC

Bezdicek O, Ballarini T, Buschke H, et al. Memory impairment in Parkinson’s disease: The retrieval versus associative deficit hypothesis revisited and reconciled. Neuropsychology. 2019;33(3):391–405. PubMed

Krajcovicova L, Klobusiakova P, Rektorova I. Gray matter changes in Parkinson’s and Alzheimer’s disease and relation to cognition. Curr Neurol Neurosci Rep. 2019;19(11):85. PubMed PMC

Bernaus A, Blanco S, Sevilla A. Glia crosstalk in neuroinflammatory diseases. Front Cell Neurosci. 2020;14:209. PubMed PMC

Van Bulck M, Sierra-Magro A, Alarcon-Gil J, et al. Novel approaches for the treatment of Alzheimer’s and Parkinson’s disease. Int J Mol Sci. 2019;20(3):719. PubMed PMC

Compta Y, Parkkinen L, Kempster P, et al. The significance of α-synuclein, amyloid-β and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener Dis. 2014;13(2–3):154–56. PubMed PMC

Sulzer D, Antonini A, Leta V, et al. COVID-19 and possible links with Parkinson’s disease and parkinsonism: From bench to bedside. NPJ Parkinsons Dis. 2020;6:18. PubMed PMC

Ponsen MM, Stoffers D, Booij J, et al. Idiopathic hyposmia as a preclinical sign of Parkinson’s disease. Ann Neurol. 2004;56(2):173–81. PubMed

Lechien JR, Chiesa-Estomba CM, De Siati DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol. 2020;277(8):2251–61. PubMed PMC

Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in patients with severe acute respiratory coronavirus 2 infection: A cross-sectional study. Clin Infect Dis. 2020;71(15):889–90. PubMed PMC

Dell’Era V, Farri F, Garzaro G, et al. Smell and taste disorders during COVID-19 outbreak: Cross-sectional study on 355 patients. Head Neck. 2020;42(7):1591–96. PubMed PMC

Haddadi K, Ghasemian R, Shafizad M. Basal ganglia involvement and altered mental status: A unique neurological manifestation of coronavirus disease 2019. Cureus. 2020;12(4):e7869. PubMed PMC

Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3):a028936. PubMed PMC

Kempuraj D, Selvakumar GP, Ahmed ME, et al. COVID-19, mast cells, cytokine storm, psychological stress, and neuroinflammation. Neuroscientist. 2020;26(5–6):402–14. PubMed

Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien) 2020;162(7):1491–94. PubMed PMC

Palao M, Fernández-Díaz E, Gracia-Gil J, et al. Multiple sclerosis following SARS-CoV-2 infection. Mult Scler Relat Disord. 2020;45:102377. PubMed PMC

Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913–21. PubMed PMC

Boziki MK, Mentis AA, Shumilina M, et al. COVID-19 immunopathology and the central nervous system: Implication for multiple sclerosis and other autoimmune diseases with associated demyelination. Brain Sci. 2020;10(6):345. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods

. 2024 Oct 29 ; 44 (1) : 72. [epub] 20241029

Potential Prion Involvement in Long COVID-19 Neuropathology, Including Behavior

. 2023 Aug ; 43 (6) : 2621-2626. [epub] 20230328

Independent and sensory human mitochondrial functions reflecting symbiotic evolution

. 2023 ; 13 () : 1130197. [epub] 20230614

Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19

. 2022 ; 20 (6) : 1229-1240.

HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae

. 2022 ; 18 () : 2229-2237. [epub] 20221005

Dysfunctional mitochondrial processes contribute to energy perturbations in the brain and neuropsychiatric symptoms

. 2022 ; 13 () : 1095923. [epub] 20230105

Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders

. 2022 Jan ; 42 (1) : 99-107. [epub] 20210612

Editorial: The Pathogenesis of Long-Term Neuropsychiatric COVID-19 and the Role of Microglia, Mitochondria, and Persistent Neuroinflammation: A Hypothesis

. 2021 May 10 ; 27 () : e933015. [epub] 20210510

Historical Insight into Infections and Disorders Associated with Neurological and Psychiatric Sequelae Similar to Long COVID

. 2021 Feb 26 ; 27 () : e931447. [epub] 20210226

Selective Neuronal Mitochondrial Targeting in SARS-CoV-2 Infection Affects Cognitive Processes to Induce 'Brain Fog' and Results in Behavioral Changes that Favor Viral Survival

. 2021 Jan 25 ; 27 () : e930886. [epub] 20210125

Psychiatric Manifestations of COVID-19 and Their Social Significance

. 2020 Dec 16 ; 26 () : e930340. [epub] 20201216

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace