A Novel Vaccine Employing Non-Replicating Rabies Virus Expressing Chimeric SARS-CoV-2 Spike Protein Domains: Functional Inhibition of Viral/Nicotinic Acetylcholine Receptor Complexes
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
32463026
PubMed Central
PMC7278327
DOI
10.12659/msm.926016
PII: 926016
Knihovny.cz E-zdroje
- MeSH
- Betacoronavirus chemie imunologie MeSH
- COVID-19 MeSH
- glykoprotein S, koronavirus chemie genetika imunologie MeSH
- koronavirové infekce imunologie metabolismus prevence a kontrola virologie MeSH
- lidé MeSH
- nikotinové receptory metabolismus MeSH
- pandemie MeSH
- proteinové domény MeSH
- replikace viru * MeSH
- SARS-CoV-2 MeSH
- vakcíny proti COVID-19 MeSH
- virová pneumonie imunologie virologie MeSH
- virové vakcíny chemie imunologie metabolismus MeSH
- virus rabies genetika fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykoprotein S, koronavirus MeSH
- nikotinové receptory MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
- vakcíny proti COVID-19 MeSH
- virové vakcíny MeSH
The emergence of the novel ß-coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic of coronavirus disease 2019 (COVID-19). Clinical studies have documented that potentially severe neurological symptoms are associated with SARS-CoV-2 infection, thereby suggesting direct CNS penetration by the virus. Prior studies have demonstrated that the destructive neurological effects of rabies virus (RABV) infections are mediated by CNS transport of the virus tightly bound to the nicotinic acetylcholine receptor (nAChR). By comparison, it has been hypothesized that a similar mechanism exists to explain the multiple neurological effects of SARS-CoV-2 via binding to peripheral nAChRs followed by orthograde or retrograde transport into the CNS. Genetic engineering of the RABV has been employed to generate novel vaccines consisting of non-replicating RABV particles expressing chimeric capsid proteins containing human immunodeficiency virus 1 (HIV-1), Middle East respiratory syndrome (MERS-CoV), Ebolavirus, and hepatitis C virus (HCV) sequences. Accordingly, we present a critical discussion that integrates lessons learned from prior RABV research and vaccine development into a working model of a SARS-CoV-2 vaccine that selectively targets and neutralizes CNS penetration of a tightly bound viral nAChR complex.
Zobrazit více v PubMed
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9. PubMed
Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(2):281–292.e6. PubMed PMC
Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–90. PubMed PMC
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. PubMed PMC
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020 [Epub ahead of print] PubMed PMC
De Felice FG, Tovar-Moll F, Moll J, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the central nervous system. Trends Neurosci. 2020 [Epub ahead of print] PubMed PMC
Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020 [Epub ahead of print] PubMed PMC
Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun. 2020 [Epub ahead of print] PubMed PMC
Butowt R, Bilinska K. SARS-CoV-2: Olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200–3. PubMed
Changeux J-P, Amoura Z, Rey F, Miyara M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Qeios. 2020:FXGQSB. PubMed
Farsalinos K, Niaura R, Le Houezec J, et al. Editorial: Nicotine and SARS-CoV-2: COVID-19 may be a disease of the nicotinic cholinergic system. Toxicol Rep. 2020 [Epub ahead of print] PubMed PMC
Mechawar N, Saghatelyan A, Grailhe R, et al. Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. Proc Natl Acad Sci USA. 2004;101(26):9822–26. PubMed PMC
Alimohammadi H, Silver WL. Evidence for nicotinic acetylcholine receptors on nasal trigeminal nerve endings of the rat. Chemical Senses. 2000;25(1):61–66. PubMed
Liu L, Chang GQ, Jiao YQ, Simon SA. Neuronal nicotinic acetylcholine receptors in rat trigeminal ganglia. Brain Res. 1998;809(2):238–45. PubMed
Lentz TL, Hawrot E, Wilson PT. Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor. Proteins. 1987;2(4):298–307. PubMed
Gastka M, Horvath J, Lentz TL. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay. J Gen Virol. 1996;77(Pt 10):2437–40. PubMed
Guo Y, Duan M, Wang X, et al. Early events in rabies virus infection – Attachment, entry, and intracellular trafficking. Virus Res. 2019;263:217–25. PubMed
Schnell M, McGettigan J, Wirblich C, et al. The cell biology of rabies virus: using stealth to reach the brain. Nat Rev Microbiol. 2010;8:51–61. PubMed
Hemachudha T, Ugolini G, Wacharapluesadee S, et al. Human rabies: Neuropathogenesis, diagnosis, and management. Lancet Neurol. 2013;12(5):498–513. PubMed
Huey R, Hawthorne S, McCarron P. The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: A mini review. J Drug Target. 2017;25(5):379–85. PubMed
Schnell MJ, Foley HD, Siler CA, et al. Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci USA. 2000;97(7):3544–49. PubMed PMC
McKenna PM, Pomerantz RJ, Dietzschold B, et al. Covalently linked human immunodeficiency virus type 1 gp120/gp41 is stably anchored in rhabdovirus particles and exposes critical neutralizing epitopes. J Virol. 2003;77(23):12782–94. PubMed PMC
Wirblich C, Coleman CM, Kurup D, et al. One-health: A safe, efficient, dual-use vaccine for humans and animals against middle east respiratory syndrome coronavirus and rabies virus. J Virol. 2017;91(2) pii: e02040-16. PubMed PMC
Willet M, Kurup D, Papaneri A, et al. Preclinical development of inactivated rabies virus – based polyvalent vaccine against rabies and filoviruses. J Infect Dis. 2015;212(Suppl 2):S414–24. PubMed PMC
Siler CA, McGettigan JP, Dietzschold B, et al. Live and killed rhabdovirus-based vectors as potential hepatitis C vaccines. Virology. 2002;292(1):24–34. PubMed
Husner A, Frasnelli J, Welge-Lüssen A, et al. Loss of trigeminal sensitivity reduces olfactory function. Laryngoscope. 2006;116(8):1520–22. PubMed
Frasnelli J, Schuster B, Hummel T. Interactions between olfaction and the trigeminal system: what can be learned from olfactory loss. Cereb Cortex. 2007;17(10):2268–75. PubMed
Babic N, Mettenleiter TC, Ugolini G, et al. Propagation of pseudorabies virus in the nervous system of the mouse after intranasal inoculation. Virology. 1994;204(2):616–25. PubMed
Shankar V, Dietzschold B, Koprowski H. Direct entry of rabies virus into the central nervous system without prior local replication. J Virol. 1991;65(5):2736–38. PubMed PMC
Lafay F, Coulon P, Astic L, et al. Spread of the CVS strain of rabies virus and of the avirulent mutant AvO1 along the olfactory pathways of the mouse after intranasal inoculation. Virology. 1991;183(1):320–30. PubMed PMC
Bracci L, Ballas SK, Spreafico A, Neri P. Molecular mimicry between the rabies virus glycoprotein and human immunodeficiency virus-1 GP120: Cross-reacting antibodies induced by rabies vaccination. Blood. 1997;90(9):3623–28. PubMed
Neri P, Bracci L, Rustici M, Santucci A. Sequence homology between HIV gp120, rabies virus glycoprotein, and snake venom neurotoxins. Arch Virol. 1990;114(3–4):265–69. PubMed
Bracci L, Lozzi L, Rustici M, Neri P. Binding of HIV-1 gp120 to the nicotinic receptor. FEBS Lett. 1992;311(2):115–18. PubMed
Capó-Vélez CM, Morales-Vargas B, García-González A, et al. The alpha7-nicotinic receptor contributes to gp120-induced neurotoxicity: Implications in HIV-associated neurocognitive disorders. Sci Rep. 2018;8(1):1829. PubMed PMC
Joob B, Wiwanitkit V. SARS-CoV-2 and HIV. J Med Virol. 2020 [Epub ahead of print] PubMed PMC
Priestnall SL. Canine respiratory coronavirus: A naturally occurring model of COVID-19? Vet Path. 2020 [Epub ahead of print] PubMed
Stefano GB. Conformational matching: A possible evolutionary force in the evolvement of signal systems. In: Stefano GB, editor. CRC Handbook of comparative opioid and related neuropeptide mechanisms. Boca Raton: CRC Press Inc; 1986. pp. 271–77.
Independent and sensory human mitochondrial functions reflecting symbiotic evolution
Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19
Long-Term Respiratory and Neurological Sequelae of COVID-19