Gray Matter Changes in Parkinson's and Alzheimer's Disease and Relation to Cognition
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31720859
PubMed Central
PMC6854046
DOI
10.1007/s11910-019-1006-z
PII: 10.1007/s11910-019-1006-z
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Cognition, Gray matter atrophy, Parkinson’s disease, Structural magnetic resonance imaging,
- MeSH
- Alzheimerova nemoc patologie psychologie MeSH
- biologické markery MeSH
- kognice * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek patologie MeSH
- Parkinsonova nemoc patologie psychologie MeSH
- šedá hmota patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
PURPOSE OF REVIEW: We summarize structural (s)MRI findings of gray matter (GM) atrophy related to cognitive impairment in Alzheimer's disease (AD) and Parkinson's disease (PD) in light of new analytical approaches and recent longitudinal studies results. RECENT FINDINGS: The hippocampus-to-cortex ratio seems to be the best sMRI biomarker to discriminate between various AD subtypes, following the spatial distribution of tau pathology, and predict rate of cognitive decline. PD is clinically far more variable than AD, with heterogeneous underlying brain pathology. Novel multivariate approaches have been used to describe patterns of early subcortical and cortical changes that relate to more malignant courses of PD. New emerging analytical approaches that combine structural MRI data with clinical and other biomarker outcomes hold promise for detecting specific GM changes in the early stages of PD and preclinical AD that may predict mild cognitive impairment and dementia conversion.
Zobrazit více v PubMed
Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–1599. doi: 10.1002/mds.26424. PubMed DOI
McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC
Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):270–279. doi: 10.1016/j.jalz.2011.03.008. PubMed DOI PMC
Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, Gasser T, Goetz CG, Halliday G, Joseph L, Lang AE, Liepelt-Scarfone I, Litvan I, Marek K, Obeso J, Oertel W, Olanow CW, Poewe W, Stern M, Deuschl G. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30(12):1600–1609. doi: 10.1002/mds.26431. PubMed DOI
• Yau Y, Zeighami Y, Baker TE, Larcher K, Vainik U, Dadar M, et al. Network connectivity determines cortical thinning in early Parkinson’s disease progression. Nature Communications. 2018;9. 10.1038/s41467-017-02416-0The authors found that cortical regions with greater connectivity to the subcortical PD-related network identified at the time of diagnosis demonstrated greater cortical atrophy over the 1-year period. Their hypothesis posits that neurotoxicity is caused by the spread and accumulation of toxic agents along the brain’s neuronal connectome. PubMed PMC
Fereshtehnejad SM, Zeighami Y, Dagher A, Postuma RB. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain. 2017;140:1959–1976. doi: 10.1093/brain/awx118. PubMed DOI
Zeighami Y, Fereshtehnejad SM, Dadar M, Collins DL, Postuma RB, Misic B, et al. A clinical-anatomical signature of Parkinson’s disease identified with partial least squares and magnetic resonance imaging. Neuroimage. 2019;190:69–78. doi: 10.1016/j.neuroimage.2017.12.050. PubMed DOI
Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N, et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain. 2017;140(12):3286–3300. doi: 10.1093/brain/awx243. PubMed DOI PMC
Petersen RC, Lundt ES, Therneau TM, Weigand SD, Knopman DS, Mielke MM, Roberts RO, Lowe VJ, Machulda MM, Kremers WK, Geda YE, Jack CR., Jr Predicting progression to mild cognitive impairment. Ann Neurol. 2019;85(1):155–160. doi: 10.1002/ana.25388. PubMed DOI PMC
Jack CR, Barkhof F, Bernstein MA, Cantillon M, Cole PE, DeCarli C, et al. Steps to standardization and validation of hippocampal volumetry as a biomarker in clinical trials and diagnostic criterion for Alzheimer’s disease. Alzheimers Dement. 2011;7(4):474–485. doi: 10.1016/j.jalz.2011.04.007. PubMed DOI PMC
Hill DLG, Schwarz AJ, Isaac M, Pani L, Vamvakas S, Hemmings R, Carrillo MC, Yu P, Sun J, Beckett L, Boccardi M, Brewer J, Brumfield M, Cantillon M, Cole PE, Fox N, Frisoni GB, Jack C, Kelleher T, Luo F, Novak G, Maguire P, Meibach R, Patterson P, Bain L, Sampaio C, Raunig D, Soares H, Suhy J, Wang H, Wolz R, Stephenson D. Coalition Against Major Diseases/European Medicines Agency biomarker qualification of hippocampal volume for enrichment of clinical trials in predementia stages of Alzheimer’s disease. Alzheimers Dement. 2014;10(4):421–429. doi: 10.1016/j.jalz.2013.07.003. PubMed DOI
McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88–100. doi: 10.1212/wnl.0000000000004058. PubMed DOI PMC
Whitwell JL, Jack CR, Kantarci K, Weigand SD, Boeve BF, Knopman DS, et al. Imaging correlates of posterior cortical atrophy. Neurobiol Aging. 2007;28(7):1051–1061. doi: 10.1016/j.neurobiolaging.2006.05.026. PubMed DOI PMC
Madhavan Ajay, Whitwell Jennifer L., Weigand Stephen D., Duffy Joseph R., Strand Edythe A., Machulda Mary M., Tosakulwong Nirubol, Senjem Matthew L., Gunter Jeffrey L., Lowe Val J., Petersen Ronald C., Jack Clifford R., Josephs Keith A. FDG PET and MRI in Logopenic Primary Progressive Aphasia versus Dementia of the Alzheimer’s Type. PLoS ONE. 2013;8(4):e62471. doi: 10.1371/journal.pone.0062471. PubMed DOI PMC
Tetzloff KA, Graff-Radford J, Martin PR, Tosakulwong N, Machulda MM, Duffy JR, Clark HM, Senjem ML, Schwarz CG, Spychalla AJ, Drubach DA, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Regional distribution, asymmetry, and clinical correlates of tau uptake on F-18 AV-1451 PET in atypical Alzheimer’s disease. J Alzheimers Dis. 2018;62(4):1713–1724. doi: 10.3233/jad-170740. PubMed DOI PMC
Nedelska Z, Ferman TJ, Boeve BF, Przybelski SA, Lesnick TG, Murray ME, Gunter JL, Senjem ML, Vemuri P, Smith GE, Geda YE, Graff-Radford J, Knopman DS, Petersen RC, Parisi JE, Dickson DW, Jack CR, Jr, Kantarci K. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol Aging. 2015;36(1):452–461. doi: 10.1016/j.neurobiolaging.2014.07.005. PubMed DOI PMC
Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, et al. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain. 2018;141(1):165–176. doi: 10.1093/brain/awx310. PubMed DOI PMC
Tropea TF, Xie SX, Rick J, Chahine LM, Dahodwala N, Doshi J, et al. APOE, thought disorder, and SPARE-AD predict cognitive decline in established Parkinson’s disease. Movement Disorders. 2018;33(2):289–297. doi: 10.1002/mds.27204. PubMed DOI PMC
Gasca-Salas C, Garcia-Lorenzo D, Garcia-Garcia D, Clavero P, Obeso JA, Lehericy S, et al. Parkinson’s disease with mild cognitive impairment: severe cortical thinning antedates dementia. Brain Imaging and Behavior. 2019;13(1):180–188. doi: 10.1007/s11682-017-9751-6. PubMed DOI
Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright CI, Blacker D, Rosas HD, Sperling RA, Atri A, Growdon JH, Hyman BT, Morris JC, Fischl B, Buckner RL. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex. 2009;19(3):497–510. doi: 10.1093/cercor/bhn113. PubMed DOI PMC
Persson K, Eldholm RS, Barca ML, Cavallin L, Ferreira D, Knapskog AB, Selbæk G, Brækhus A, Saltvedt I, Westman E, Engedal K. MRI-assessed atrophy subtypes in Alzheimer’s disease and the cognitive reserve hypothesis. PLoS One. 2017;12(10):e0186595. doi: 10.1371/journal.pone.0186595. PubMed DOI PMC
Kunst J, Marecek R, Klobusiakova P, Balazova Z, Anderkova L, Nemcova-Elfmarkova N, Rektorova I. Patterns of Grey matter atrophy at different stages of Parkinson’s and Alzheimer's diseases and relation to cognition. Brain Topogr. 2019;32(1):142–160. doi: 10.1007/s10548-018-0675-2. PubMed DOI
Mak E, Su L, Williams GB, Firbank MJ, Lawson RA, Yarnall AJ, Duncan GW, Owen AM, Khoo TK, Brooks DJ, Rowe JB, Barker RA, Burn DJ, O’Brien JT. Baseline and longitudinal grey matter changes in newly diagnosed Parkinson's disease: ICICLE-PD study. Brain. 2015;138:2974–2986. doi: 10.1093/brain/awv211. PubMed DOI PMC
Hutton C, Draganski B, Ashburner J, Weiskopf N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage. 2009;48(2):371–380. doi: 10.1016/j.neuroimage.2009.06.043. PubMed DOI PMC
Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD. Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp. 2009;30(3):711–724. doi: 10.1002/hbm.20540. PubMed DOI PMC
Rektorova I, Biundo R, Marecek R, Weis L, Aarsland D, Antonini A. Grey matter changes in cognitively impaired Parkinson’s disease patients. PLoS One. 2014;9(1):e85595. doi: 10.1371/journal.pone.0085595. PubMed DOI PMC
Gaser C, Volz HP, Kiebel S, Riehemann S, Sauer H. Detecting structural changes in whole brain based on nonlinear deformations-application to schizophrenia research. Neuroimage. 1999;10(2):107–113. doi: 10.1006/nimg.1999.0458. PubMed DOI
Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher KMH, Fonov V, Evans AC, Collins DL, Dagher A. Network structure of brain atrophy in de novo Parkinson’s disease. Elife. 2015;4:20. doi: 10.7554/eLife.08440. PubMed DOI PMC
Caspell-Garcia Chelsea, Simuni Tanya, Tosun-Turgut Duygu, Wu I-Wei, Zhang Yu, Nalls Mike, Singleton Andrew, Shaw Leslie A., Kang Ju-Hee, Trojanowski John Q., Siderowf Andrew, Coffey Christopher, Lasch Shirley, Aarsland Dag, Burn David, Chahine Lana M., Espay Alberto J., Foster Eric D., Hawkins Keith A., Litvan Irene, Richard Irene, Weintraub Daniel. Multiple modality biomarker prediction of cognitive impairment in prospectively followed de novo Parkinson disease. PLOS ONE. 2017;12(5):e0175674. doi: 10.1371/journal.pone.0175674. PubMed DOI PMC
Schrag A, Siddiqui UF, Anastasiou Z, Weintraub D, Schott JM. Clinical variables and biomarkers in prediction of cognitive impairment in patients with newly diagnosed Parkinson’s disease: a cohort study. Lancet Neurol. 2017;16(1):66–75. doi: 10.1016/s1474-4422(16)30328-3. PubMed DOI PMC
Dalaker TO. Zivadinov R, Larsen JP, Beyer MK, Cox JL, Alves G, et al. Gray matter correlations of cognition in incident Parkinson’s disease. Mov Disord. 2010;25(5):629–633. doi: 10.1002/mds.22867. PubMed DOI
Weintraub D, Dietz N, Duda JE, Wolk DA, Doshi J, Xie SX, Davatzikos C, Clark CM, Siderowf A. Alzheimer’s disease pattern of brain atrophy predicts cognitive decline in Parkinson’s disease. Brain. 2012;135:170–180. doi: 10.1093/brain/awr277. PubMed DOI PMC
Pagonabarraga J, Corcuera-Solano I, Vives-Gilabert Y, Llebaria G, Garcia-Sanchez C, Pascual-Sedano B, et al. Pattern of regional cortical thinning associated with cognitive deterioration in Parkinson’s disease. PLoS One. 2013;8(1):e54980. doi: 10.1371/journal.pone.0054980. PubMed DOI PMC
Zarei M, Ibarretxe-Bilbao N, Compta Y, Hough M, Junque C, Bargallo N, Tolosa E, Marti MJ. Cortical thinning is associated with disease stages and dementia in Parkinson’s disease. J Neurol Neurosur Psychiatry. 2013;84(8):875–882. doi: 10.1136/jnnp-2012-304126. PubMed DOI PMC
Burton EJ, McKeith IG, Burn DJ, Williams ED, O’Brien JT. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer'’ disease, dementia with Lewy bodies and controls. Brain. 2004;127(Pt 4):791–800. doi: 10.1093/brain/awh088. PubMed DOI
Mak E, Bergsland N, Dwyer MG, Zivadinov R, Kandiah N. Subcortical atrophy is associated with cognitive impairment in mild Parkinson disease: a combined investigation of volumetric changes, cortical thickness, and vertex-based shape analysis. AJNR Am J Neuroradiol. 2014;35(12):2257–2264. doi: 10.3174/ajnr.A4055. PubMed DOI PMC
Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D, et al. Cognitive decline in Parkinson disease. Nat Rev Neurol. 2017;13(4):217–231. doi: 10.1038/nrneurol.2017.27. PubMed DOI PMC
Kehagia AA, Barker RA, Robbins TW. Cognitive impairment in Parkinson’s disease: the dual syndrome hypothesis. Neurodegener Dis. 2013;11(2):79–92. doi: 10.1159/000341998. PubMed DOI PMC
Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, Brayne C, Kolachana BS, Weinberger DR, Sawcer SJ, Barker RA. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132(Pt 11):2958–2969. doi: 10.1093/brain/awp245. PubMed DOI
Sampedro F, Marin-Lahoz J, Martinez-Horta S, Pagonabarraga J, Kulisevsky J. Reduced gray matter volume in cognitively preserved COMT 158Val/Val Parkinson’s disease patients and its association with cognitive decline. Brain Imaging Behav. 2019. 10.1007/s11682-018-0022-y. PubMed
Foo H, Mak E, Chander RJ, Ng A, Au WL, Sitoh YY, Tan LCS, Kandiah N. Associations of hippocampal subfields in the progression of cognitive decline related to Parkinson’s disease. Neuroimage-Clinical. 2017;14:37–42. doi: 10.1016/j.nicl.2016.12.008. PubMed DOI PMC
Uribe C, Segura B, Baggio HC, Abos A, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C. Patterns of cortical thinning in nondemented Parkinson’s disease patients. Mov Disord. 2016;31(5):699–708. doi: 10.1002/mds.26590. PubMed DOI PMC
Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Campabadal A, Marti MJ, Valldeoriola F, Compta Y, Tolosa E, Junque C. Cortical atrophy patterns in early Parkinson’s disease patients using hierarchical cluster analysis. Parkinsonism Relat Disord. 2018;50:3–9. doi: 10.1016/j.parkreldis.2018.02.006. PubMed DOI
Uribe C, Segura B, Baggio HC, Abos A, Garcia-Diaz AI, Campabadal A, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C. Progression of Parkinson’s disease patients’ subtypes based on cortical thinning: 4-year follow-up. Parkinsonism Relat Disord. 2019;64:286–292. doi: 10.1016/j.parkreldis.2019.05.012. PubMed DOI
Ye BS, Jeon S, Ham JH, Lee JJ, Lee JM, Lee HS, Lee PH, Sohn YH. Dementia-predicting cognitive risk score and its correlation with cortical thickness in Parkinson disease. Dement Geriatr Cogn Disord. 2017;44(3–4):203–212. doi: 10.1159/000479057. PubMed DOI
• Chung SJ, Yoo HS, Lee YH, Lee HS, Ye BS, Sohn YH, et al. Frontal atrophy as a marker for dementia conversion in Parkinson’s disease with mild cognitive impairment. Human Brain Mapping. 2019. 10.1002/hbm.24631Frontal lobe atrophy alone predicted dementia in the PD-MCI. PubMed PMC
Lee JE, Cho KH, Song SK, Kim HJ, Lee HS, Sohn YH, Lee PH. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J Neurol Neurosur Psychiatry. 2014;85(1):7–16. doi: 10.1136/jnnp-2013-305062. PubMed DOI
Wen M-C, Ng A, Chander RJ, Au WL, Tan LCS, Kandiah N. Longitudinal brain volumetric changes and their predictive effects on cognition among cognitively asymptomatic patients with Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(5):483–488. doi: 10.1016/j.parkreldis.2015.02.014. PubMed DOI
McMillan CT, Wolk DA. Presence of cerebral amyloid modulates phenotype and pattern of neurodegeneration in early Parkinson’s disease. J Neurol Neurosur Psychiatry. 2016;87(10):1112–1122. doi: 10.1136/jnnp-2015-312690. PubMed DOI PMC
Uribe C, Segura B, Baggio HC, Campabadal A, Abos A, Compta Y, et al. Differential progression of regional hippocampal atrophy in aging and Parkinson’s disease. Frontiers in Aging Neuroscience. 2018;10:9. doi: 10.3389/fnagi.2018.00325. PubMed DOI PMC
Kandiah N, Zainal NH, Narasirnhalu K, Chander RJ, Ng A, Mak E, et al. Hippocampal volume and white matter disease in the prediction of dementia in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(11):1203–1208. doi: 10.1016/j.parkreldis.2014.08.024. PubMed DOI
Hanganu A, Bedetti C, Degroot C, Mejia-Constain B, Lafontaine AL, Soland V, Chouinard S, Bruneau MA, Mellah S, Belleville S, Monchi O. Mild cognitive impairment is linked with faster rate of cortical thinning in patients with Parkinson’s disease longitudinally. Brain. 2014;137:1120–1129. doi: 10.1093/brain/awu036. PubMed DOI
Vasconcellos LF, Pereira JS, Adachi M, Greca D, Cruz M, Malak AL, Charchat-Fichman H. Volumetric brain analysis as a predictor of a worse cognitive outcome in Parkinson’s disease. J Psychiatr Res. 2018;102:254–260. doi: 10.1016/j.jpsychires.2018.04.016. PubMed DOI
Klein JC, Eggers C, Kalbe E, Weisenbach S, Hohmann C, Vollmar S, Baudrexel S, Diederich NJ, Heiss WD, Hilker R. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology. 2010;74(11):885–892. doi: 10.1212/WNL.0b013e3181d55f61. PubMed DOI
Payton NM, Kalpouzos G, Rizzuto D, Fratiglioni L, Kivipelto M, Backman L, et al. Combining cognitive, genetic, and structural neuroimaging markers to identify individuals with increased dementia risk. J Alzheimers Dis. 2018;64(2):533–542. doi: 10.3233/jad-180199. PubMed DOI PMC
Tondelli M, Wilcock GK, Nichelli P, De Jager CA, Jenkinson M, Zamboni G. Structural MRI changes detectable up to ten years before clinical Alzheimer’s disease. Neurobiol Aging. 2012;33(4):12–825.e36. doi: 10.1016/j.neurobiolaging.2011.05.018. PubMed DOI
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC
De Flores R, La Joie R, Chetelat G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience. 2015;309:29–50. doi: 10.1016/j.neuroscience.2015.08.033. PubMed DOI
Bakkour A, Morris JC, Wolk DA, Dickerson BC. The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: specificity and differential relationships with cognition. Neuroimage. 2013;76(1):332–344. doi: 10.1016/j.neuroimage.2013.02.059. PubMed DOI PMC
Ossenkoppele R, Pijnenburg YAL, Perry DC, Cohn-Sheehy BI, Scheltens NME, Vogel JW, Kramer JH, van der Vlies AE, Joie RL, Rosen HJ, van der Flier WM, Grinberg LT, Rozemuller AJ, Huang EJ, van Berckel BNM, Miller BL, Barkhof F, Jagust WJ, Scheltens P, Seeley WW, Rabinovici GD. The behavioural/dysexecutive variant of Alzheimer’s disease: clinical, neuroimaging and pathological features. Brain. 2015;138:2732–2749. doi: 10.1093/brain/awv191. PubMed DOI PMC
• Park JY, Na HK, Kim S, Kim H, Kim HJ, Seo SW, et al. Robust identification of Alzheimer’s disease subtypes based on cortical atrophy patterns. Scientific Reports. 2017;7. 10.1038/srep43270The parietal - predominant subtype of AD had an earlier disease onset and worse cognitive performance. PubMed PMC
Scheltens NME, Tijms BM, Koene T, Barkhof F, Teunissen CE, Wolfsgruber S, et al. Cognitive subtypes of probable Alzheimer’s disease robustly identified in four cohorts. Alzheimers Dement. 2017;13(11):1226–1236. doi: 10.1016/j.jalz.2017.03.002. PubMed DOI PMC
Firth Nicholas C, Primativo Silvia, Marinescu Razvan-Valentin, Shakespeare Timothy J, Suarez-Gonzalez Aida, Lehmann Manja, Carton Amelia, Ocal Dilek, Pavisic Ivanna, Paterson Ross W, Slattery Catherine F, Foulkes Alexander J M, Ridha Basil H, Gil-Néciga Eulogio, Oxtoby Neil P, Young Alexandra L, Modat Marc, Cardoso M Jorge, Ourselin Sebastien, Ryan Natalie S, Miller Bruce L, Rabinovici Gil D, Warrington Elizabeth K, Rossor Martin N, Fox Nick C, Warren Jason D, Alexander Daniel C, Schott Jonathan M, Yong Keir X X, Crutch Sebastian J. Longitudinal neuroanatomical and cognitive progression of posterior cortical atrophy. Brain. 2019;142(7):2082–2095. doi: 10.1093/brain/awz136. PubMed DOI PMC
• Lee JS, Park YH, Park S, Yoon U, Choe Y, Cheon BK, et al. Distinct brain regions in physiological and pathological brain aging. Frontiers in Aging Neuroscience. 2019;11. 10.3389/fnagi.2019.00147The authors studied atrophy at different stages across the AD continuum (cognitively normal, subjective cognitive impairment, early amnestic MCI, late amnestic MCI, very mild AD, mild AD, and moderate/severe AD). Their results suggest that cortical thinning in the precuneus and inferior temporal regions in AD continuum subjects (MCI to AD stages) differentiate between pathological and physiological aging. PubMed PMC
Ossenkoppele R, Smith R, Ohlsson T, Strandberg O, Mattsson N, Insel PS, Palmqvist S, Hansson O. Associations between tau, A beta, and cortical thickness with cognition in Alzheimer disease. Neurology. 2019;92(6):E601–EE12. doi: 10.1212/wnl.0000000000006875. PubMed DOI PMC
Mattsson N, Insel PS, Donohue M, Jogi J, Ossenkoppele R, Olsson T, et al. Predicting diagnosis and cognition with F-18-AV-1451 tau PET and structural MRI in Alzheimer’s disease. Alzheimers Dement. 2019;15(4):570–580. doi: 10.1016/j.jalz.2018.12.001. PubMed DOI
Whitwell JL, Dickson DW, Murray ME, Weigand SD, Tosakulwong N, Senjem ML, Knopman DS, Boeve BF, Parisi JE, Petersen RC, Jack CR, Jr, Josephs KA. Neuroimaging correlates of pathologically defined subtypes of Alzheimer’s disease: a case-control study. Lancet Neurol. 2012;11(10):868–877. doi: 10.1016/s1474-4422(12)70200-4. PubMed DOI PMC
Risacher SL, Anderson WH, Charil A, Castelluccio PF, Shcherbinin S, Saykin AJ, et al. Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology. 2017;89(21):2176–2186. doi: 10.1212/wnl.0000000000004670. PubMed DOI PMC
Sampedro F, Marin-Lahoz J, Martinez-Horta S, Pagonabarraga J, Kulisevsky J. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson’s disease. Neurobiol Dis. 2019;124:29–35. doi: 10.1016/j.nbd.2018.11.001. PubMed DOI
Tziortzi AC, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, Douaud G, Jbabdi S, Behrens TEJ, Rabiner EA, Jenkinson M, Gunn RN. Connectivity-based functional analysis of dopamine release in the striatum using diffusion-weighted MRI and positron emission tomography. Cereb Cortex. 2014;24(5):1165–1177. doi: 10.1093/cercor/bhs397. PubMed DOI PMC
Anderkova L, Barton M, Rektorova I. Striato-cortical connections in Parkinson’s and Alzheimer’s diseases: relation to cognition. Mov Disord. 2017;32(6):917–922. doi: 10.1002/mds.26956. PubMed DOI
Gargouri F, Gallea C, Mongin M, Pyatigorskaya N, Valabregue R, Ewenczyk C, Sarazin M, Yahia-Cherif L, Vidailhet M, Lehéricy S. Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Mov Disord. 2019;34(4):516–525. doi: 10.1002/mds.27561. PubMed DOI PMC
Garcia-Diaz AI, Segura B, Baggio HC, Uribe C, Campabadal A, Abos A, Marti MJ, Valldeoriola F, Compta Y, Bargallo N, Junque C. Cortical thinning correlates of changes in visuospatial and visuoperceptual performance in Parkinson’s disease: a 4-year follow-up. Parkinsonism Relat Disord. 2018;46:62–68. doi: 10.1016/j.parkreldis.2017.11.003. PubMed DOI
Anderkova L, Eliasova I, Marecek R, Janousova E, Rektorova I. Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. J Alzheimers Dis. 2015;48(1):251–260. doi: 10.3233/jad-150067. PubMed DOI
Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease
Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19
The reduction of hippocampal volume in Parkinson's disease
Long-Term Respiratory and Neurological Sequelae of COVID-19