Non-invasive brain stimulation: current and future applications in neurology

. 2025 Sep 16 ; () : . [epub] 20250916

Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40957931
Odkazy

PubMed 40957931
DOI 10.1038/s41582-025-01137-z
PII: 10.1038/s41582-025-01137-z
Knihovny.cz E-zdroje

Device-based non-invasive brain stimulation (NIBS) techniques show promise for the treatment of neurological and psychiatric disorders, although inconsistencies in protocol designs and study findings can make the field difficult to navigate. In this Review, we discuss applications of NIBS for enhancing cognitive and motor function in people with various neurological diseases that are characterized by disruption of large-scale brain networks, including neurodegenerative diseases and brain lesion disorders such as stroke and traumatic brain injury. In particular, we focus on repetitive transcranial magnetic stimulation and transcranial electrical stimulation, as these techniques have been widely used in clinical settings and randomized controlled trials. We summarize and synthesize current knowledge, and highlight gaps and shortcomings in the existing research that make it difficult to draw firm conclusions, including small sample sizes, heterogeneous patient populations and variations in stimulation protocols. We believe that a rapid evolution of NIBS techniques from state-dependent, network-informed, multifocal and subcortical paradigms to individualized electric field modelling and accelerated NIBS protocols will improve the management of neurological disorders. However, realizing this potential will require us to address crucial challenges and acquire deeper mechanistic insights, with the aim of developing adaptive, biomarker-driven protocols to optimize target engagement, dosing and timing for each patient.

Zobrazit více v PubMed

Boon, P. et al. A strategic neurological research agenda for Europe: towards clinically relevant and patient-centred neurological research priorities. Eur. J. Neurol. 31, e16171 (2024). PubMed DOI

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). PubMed DOI PMC

Stam, C. J. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw. Neurosci. 8, 1–23 (2024). PubMed DOI PMC

Murphy, K. R. et al. A practical guide to transcranial ultrasonic stimulation from the IFCN-endorsed ITRUSST consortium. Clin. Neurophysiol. 171, 192–226 (2025). PubMed DOI

Violante, I. R. et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat. Neurosci. 26, 1994–2004 (2023). PubMed DOI PMC

Wessel, M. J. et al. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat. Neurosci. 26, 2005–2016 (2023). PubMed DOI PMC

Vassiliadis, P. et al. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat. Hum. Behav. 8, 1581–1598 (2024). PubMed DOI PMC

Beanato, E. et al. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. Sci. Adv. 10, eado4103 (2024). PubMed DOI PMC

Yang, C. et al. Transcranial temporal interference stimulation of the right globus pallidus in Parkinson’s disease. Mov. Disord. 40, 1061–1069 (2025). PubMed DOI

Piao, Y. et al. Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies. Brain Sci. 12, 1194 (2022). PubMed DOI PMC

Vassiliadis, P. et al. Safety, tolerability and blinding efficiency of non-invasive deep transcranial temporal interference stimulation: first experience from more than 250 sessions. J. Neural Eng. 21, 024001 (2024). DOI

Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A. & Siebner, H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140, 4–19 (2016). PubMed DOI

Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022). PubMed DOI

Hartz, S. M. et al. Assessing the clinical meaningfulness of slowing CDR-SB progression with disease-modifying therapies for Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 11, e70033 (2025). DOI

Wei, N. et al. Repetitive transcranial magnetic stimulation may be superior to drug therapy in the treatment of Alzheimer’s disease: a systematic review and Bayesian network meta-analysis. CNS Neurosci. Ther. 29, 2912–2924 (2023). PubMed DOI PMC

Koch, G. et al. The emerging field of non-invasive brain stimulation in Alzheimer’s disease. Brain 147, 4003–4016 (2024). PubMed DOI PMC

Terao, I. & Kodama, W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: a systematic review and network meta-analysis. Ageing Res. Rev. 94, 102203 (2024). PubMed DOI

Šimko, P., Kent, J. A. & Rektorova, I. Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer’s disease? An updated meta-analysis. Clin. Neurophysiol. 144, 23–40 (2022). PubMed DOI

Yang, T. et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res. Ther. 16, 140 (2024). PubMed DOI PMC

Rektorová, I. Non-invasive stimulation for treating cognitive impairment in Alzheimer disease. Nat. Rev. Neurol. 20, 445–446 (2024). PubMed DOI

Moussavi, Z. et al. Repetitive transcranial magnetic stimulation as a treatment for Alzheimer’s disease: a randomized placebo-controlled double-blind clinical trial. Neurotherapeutics 21, e00331 (2024). PubMed DOI PMC

Lin, H. et al. Effects of accelerated intermittent theta-burst stimulation in modulating brain of Alzheimer’s disease. Cereb. Cortex 34, bhae106 (2024). PubMed DOI

Wu, X. et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: a randomized controlled trial. Brain Stimul. 15, 35–45 (2022). PubMed DOI

Tang, N., Shu, W. & Wang, H.-N. Accelerated transcranial magnetic stimulation for major depressive disorder: a quick path to relief? Wiley Interdiscip. Rev. Cogn. Sci. 15, e1666 (2024). PubMed DOI

Wu, X. et al. Effects of a periodic intermittent theta burst stimulation in Alzheimer’s disease. Gen. Psychiatr. 37, e101106 (2024). PubMed DOI PMC

Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139, 547–562 (2016). PubMed DOI

Giorgio, J., Adams, J. N., Maass, A., Jagust, W. J. & Breakspear, M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron 112, 676–686.e4 (2024). PubMed DOI

Krajcovicova, L., Marecek, R., Mikl, M. & Rektorova, I. Disruption of resting functional connectivity in Alzheimer’s patients and at-risk Subjects. Curr. Neurol. Neurosci. Rep. 14, 491 (2014). PubMed DOI

Koch, G. et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 169, 302–311 (2018). PubMed DOI

Koch, G. et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain 145, 3776–3786 (2022). PubMed DOI PMC

Yao, Q. et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: a randomized clinical trial. Brain Stimul. 15, 910–920 (2022). PubMed DOI

Chen, Y. et al. Integrated cerebellar radiomic-network model for predicting mild cognitive impairment in Alzheimer’s disease. Alzheimers Dement. 21, e14361 (2025). PubMed DOI

Majdi, A., van Boekholdt, L., Sadigh-Eteghad, S. & Mc Laughlin, M. A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer’s disease. Mol. Psychiatry 27, 2000–2009 (2022). PubMed DOI

Huo, L. et al. Effects of transcranial direct current stimulation on episodic memory in older adults: a meta-analysis. J. Gerontol. B 76, 692–702 (2021). DOI

Rezakhani, S., Amiri, M., Hassani, A., Esmaeilpour, K. & Sheibani, V. Anodal HD-tDCS on the dominant anterior temporal lobe and dorsolateral prefrontal cortex: clinical results in patients with mild cognitive impairment. Alzheimers Res. Ther. 16, 27 (2024). PubMed DOI PMC

Šimko, P. et al. Exploring the impact of intensified multiple session tDCS over the left DLPFC on brain function in MCI: a randomized control trial. Sci. Rep. 14, 1512 (2024). PubMed DOI PMC

Im, J. J. et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 12, 1222–1228 (2019). PubMed DOI PMC

Agboada, D., Mosayebi-Samani, M., Kuo, M. F. & Nitsche, M. A. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation — better effects with intensified protocols? Brain Stimul. 13, 987–997 (2020). PubMed DOI

Nissim, N. R. et al. Efficacy of transcranial alternating current stimulation in the enhancement of working memory performance in healthy adults: a systematic meta-analysis. Neuromodulation 26, 728–737 (2023). PubMed DOI PMC

Manippa, V. et al. Cognitive and neuropathophysiological outcomes of gamma-tACS in dementia: a systematic review. Neuropsychol. Rev. 34, 338–361 (2023). PubMed DOI PMC

Jafari, Z., Kolb, B. E. & Mohajerani, M. H. Neural oscillations and brain stimulation in Alzheimer’s disease. Prog. Neurobiol. 194, 101878 (2020). PubMed DOI

Gillespie, A. K. et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90, 740–751 (2016). PubMed DOI PMC

Babiloni, C. et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int. J. Psychophysiol. 103, 88–102 (2016). PubMed DOI

Benussi, A. et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul. 14, 531–540 (2021). PubMed DOI

Benussi, A. et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann. Neurol. 92, 322–334 (2022). PubMed DOI PMC

Chan, D. et al. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: results of feasibility and pilot studies. PLoS ONE 17, e0278412 (2022). PubMed DOI PMC

Jung, Y. H. et al. Effectiveness of personalized hippocampal network–targeted stimulation in Alzheimer disease. JAMA Netw. Open 7, e249220 (2024). PubMed DOI PMC

Pupíková, M. et al. Physiology-inspired bifocal fronto-parietal tACS for working memory enhancement. Heliyon 10, e37427 (2024). PubMed DOI PMC

Anderkova, L., Eliasova, I., Marecek, R., Janousova, E. & Rektorova, I. Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. J. Alzheimers Dis. 48, 251–260 (2015). PubMed DOI

Altomare, D. et al. Home-based transcranial alternating current stimulation (tACS) in Alzheimer’s disease: rationale and study design. Alzheimers Res. Ther. 15, 155 (2023). PubMed DOI PMC

Benussi, A. et al. Alpha tACS improves cognition and modulates neurotransmission in dementia with Lewy bodies. Mov. Disord. 39, 1993–2003 (2024). PubMed DOI

Grossman, M. et al. Frontotemporal lobar degeneration. Nat. Rev. Dis. Primers 9, 40 (2023). PubMed DOI

Roheger, M. et al. Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia. Cochrane Database Syst. Rev. 5, CD015067 (2024). PubMed

Lamoš, M., Morávková, I., Ondráček, D., Bočková, M. & Rektorová, I. Altered spatiotemporal dynamics of the resting brain in mild cognitive impairment with Lewy bodies. Mov. Disord. 36, 2435–2440 (2021). PubMed DOI

Bonakdarpour, B. et al. Perturbations of language network connectivity in primary progressive aphasia. Cortex 121, 468–480 (2019). PubMed DOI PMC

Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133, 1352–1367 (2010). PubMed DOI PMC

Höglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024). PubMed DOI

Simuni, T. et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 23, 178–190 (2024). PubMed DOI

Rektorova, I. Current treatment of behavioral and cognitive symptoms of Parkinson’s disease. Parkinsonism Relat. Disord. 59, 65–73 (2019). PubMed DOI

Brabenec, L., Mekyska, J., Galaz, Z. & Rektorova, I. Speech disorders in Parkinson’s disease: early diagnostics and effects of medication and brain stimulation. J. Neural Transm. 124, 303–334 (2017). PubMed DOI

Rektorova, I., Barrett, J., Mikl, M., Rektor, I. & Paus, T. Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson’s disease. Mov. Disord. 22, 2043–2051 (2007). PubMed DOI

Brabenec, L., Simko, P., Sejnoha Minsterova, A., Kostalova, M. & Rektorova, I. Repetitive transcranial magnetic stimulation for hypokinetic dysarthria in Parkinson’s disease enhances white matter integrity of the auditory–motor loop. Eur. J. Neurol. 30, 881–886 (2023). PubMed DOI

Klobusiakova, P. et al. Articulatory network reorganization in Parkinson’s disease as assessed by multimodal MRI and acoustic measures. Parkinsonism Relat. Disord. 84, 122–128 (2021). PubMed DOI

Brabenec, L. et al. Non-invasive stimulation of the auditory feedback area for improved articulation in Parkinson’s disease. Parkinsonism Relat. Disord. 61, 187–192 (2019). PubMed DOI

Brabenec, L. et al. Non-invasive brain stimulation for speech in Parkinson’s disease: a randomized controlled trial. Brain Stimul. 14, 571–578 (2021). PubMed DOI

Brabenec, L. et al. Short-term effects of transcranial direct current stimulation on motor speech in Parkinson’s disease: a pilot study. J. Neural Transm. 131, 791–797 (2024). PubMed DOI

Aarsland, D., Brønnick, K., Larsen, J. P., Tysnes, O. B. & Alves, G. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72, 1121–1126 (2009). PubMed DOI

Litvan, I. et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov. Disord. 27, 349–356 (2012). PubMed DOI PMC

Giustiniani, A., Maistrello, L., Mologni, V., Danesin, L. & Burgio, F. TMS and tDCS as potential tools for the treatment of cognitive deficits in Parkinson’s disease: a meta-analysis. Neurol. Sci. 46, 579–592 (2025). PubMed DOI

Pupíková, M. & Rektorová, I. Non-pharmacological management of cognitive impairment in Parkinson’s disease. J. Neural Transm. 127, 799–820 (2020). PubMed DOI

Lee, H., Choi, B. J. & Kang, N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson’s disease: a systematic review and meta-analysis. J. Neuroeng. Rehabil. 21, 205 (2024). PubMed DOI PMC

Duan, Z. & Zhang, C. Transcranial direct current stimulation for Parkinson’s disease: systematic review and meta-analysis of motor and cognitive effects. npj Parkinsons Dis. 10, 214 (2024). PubMed DOI PMC

He, W., Wang, J.-C. & Tsai, P.-Y. Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study. Neurorehabil. Neural Repair 35, 986–995 (2021). PubMed DOI

Buard, I. et al. Transcranial magnetic stimulation does not improve mild cognitive impairment in Parkinson’s disease. Mov. Disord. 33, 489–491 (2018). PubMed DOI

Del Felice, A. et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin. 22, 101768 (2019). PubMed DOI PMC

Wei, W. et al. Acute improvement in the attention network with repetitive transcranial magnetic stimulation in Parkinson’s disease. Disabil. Rehabil. 44, 7958–7966 (2022). PubMed DOI

Pal, E., Nagy, F., Aschermann, Z., Balazs, E. & Kovacs, N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Mov. Disord. 25, 2311–2317 (2010). PubMed DOI

Aksu, S. et al. Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol. Sci. 43, 4029–4044 (2022). PubMed DOI

Chung, C. L., Mak, M. K. & Hallett, M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann. Neurol. 88, 933–945 (2020). PubMed DOI

Wong, P.-L., Yang, Y.-R., Huang, S.-F. & Wang, R.-Y. Effects of DLPFC tDCS followed by treadmill training on dual-task gait and cortical excitability in Parkinson’s disease: a randomized controlled trial. Neurorehabil. Neural Repair 38, 680–692 (2024). PubMed DOI

Rufener, K. S., Oechslin, M. S., Zaehle, T. & Meyer, M. Transcranial alternating current stimulation (tACS) differentially modulates speech perception in young and older adults. Brain Stimul. 9, 560–565 (2016). PubMed DOI

Nemcova Elfmarkova, N., Gajdos, M., Rektorova, I., Marecek, R. & Rapcsak, S. Z. Neural evidence for defective top-down control of visual processing in Parkinson’s and Alzheimer’s disease. Neuropsychologia 106, 236–244 (2017). PubMed DOI

Rucco, R. et al. Brain networks and cognitive impairment in Parkinson’s disease. Brain Connect. 12, 465–475 (2022). PubMed DOI

Srovnalova, H., Marecek, R. & Rektorova, I. The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: a pilot rTMS study. Mov. Disord. 26, 1545–1548 (2011). PubMed DOI

Monastero, R. et al. Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study. J. Neural Transm. 127, 1589–1597 (2020). PubMed DOI

Madrid, J. & Benninger, D. H. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals: a systematic review. J. Neurosci. Methods 347, 108957 (2021). PubMed DOI

Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W. & Nitsche, M. A. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. 588, 3415–3424 (2010). PubMed DOI PMC

Zhang, W. et al. Efficacy of repetitive transcranial magnetic stimulation in Parkinson’s disease: a systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 52, 101589 (2022). PubMed DOI PMC

Li, R. et al. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson’s disease: a meta-analysis. Neurorehabil. Neural Repair 36, 395–404 (2022). PubMed DOI

Goodwill, A. M. et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci. Rep. 7, 14840 (2017). PubMed DOI PMC

Pereira, J. B. et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul. 6, 16–24 (2013). PubMed DOI

Manenti, R. et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: a randomized, placebo-controlled study. Brain Stimul. 11, 1251–1262 (2018). PubMed DOI

Cools, R. Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson’s disease. Neurosci. Biobehav. Rev. 30, 1–23 (2006). PubMed DOI

GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Psychiatry 9, 137–150 (2022). DOI PMC

Ponsford, J. L. et al. Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J. Neurotrauma 31, 64–77 (2014). PubMed DOI

Feigin, V. L. et al. Pragmatic solutions to reduce the global burden of stroke: a World Stroke Organization–Lancet Neurology Commission. Lancet Neurol. 22, 1160–1206 (2023). PubMed DOI PMC

Marshall, S. et al. Updated clinical practice guidelines for concussion/mild traumatic brain injury and persistent symptoms. Brain Inj. 29, 688–700 (2015). PubMed DOI

Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin. Neurophysiol. 131, 474–528 (2020). PubMed DOI

Antal, A. et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 128, 1774–1809 (2017). PubMed DOI PMC

Murase, N., Duque, J., Mazzocchio, R. & Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409 (2004). PubMed DOI

Morishita, T. & Hummel, F. C. Non-invasive brain stimulation (NIBS) in motor recovery after stroke: concepts to increase efficacy. Curr. Behav. Neurosci. Rep. 4, 280–289 (2017). DOI

Coscia, M. et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain 142, 2182–2197 (2019). PubMed DOI PMC

Safdar, A., Smith, M. C., Byblow, W. D. & Stinear, C. M. Applications of repetitive transcranial magnetic stimulation to improve upper limb motor performance after stroke: a systematic review. Neurorehabil. Neural Repair 37, 837–849 (2023). PubMed DOI PMC

Savelon, E. C. J., Jordan, H. T., Stinear, C. M. & Byblow, W. D. Noninvasive brain stimulation to improve motor outcomes after stroke. Curr. Opin. Neurol. 37, 621–628 (2024). PubMed DOI

Bornheim, S., Croisier, J. L., Maquet, P. & Kaux, J. F. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients — a randomized, triple blind, sham-controlled study. Brain Stimul. 13, 329–336 (2020). PubMed DOI

Garrido, M. M. et al. Early transcranial direct current stimulation with modified constraint-induced movement therapy for motor and functional upper limb recovery in hospitalized patients with stroke: a randomized, multicentre, double-blind, clinical trial. Brain Stimul. 16, 40–47 (2023). DOI

Cordes, D. et al. Efficacy and safety of transcranial direct current stimulation to the ipsilesional motor cortex in subacute stroke (NETS): a multicenter, randomized, double-blind, placebo-controlled trial. Lancet Reg. Health Eur. 38, 100825 (2024). DOI

Schlaug, G. et al. Safety and efficacy of transcranial direct current stimulation in addition to constraint-induced movement therapy for post-stroke motor recovery (TRANSPORT2): a phase 2, multicentre, randomised, sham-controlled triple-blind trial. Lancet Neurol. 24, 400–412 (2025). PubMed DOI

Harvey, R. L. et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke the NICHE trial. Stroke 49, 2138–2146 (2018). PubMed DOI

Luk, K. Y., Ouyang, H. X. & Pang, M. Y. C. Low-Frequency rTMS over contralesional M1 increases ipsilesional cortical excitability and motor function with decreased interhemispheric asymmetry in subacute stroke: a randomized controlled study. Neural Plast. 2022, 3815357 (2022). PubMed DOI PMC

Ahmed, I., Yeldan, I. & Mustafaoglu, R. The adjunct of electric neurostimulation to rehabilitation approaches in upper limb stroke rehabilitation: a systematic review with network meta-analysis of randomized controlled trials. Neuromodulation 25, 1197–1214 (2022). PubMed DOI

Hofmeijer, J., Ham, F. & Kwakkel, G. Evidence of rTMS for motor or cognitive stroke recovery: hype or hope? Stroke 54, 2500–2511 (2023). PubMed DOI

Lu, J. et al. Effect of intermittent theta burst stimulation on upper limb function in stroke patients: a systematic review and meta-analysis. Front. Neurol. 15, 1450435 (2024). PubMed DOI PMC

Tang, Z. et al. Efficacy and safety of high-dose TBS on poststroke upper extremity motor impairment: a randomized controlled trial. Stroke 55, 2212–2220 (2024). PubMed DOI PMC

Bian, L. et al. Effects of priming intermittent theta burst stimulation with high-definition tDCS on upper limb function in hemiparetic patients with stroke: a randomized controlled study. Neurorehabil. Neural Repair 38, 268–278 (2024). PubMed DOI

Vink, J. J. T. et al. Continuous theta-burst stimulation of the contralesional primary motor cortex for promotion of upper limb recovery after stroke: a randomized controlled trial. Stroke 54, 1962–1971 (2023). PubMed DOI PMC

Barker-Collo, S. & Feigin, V. The impact of neuropsychological deficits on functional stroke outcomes. Neuropsychol. Rev. 16, 53–64 (2006). PubMed DOI

Milosevich, E. T., Moore, M. J., Pendlebury, S. T. & Demeyere, N. Domain-specific cognitive impairment 6 months after stroke: the value of early cognitive screening. Int. J. Stroke 19, 331–341 (2024). PubMed DOI

Draaisma, L. R., Wessel, M. J. & Hummel, F. C. Non-invasive brain stimulation to enhance cognitive rehabilitation after stroke. Neurosci. Lett. 719, 133678 (2020). PubMed DOI

Stockbridge, M. D. et al. Transcranial direct-current stimulation in subacute aphasia: a randomized controlled trial. Stroke 54, 912–920 (2023). PubMed DOI PMC

Jung, I.-Y., Lim, J. Y., Kang, E. K., Sohn, H. M. & Paik, N.-J. The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Ann. Rehabil. Med. 35, 460 (2011). PubMed DOI PMC

Ren, J. et al. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: a randomized sham-controlled trial. Brain Stimul. 16, 1313–1321 (2023). PubMed DOI

Biou, E. et al. Transcranial direct current stimulation in post-stroke aphasia rehabilitation: a systematic review. Ann. Phys. Rehabil. Med. 62, 104–121 (2019). PubMed DOI

Chai, L. et al. Does SLT combined with NIBS enhance naming recovery in post-stroke aphasia? A meta-analysis and systematic review. NeuroRehabilitation 54, 543–561 (2024). PubMed PMC

Elsner, B., Kugler, J., Pohl, M. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 5, CD009760 (2019). PubMed

Raymer, A. M. & Johnson, R. K. Effectiveness of transcranial direct current stimulation as an adjuvant to aphasia treatment following stroke: evidence from systematic reviews and meta-analyses. Am. J. Speech Lang. Pathol. 33, 3431–3443 (2024). PubMed DOI

You, Y. et al. Long-term effects of transcranial direct current stimulation (tDCS) combined with speech language therapy (SLT) on post-stroke aphasia patients: a systematic review and network meta-analysis of randomized controlled trials. NeuroRehabilitation 53, 285–296 (2023). PubMed

Longley, V. et al. Non-pharmacological interventions for spatial neglect or inattention following stroke and other non-progressive brain injury. Cochrane Database Syst. Rev. 7, CD003586 (2021). PubMed

Nyffeler, T. et al. Theta burst stimulation in neglect after stroke: functional outcome and response variability origins. Brain 142, 992–1008 (2019). PubMed DOI

Lin, R. et al. Does repetitive transcranial magnetic stimulation have a beneficial effect on improving unilateral spatial neglect caused by stroke? A meta-analysis. J. Neurol. 271, 6494–6507 (2024). PubMed DOI PMC

Wang, Y., Xu, N., Wang, R. & Zai, W. Systematic review and network meta-analysis of effects of noninvasive brain stimulation on post-stroke cognitive impairment. Front. Neurosci. 16, 1082383 (2022). PubMed DOI PMC

Gong, C. et al. Therapeutic effects of repetitive transcranial magnetic stimulation on cognitive impairment in stroke patients: a systematic review and meta-analysis. Front. Hum. Neurosci. 17, 1177594 (2023). PubMed DOI PMC

Li, Y. et al. The efficacy and safety of post-stroke cognitive impairment therapies: an umbrella review. Front. Pharmacol. 14, 1207075 (2023). PubMed DOI PMC

Li, W. et al. Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial. Brain Behav. 12, e2569 (2022). PubMed DOI PMC

Liu, Y. et al. High-frequency rTMS broadly ameliorates working memory and cognitive symptoms in stroke patients: a randomized controlled trial. Neurorehabil. Neural Repair 38, 729–741 (2024). PubMed DOI PMC

Liu, Y. W. et al. Explore combined use of transcranial direct current stimulation and cognitive training on executive function after stroke. J. Rehabil. Med. 53, 2766 (2021). PubMed PMC

Guggisberg, A. G., Koch, P. J., Hummel, F. C. & Buetefisch, C. M. Brain networks and their relevance for stroke rehabilitation. Clin. Neurophysiol. 130, 1098–1124 (2019). PubMed DOI PMC

Koch, P. J. et al. The structural connectome and motor recovery after stroke: predicting natural recovery. Brain 144, 2107–2119 (2021). PubMed DOI PMC

Micera, S., Caleo, M., Chisari, C., Hummel, F. C. & Pedrocchi, A. Advanced neurotechnologies for the restoration of motor function. Neuron 105, 604–620 (2020). PubMed DOI

Hummel, F. C. et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul. 1, 370–382 (2008). PubMed DOI

Di Pino, G. et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat. Rev. Neurol. 10, 597–608 (2014). PubMed DOI

Maceira-Elvira, P. et al. Dissecting motor skill acquisition: spatial coordinates take precedence. Sci. Adv. 8, 3505 (2022). DOI

Maceira-Elvira, P. et al. Native learning ability and not age determines the effects of brain stimulation. npj Sci. Learn. 9, 69 (2024). PubMed DOI PMC

Jiang, L. et al. Optogenetic inhibition of striatal GABAergic neuronal activity improves outcomes after ischemic brain injury. Stroke 48, 3375–3383 (2017). PubMed DOI

Song, M. et al. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol. Dis. 98, 9–24 (2017). PubMed DOI

Proulx, C. E. & Hummel, F. C. Beyond the surface: advancing neurorehabilitation with transcranial temporal interference stimulation — clinical applications and future prospects. Neural Regen. Res. https://doi.org/10.4103/NRR.NRR-D-24-01573 (2025).

Wessel, M. J. et al. Multi-focal stimulation of the cortico-cerebellar loop during the acquisition of a novel hand motor skill in chronic stroke survivors. Cerebellum 23, 341–354 (2024). PubMed DOI

Wessel, M. J. et al. Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Sci. Rep. 11, 1756 (2021). PubMed DOI PMC

Bevilacqua, M. et al. Pathway-dependent brain stimulation responses indicate motion processing integrity after stroke. Brain 139, 16–17 (2025).

Bevilacqua, M. et al. Single session cross-frequency bifocal tACS modulates visual motion network activity in young healthy population and stroke patients. Brain Stimul. 17, 660–667 (2024). PubMed DOI

Raffin E. B. M. et al. Boosting hemianopia recovery: the power of interareal cross-frequency brain stimulation. Brain (in the press).

Arheix-Parras, S. et al. A systematic review of repetitive transcranial magnetic stimulation in aphasia rehabilitation: leads for future studies. Neurosci. Biobehav. Rev. 127, 212–241 (2021). PubMed DOI

Wang, Y. et al. Comparative efficacy of different noninvasive brain stimulation therapies for recovery of global cognitive function, attention, memory, and executive function after stroke: a network meta-analysis of randomized controlled trials. Ther. Adv. Chronic Dis. 14, 20406223231168754 (2023). PubMed DOI PMC

Grover, S., Fayzullina, R., Bullard, B. M., Levina, V. & Reinhart, R. M. G. A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations. Sci. Transl. Med. 15, eabo2044 (2023). PubMed DOI PMC

Schuhmann, T. et al. Transcranial alternating brain stimulation at alpha frequency reduces hemispatial neglect symptoms in stroke patients. Int. J. Clin. Health Psychol. 22, 100326 (2022). PubMed DOI PMC

Chen, J. et al. Efficacy of rTMS combined with cognitive training in TBI with cognition disorder: a systematic review and meta-analysis. Neurol. Sci. 45, 3683–3697 (2024). PubMed DOI

Tsai, P. Y., Chen, Y. C., Wang, J. Y., Chung, K. H. & Lai, C. H. Effect of repetitive transcranial magnetic stimulation on depression and cognition in individuals with traumatic brain injury: a systematic review and meta-analysis. Sci. Rep. 11, 16940 (2021). PubMed DOI PMC

Franke, L. M. et al. Randomized trial of rTMS in traumatic brain injury: improved subjective neurobehavioral symptoms and increases in EEG delta activity. Brain Inj. 36, 683–692 (2022). PubMed DOI

Neville, I. S. et al. Repetitive TMS does not improve cognition in patients with TBI: a randomized double-blind trial. Neurology 93, E190–E199 (2019). PubMed DOI PMC

Verisezan Rosu, O. et al. Cerebrolysin and repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury: a three-arm randomized trial. Front. Neurosci. 17, 1186751 (2023). PubMed DOI PMC

Afsharipoor, M. et al. Combined transcranial direct current stimulation with occupational therapy improves activities of daily living in traumatic brain injuries: a pilot randomized clinical trial. J. Mod. Rehabil. 18, 114–120 (2024).

Motes, M. A. et al. High-definition transcranial direct current stimulation to improve verbal retrieval deficits in chronic traumatic brain injury. J. Neurotrauma 37, 170–177 (2020). PubMed DOI

Quinn, D. K. et al. Transcranial direct current stimulation modulates working memory and prefrontal-insula connectivity after mild-moderate traumatic brain injury. Front. Hum. Neurosci. 16, 1026639 (2022). PubMed DOI PMC

Sacco, K. et al. Concomitant use of transcranial direct current stimulation and computer-assisted training for the rehabilitation of attention in traumatic brain injured patients: behavioral and neuroimaging results. Front. Behav. Neurosci. 10, 57 (2016). PubMed DOI PMC

Li, L. M. et al. Traumatic axonal injury influences the cognitive effect of non-invasive brain stimulation. Brain 142, 3280–3293 (2019). PubMed DOI PMC

Chiang, H. S., Motes, M., Kraut, M., Vanneste, S. & Hart, J. High-definition transcranial direct current stimulation modulates theta response during a Go-NoGo task in traumatic brain injury. Clin. Neurophysiol. 143, 36–47 (2022). PubMed DOI PMC

Galimberti, A., Tik, M., Pellegrino, G. & Schuler, A. L. Effectiveness of rTMS and tDCS treatment for chronic TBI symptoms: a systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 128, 110863 (2024). PubMed DOI

Yang, Z. et al. Behavioral effects of repetitive transcranial magnetic stimulation in disorders of consciousness: a systematic review and meta-analysis. Brain Sci. 13, 1362 (2023). PubMed DOI PMC

Hoy, K. E. et al. A pilot investigation of repetitive transcranial magnetic stimulation for post-traumatic brain injury depression: safety, tolerability, and efficacy. J. Neurotrauma 36, 2092–2098 (2019). PubMed DOI

Kim, W. S., Lee, K., Kim, S., Cho, S. & Paik, N. J. Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury. J. Neuroeng. Rehabil. 16, 14 (2019). PubMed DOI PMC

Surendrakumar, S. et al. Neuromodulation therapies in pre-clinical models of traumatic brain injury: systematic review and translational applications. J. Neurotrauma 40, 435–448 (2023). PubMed DOI

Middleton, A., Fritz, S. L., Liuzzo, D. M., Newman-Norlund, R. & Herter, T. M. Using clinical and robotic assessment tools to examine the feasibility of pairing tDCS with upper extremity physical therapy in patients with stroke and TBI: a consideration-of-concept pilot study. NeuroRehabilitation 35, 741–754 (2014). PubMed PMC

Ryan, J. L., Beal, D. S., Levac, D. E., Fehlings, D. L. & Wright, F. V. Integrating transcranial direct current stimulation into an existing inpatient physiotherapy program to enhance motor learning in an adolescent with traumatic brain injury: a case report. Phys. Occup. Ther. Pediatr. 43, 463–481 (2023). PubMed DOI

Lutkenhoff, E. S. et al. The subcortical basis of outcome and cognitive impairment in TBI: a longitudinal cohort study. Neurology 95, E2398–E2408 (2020). PubMed DOI PMC

Sandry, J. & Dobryakova, E. Global hippocampal and selective thalamic nuclei atrophy differentiate chronic TBI from non-TBI. Cortex 145, 37–56 (2021). PubMed DOI

Sharp, D. J., Scott, G. & Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014). PubMed DOI

Siegel, J. S., Shulman, G. L. & Corbetta, M. Mapping correlated neurological deficits after stroke to distributed brain networks. Brain Struct. Funct. 227, 3173–3187 (2022). PubMed DOI PMC

Talozzi, L. et al. Latent disconnectome prediction of long-term cognitive-behavioural symptoms in stroke. Brain 146, 1963–1978 (2023). PubMed DOI PMC

Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018). PubMed DOI

Baldassarre, A., Metcalf, N. V., Shulman, G. L. & Corbetta, M. Brain networks’ functional connectivity separates aphasic deficits in stroke. Neurology 92, E125–E135 (2019). PubMed DOI PMC

Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022). PubMed DOI PMC

Lai, M. H. et al. Effectiveness and brain mechanism of multi-target transcranial alternating current stimulation (tACS) on motor learning in stroke patients: study protocol for a randomized controlled trial. Trials 25, 97 (2024). PubMed DOI PMC

Tashiro, S., Takemi, M., Yamada, S. & Tsuji, T. Synchronized application of closed-loop NMES and precision tACS in post-stroke hand rehabilitation: a protocol of neurorehabilitation trial. Ther. Adv. Chronic Dis. 15, 20406223241297396 (2024). DOI

Sinisalo, H. et al. Multi-locus transcranial magnetic stimulation with pulse-width modulation. Brain Stimul. 18, 948–956 (2025). PubMed DOI

Siddiqi, S. H. & Fox, M. D. Targeting symptom-specific networks with transcranial magnetic stimulation. Biol. Psychiatry 95, 502–509 (2024). PubMed DOI

Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A. & Paulus, W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26, 1513–1521 (2016). PubMed DOI

Diedrich, L., Kolhoff, H. I., Bergmann, C., Bähr, M. & Antal, A. Boosting working memory in the elderly: driving prefrontal theta–gamma coupling via repeated neuromodulation. Geroscience 47, 1425–1440 (2024). PubMed DOI PMC

Reinhart, R. M. G. & Nguyen, J. A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22, 820–827 (2019). DOI PMC

Grover, S., Wen, W., Viswanathan, V., Gill, C. T. & Reinhart, R. M. G. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 25, 1237–1246 (2022). PubMed DOI PMC

Xie, X., Hu, P., Tian, Y., Wang, K. & Bai, T. Transcranial alternating current stimulation enhances speech comprehension in chronic post-stroke aphasia patients: a single-blind sham-controlled study. Brain Stimul. 15, 1538–1540 (2022). PubMed DOI

Antal, A. & Paulus, W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 7, 317 (2013). PubMed DOI PMC

Yang, S., Yi, Y. G. & Chang, M. C. The effect of transcranial alternating current stimulation on functional recovery in patients with stroke: a narrative review. Front. Neurol. 14, 1327383 (2024). PubMed DOI PMC

Gamage, N. N. et al. Theta-gamma transcranial alternating current stimulation enhances ballistic motor performance in healthy young and older adults. Neurobiol. Aging 152, 1–12 (2025). PubMed DOI

Grigutsch, L. S. et al. Differential effects of theta-gamma tACS on motor skill acquisition in young individuals and stroke survivors: a double-blind, randomized, sham-controlled study. Brain Stimul. 17, 1076–1085 (2024). PubMed DOI

Zrenner, C. & Ziemann, U. Closed-loop brain stimulation. Biol. Psychiatry 95, 545–552 (2024). PubMed DOI PMC

Zrenner, B. et al. Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul. 13, 197–205 (2020). PubMed DOI

Lieb, A. et al. Brain-oscillation-synchronized stimulation to enhance motor recovery in early subacute stroke: a randomized controlled double-blind three- arm parallel-group exploratory trial comparing personalized, non-personalized and sham repetitive transcranial magnetic stimulation (acronym: BOSS-STROKE). BMC Neurol. 23, 204 (2023). PubMed DOI PMC

Mahmoud, W. et al. Brain state-dependent repetitive transcranial magnetic stimulation for motor stroke rehabilitation: a proof of concept randomized controlled trial. Front. Neurol. 15, 1427198 (2024). PubMed DOI PMC

Kahana, M. J. et al. Biomarker-guided neuromodulation aids memory in traumatic brain injury. Brain Stimul. 16, 1086–1093 (2023). PubMed DOI

Nojima, I. et al. Gait-combined closed-loop brain stimulation can improve walking dynamics in Parkinsonian gait disturbances: a randomised-control trial. J. Neurol. Neurosurg. Psychiatry 94, 938–944 (2023). PubMed DOI

Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041.e16 (2017). PubMed DOI PMC

Huang, Z. et al. Low intensity focused ultrasound stimulation in stroke: a phase I safety and feasibility trial. Brain Stimul. 18, 179–187 (2025). PubMed DOI

Yuksel, M. M. et al. Low-intensity focused ultrasound neuromodulation for stroke recovery: a novel deep brain stimulation approach for neurorehabilitation? IEEE Open J. Eng. Med. Biol. 4, 300–318 (2023). PubMed DOI

Cataldi, S., Stanley, A. T., Miniaci, M. C. & Sulzer, D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J. 289, 2263–2281 (2022). PubMed DOI

Berron, D., van Westen, D., Ossenkoppele, R., Strandberg, O. & Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143, 1233–1248 (2020). PubMed DOI PMC

Dues, D. J., Nguyen, A. P. T., Becker, K., Ma, J. & Moore, D. J. Hippocampal subfield vulnerability to α-synuclein pathology precedes neurodegeneration and cognitive dysfunction. npj Parkinsons Dis. 9, 125 (2023). PubMed DOI PMC

Ye, R. et al. Differential vulnerability of hippocampal subfields to amyloid and tau deposition in the Lewy body diseases. Neurology 102, e209460 (2024). PubMed DOI PMC

Krajcovicova, L., Klobusiakova, P. & Rektorova, I. Gray matter changes in Parkinson’s and Alzheimer’s disease and relation to cognition. Curr. Neurol. Neurosci. Rep. 19, 85 (2019). PubMed DOI PMC

Železníková, Ž et al. Early changes in the locus coeruleus in mild cognitive impairment with Lewy bodies. Mov. Disord. 40, 276–284 (2025). PubMed DOI

Lamoš, M. et al. Non-invasive temporal interference stimulation of the subthalamic nucleus in Parkinson’s disease reduces beta activity. Mov. Disord. 40, 1051–1060 (2025). PubMed DOI PMC

Yang, C. et al. Transcranial temporal interference subthalamic stimulation for treating motor symptoms in Parkinson’s disease: a pilot study. Brain Stimul. 17, 1250–1252 (2024). PubMed DOI

Wang, Y. et al. The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans. Front. Hum. Neurosci. 18, 1484593 (2024). PubMed DOI PMC

Antonenko, D. et al. Cognitive training and brain stimulation in patients with cognitive impairment: a randomized controlled trial. Alzheimers Res. Ther. 16, 6 (2024). PubMed DOI PMC

O’Flaherty, D. & Ali, K. Recommendations for upper limb motor recovery: an overview of the UK and European rehabilitation after stroke guidelines (2023). Healthcare 12, 1433 (2024). PubMed DOI PMC

Lee, S. H. & Yoo, Y. J. A literature review on optimal stimulation parameters of transcranial direct current stimulation for motor recovery after stroke. Brain Neurorehabil. 17, e24 (2024). PubMed DOI PMC

Cole, E., O’Sullivan, S. J., Tik, M. & Williams, N. R. Accelerated theta burst stimulation: safety, efficacy, and future advancements. Biol. Psychiatry 95, 523–535 (2024). PubMed DOI PMC

Sonmez, A. I. et al. Accelerated TMS for depression: a systematic review and meta-analysis. Psychiatry Res. 273, 770–781 (2019). PubMed DOI

Pastore-Wapp, M., Nyffeler, T., Nef, T., Bohlhalter, S. & Vanbellingen, T. Non-invasive brain stimulation in limb praxis and apraxia: a scoping review in healthy subjects and patients with stroke. Cortex 138, 152–164 (2021). PubMed DOI

Pastore-Wapp, M. et al. Feasibility of a combined intermittent theta-burst stimulation and video game-based dexterity training in Parkinson’s disease. J. Neuroeng. Rehabil. 20, 2 (2023). PubMed DOI PMC

Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014). PubMed DOI

Fox, M. D., Halko, M. A., Eldaief, M. C. & Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62, 2232–2243 (2012). PubMed DOI

Siebner, H. R. et al. Transcranial magnetic stimulation of the brain: What is stimulated? – a consensus and critical position paper. Clin. Neurophysiol. 140, 59–97 (2022). PubMed DOI PMC

Liu, A. et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9, 5092 (2018). PubMed DOI PMC

Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30, 15067–15079 (2010). PubMed DOI PMC

Moret, B., Donato, R., Nucci, M., Cona, G. & Campana, G. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci. Rep. 9, 15150 (2019). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...