Non-invasive brain stimulation: current and future applications in neurology
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40957931
DOI
10.1038/s41582-025-01137-z
PII: 10.1038/s41582-025-01137-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Device-based non-invasive brain stimulation (NIBS) techniques show promise for the treatment of neurological and psychiatric disorders, although inconsistencies in protocol designs and study findings can make the field difficult to navigate. In this Review, we discuss applications of NIBS for enhancing cognitive and motor function in people with various neurological diseases that are characterized by disruption of large-scale brain networks, including neurodegenerative diseases and brain lesion disorders such as stroke and traumatic brain injury. In particular, we focus on repetitive transcranial magnetic stimulation and transcranial electrical stimulation, as these techniques have been widely used in clinical settings and randomized controlled trials. We summarize and synthesize current knowledge, and highlight gaps and shortcomings in the existing research that make it difficult to draw firm conclusions, including small sample sizes, heterogeneous patient populations and variations in stimulation protocols. We believe that a rapid evolution of NIBS techniques from state-dependent, network-informed, multifocal and subcortical paradigms to individualized electric field modelling and accelerated NIBS protocols will improve the management of neurological disorders. However, realizing this potential will require us to address crucial challenges and acquire deeper mechanistic insights, with the aim of developing adaptive, biomarker-driven protocols to optimize target engagement, dosing and timing for each patient.
Clinical Neuroscience University of Geneva Medical School Geneva Switzerland
Defitech Chair of Clinical Neuroengineering Neuro 10 Institute Geneva Switzerland
Zobrazit více v PubMed
Boon, P. et al. A strategic neurological research agenda for Europe: towards clinically relevant and patient-centred neurological research priorities. Eur. J. Neurol. 31, e16171 (2024). PubMed DOI
Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L. & Greicius, M. D. Neurodegenerative diseases target large-scale human brain networks. Neuron 62, 42–52 (2009). PubMed DOI PMC
Stam, C. J. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw. Neurosci. 8, 1–23 (2024). PubMed DOI PMC
Murphy, K. R. et al. A practical guide to transcranial ultrasonic stimulation from the IFCN-endorsed ITRUSST consortium. Clin. Neurophysiol. 171, 192–226 (2025). PubMed DOI
Violante, I. R. et al. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat. Neurosci. 26, 1994–2004 (2023). PubMed DOI PMC
Wessel, M. J. et al. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat. Neurosci. 26, 2005–2016 (2023). PubMed DOI PMC
Vassiliadis, P. et al. Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nat. Hum. Behav. 8, 1581–1598 (2024). PubMed DOI PMC
Beanato, E. et al. Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. Sci. Adv. 10, eado4103 (2024). PubMed DOI PMC
Yang, C. et al. Transcranial temporal interference stimulation of the right globus pallidus in Parkinson’s disease. Mov. Disord. 40, 1061–1069 (2025). PubMed DOI
Piao, Y. et al. Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies. Brain Sci. 12, 1194 (2022). PubMed DOI PMC
Vassiliadis, P. et al. Safety, tolerability and blinding efficiency of non-invasive deep transcranial temporal interference stimulation: first experience from more than 250 sessions. J. Neural Eng. 21, 024001 (2024). DOI
Bergmann, T. O., Karabanov, A., Hartwigsen, G., Thielscher, A. & Siebner, H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. Neuroimage 140, 4–19 (2016). PubMed DOI
Bradley, C., Nydam, A. S., Dux, P. E. & Mattingley, J. B. State-dependent effects of neural stimulation on brain function and cognition. Nat. Rev. Neurosci. 23, 459–475 (2022). PubMed DOI
Hartz, S. M. et al. Assessing the clinical meaningfulness of slowing CDR-SB progression with disease-modifying therapies for Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 11, e70033 (2025). DOI
Wei, N. et al. Repetitive transcranial magnetic stimulation may be superior to drug therapy in the treatment of Alzheimer’s disease: a systematic review and Bayesian network meta-analysis. CNS Neurosci. Ther. 29, 2912–2924 (2023). PubMed DOI PMC
Koch, G. et al. The emerging field of non-invasive brain stimulation in Alzheimer’s disease. Brain 147, 4003–4016 (2024). PubMed DOI PMC
Terao, I. & Kodama, W. Comparative efficacy, tolerability and acceptability of donanemab, lecanemab, aducanumab and lithium on cognitive function in mild cognitive impairment and Alzheimer’s disease: a systematic review and network meta-analysis. Ageing Res. Rev. 94, 102203 (2024). PubMed DOI
Šimko, P., Kent, J. A. & Rektorova, I. Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer’s disease? An updated meta-analysis. Clin. Neurophysiol. 144, 23–40 (2022). PubMed DOI
Yang, T. et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer’s disease and mild cognitive impairment: a systematic review and meta-analysis. Alzheimers Res. Ther. 16, 140 (2024). PubMed DOI PMC
Rektorová, I. Non-invasive stimulation for treating cognitive impairment in Alzheimer disease. Nat. Rev. Neurol. 20, 445–446 (2024). PubMed DOI
Moussavi, Z. et al. Repetitive transcranial magnetic stimulation as a treatment for Alzheimer’s disease: a randomized placebo-controlled double-blind clinical trial. Neurotherapeutics 21, e00331 (2024). PubMed DOI PMC
Lin, H. et al. Effects of accelerated intermittent theta-burst stimulation in modulating brain of Alzheimer’s disease. Cereb. Cortex 34, bhae106 (2024). PubMed DOI
Wu, X. et al. Accelerated intermittent theta-burst stimulation broadly ameliorates symptoms and cognition in Alzheimer’s disease: a randomized controlled trial. Brain Stimul. 15, 35–45 (2022). PubMed DOI
Tang, N., Shu, W. & Wang, H.-N. Accelerated transcranial magnetic stimulation for major depressive disorder: a quick path to relief? Wiley Interdiscip. Rev. Cogn. Sci. 15, e1666 (2024). PubMed DOI
Wu, X. et al. Effects of a periodic intermittent theta burst stimulation in Alzheimer’s disease. Gen. Psychiatr. 37, e101106 (2024). PubMed DOI PMC
Jones, D. T. et al. Cascading network failure across the Alzheimer’s disease spectrum. Brain 139, 547–562 (2016). PubMed DOI
Giorgio, J., Adams, J. N., Maass, A., Jagust, W. J. & Breakspear, M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron 112, 676–686.e4 (2024). PubMed DOI
Krajcovicova, L., Marecek, R., Mikl, M. & Rektorova, I. Disruption of resting functional connectivity in Alzheimer’s patients and at-risk Subjects. Curr. Neurol. Neurosci. Rep. 14, 491 (2014). PubMed DOI
Koch, G. et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage 169, 302–311 (2018). PubMed DOI
Koch, G. et al. Precuneus magnetic stimulation for Alzheimer’s disease: a randomized, sham-controlled trial. Brain 145, 3776–3786 (2022). PubMed DOI PMC
Yao, Q. et al. Effect of cerebellum stimulation on cognitive recovery in patients with Alzheimer disease: a randomized clinical trial. Brain Stimul. 15, 910–920 (2022). PubMed DOI
Chen, Y. et al. Integrated cerebellar radiomic-network model for predicting mild cognitive impairment in Alzheimer’s disease. Alzheimers Dement. 21, e14361 (2025). PubMed DOI
Majdi, A., van Boekholdt, L., Sadigh-Eteghad, S. & Mc Laughlin, M. A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer’s disease. Mol. Psychiatry 27, 2000–2009 (2022). PubMed DOI
Huo, L. et al. Effects of transcranial direct current stimulation on episodic memory in older adults: a meta-analysis. J. Gerontol. B 76, 692–702 (2021). DOI
Rezakhani, S., Amiri, M., Hassani, A., Esmaeilpour, K. & Sheibani, V. Anodal HD-tDCS on the dominant anterior temporal lobe and dorsolateral prefrontal cortex: clinical results in patients with mild cognitive impairment. Alzheimers Res. Ther. 16, 27 (2024). PubMed DOI PMC
Šimko, P. et al. Exploring the impact of intensified multiple session tDCS over the left DLPFC on brain function in MCI: a randomized control trial. Sci. Rep. 14, 1512 (2024). PubMed DOI PMC
Im, J. J. et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer’s disease. Brain Stimul. 12, 1222–1228 (2019). PubMed DOI PMC
Agboada, D., Mosayebi-Samani, M., Kuo, M. F. & Nitsche, M. A. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation — better effects with intensified protocols? Brain Stimul. 13, 987–997 (2020). PubMed DOI
Nissim, N. R. et al. Efficacy of transcranial alternating current stimulation in the enhancement of working memory performance in healthy adults: a systematic meta-analysis. Neuromodulation 26, 728–737 (2023). PubMed DOI PMC
Manippa, V. et al. Cognitive and neuropathophysiological outcomes of gamma-tACS in dementia: a systematic review. Neuropsychol. Rev. 34, 338–361 (2023). PubMed DOI PMC
Jafari, Z., Kolb, B. E. & Mohajerani, M. H. Neural oscillations and brain stimulation in Alzheimer’s disease. Prog. Neurobiol. 194, 101878 (2020). PubMed DOI
Gillespie, A. K. et al. Apolipoprotein E4 causes age-dependent disruption of slow gamma oscillations during hippocampal sharp-wave ripples. Neuron 90, 740–751 (2016). PubMed DOI PMC
Babiloni, C. et al. Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int. J. Psychophysiol. 103, 88–102 (2016). PubMed DOI
Benussi, A. et al. Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul. 14, 531–540 (2021). PubMed DOI
Benussi, A. et al. Increasing brain gamma activity improves episodic memory and restores cholinergic dysfunction in Alzheimer’s disease. Ann. Neurol. 92, 322–334 (2022). PubMed DOI PMC
Chan, D. et al. Gamma frequency sensory stimulation in mild probable Alzheimer’s dementia patients: results of feasibility and pilot studies. PLoS ONE 17, e0278412 (2022). PubMed DOI PMC
Jung, Y. H. et al. Effectiveness of personalized hippocampal network–targeted stimulation in Alzheimer disease. JAMA Netw. Open 7, e249220 (2024). PubMed DOI PMC
Pupíková, M. et al. Physiology-inspired bifocal fronto-parietal tACS for working memory enhancement. Heliyon 10, e37427 (2024). PubMed DOI PMC
Anderkova, L., Eliasova, I., Marecek, R., Janousova, E. & Rektorova, I. Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. J. Alzheimers Dis. 48, 251–260 (2015). PubMed DOI
Altomare, D. et al. Home-based transcranial alternating current stimulation (tACS) in Alzheimer’s disease: rationale and study design. Alzheimers Res. Ther. 15, 155 (2023). PubMed DOI PMC
Benussi, A. et al. Alpha tACS improves cognition and modulates neurotransmission in dementia with Lewy bodies. Mov. Disord. 39, 1993–2003 (2024). PubMed DOI
Grossman, M. et al. Frontotemporal lobar degeneration. Nat. Rev. Dis. Primers 9, 40 (2023). PubMed DOI
Roheger, M. et al. Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia. Cochrane Database Syst. Rev. 5, CD015067 (2024). PubMed
Lamoš, M., Morávková, I., Ondráček, D., Bočková, M. & Rektorová, I. Altered spatiotemporal dynamics of the resting brain in mild cognitive impairment with Lewy bodies. Mov. Disord. 36, 2435–2440 (2021). PubMed DOI
Bonakdarpour, B. et al. Perturbations of language network connectivity in primary progressive aphasia. Cortex 121, 468–480 (2019). PubMed DOI PMC
Zhou, J. et al. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain 133, 1352–1367 (2010). PubMed DOI PMC
Höglinger, G. U. et al. A biological classification of Parkinson’s disease: the SynNeurGe research diagnostic criteria. Lancet Neurol. 23, 191–204 (2024). PubMed DOI
Simuni, T. et al. A biological definition of neuronal α-synuclein disease: towards an integrated staging system for research. Lancet Neurol. 23, 178–190 (2024). PubMed DOI
Rektorova, I. Current treatment of behavioral and cognitive symptoms of Parkinson’s disease. Parkinsonism Relat. Disord. 59, 65–73 (2019). PubMed DOI
Brabenec, L., Mekyska, J., Galaz, Z. & Rektorova, I. Speech disorders in Parkinson’s disease: early diagnostics and effects of medication and brain stimulation. J. Neural Transm. 124, 303–334 (2017). PubMed DOI
Rektorova, I., Barrett, J., Mikl, M., Rektor, I. & Paus, T. Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson’s disease. Mov. Disord. 22, 2043–2051 (2007). PubMed DOI
Brabenec, L., Simko, P., Sejnoha Minsterova, A., Kostalova, M. & Rektorova, I. Repetitive transcranial magnetic stimulation for hypokinetic dysarthria in Parkinson’s disease enhances white matter integrity of the auditory–motor loop. Eur. J. Neurol. 30, 881–886 (2023). PubMed DOI
Klobusiakova, P. et al. Articulatory network reorganization in Parkinson’s disease as assessed by multimodal MRI and acoustic measures. Parkinsonism Relat. Disord. 84, 122–128 (2021). PubMed DOI
Brabenec, L. et al. Non-invasive stimulation of the auditory feedback area for improved articulation in Parkinson’s disease. Parkinsonism Relat. Disord. 61, 187–192 (2019). PubMed DOI
Brabenec, L. et al. Non-invasive brain stimulation for speech in Parkinson’s disease: a randomized controlled trial. Brain Stimul. 14, 571–578 (2021). PubMed DOI
Brabenec, L. et al. Short-term effects of transcranial direct current stimulation on motor speech in Parkinson’s disease: a pilot study. J. Neural Transm. 131, 791–797 (2024). PubMed DOI
Aarsland, D., Brønnick, K., Larsen, J. P., Tysnes, O. B. & Alves, G. Cognitive impairment in incident, untreated Parkinson disease: the Norwegian ParkWest study. Neurology 72, 1121–1126 (2009). PubMed DOI
Litvan, I. et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: movement disorder society task force guidelines. Mov. Disord. 27, 349–356 (2012). PubMed DOI PMC
Giustiniani, A., Maistrello, L., Mologni, V., Danesin, L. & Burgio, F. TMS and tDCS as potential tools for the treatment of cognitive deficits in Parkinson’s disease: a meta-analysis. Neurol. Sci. 46, 579–592 (2025). PubMed DOI
Pupíková, M. & Rektorová, I. Non-pharmacological management of cognitive impairment in Parkinson’s disease. J. Neural Transm. 127, 799–820 (2020). PubMed DOI
Lee, H., Choi, B. J. & Kang, N. Non-invasive brain stimulation enhances motor and cognitive performances during dual tasks in patients with Parkinson’s disease: a systematic review and meta-analysis. J. Neuroeng. Rehabil. 21, 205 (2024). PubMed DOI PMC
Duan, Z. & Zhang, C. Transcranial direct current stimulation for Parkinson’s disease: systematic review and meta-analysis of motor and cognitive effects. npj Parkinsons Dis. 10, 214 (2024). PubMed DOI PMC
He, W., Wang, J.-C. & Tsai, P.-Y. Theta burst magnetic stimulation improves Parkinson’s-related cognitive impairment: a randomised controlled study. Neurorehabil. Neural Repair 35, 986–995 (2021). PubMed DOI
Buard, I. et al. Transcranial magnetic stimulation does not improve mild cognitive impairment in Parkinson’s disease. Mov. Disord. 33, 489–491 (2018). PubMed DOI
Del Felice, A. et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’s disease: a randomized cross-over trial. Neuroimage Clin. 22, 101768 (2019). PubMed DOI PMC
Wei, W. et al. Acute improvement in the attention network with repetitive transcranial magnetic stimulation in Parkinson’s disease. Disabil. Rehabil. 44, 7958–7966 (2022). PubMed DOI
Pal, E., Nagy, F., Aschermann, Z., Balazs, E. & Kovacs, N. The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: a randomized, double-blind, placebo-controlled study. Mov. Disord. 25, 2311–2317 (2010). PubMed DOI
Aksu, S. et al. Does transcranial direct current stimulation enhance cognitive performance in Parkinson’s disease mild cognitive impairment? An event-related potentials and neuropsychological assessment study. Neurol. Sci. 43, 4029–4044 (2022). PubMed DOI
Chung, C. L., Mak, M. K. & Hallett, M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann. Neurol. 88, 933–945 (2020). PubMed DOI
Wong, P.-L., Yang, Y.-R., Huang, S.-F. & Wang, R.-Y. Effects of DLPFC tDCS followed by treadmill training on dual-task gait and cortical excitability in Parkinson’s disease: a randomized controlled trial. Neurorehabil. Neural Repair 38, 680–692 (2024). PubMed DOI
Rufener, K. S., Oechslin, M. S., Zaehle, T. & Meyer, M. Transcranial alternating current stimulation (tACS) differentially modulates speech perception in young and older adults. Brain Stimul. 9, 560–565 (2016). PubMed DOI
Nemcova Elfmarkova, N., Gajdos, M., Rektorova, I., Marecek, R. & Rapcsak, S. Z. Neural evidence for defective top-down control of visual processing in Parkinson’s and Alzheimer’s disease. Neuropsychologia 106, 236–244 (2017). PubMed DOI
Rucco, R. et al. Brain networks and cognitive impairment in Parkinson’s disease. Brain Connect. 12, 465–475 (2022). PubMed DOI
Srovnalova, H., Marecek, R. & Rektorova, I. The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: a pilot rTMS study. Mov. Disord. 26, 1545–1548 (2011). PubMed DOI
Monastero, R. et al. Transcranial random noise stimulation over the primary motor cortex in PD-MCI patients: a crossover, randomized, sham-controlled study. J. Neural Transm. 127, 1589–1597 (2020). PubMed DOI
Madrid, J. & Benninger, D. H. Non-invasive brain stimulation for Parkinson’s disease: clinical evidence, latest concepts and future goals: a systematic review. J. Neurosci. Methods 347, 108957 (2021). PubMed DOI
Monte-Silva, K., Liebetanz, D., Grundey, J., Paulus, W. & Nitsche, M. A. Dosage-dependent non-linear effect of L-dopa on human motor cortex plasticity. J. Physiol. 588, 3415–3424 (2010). PubMed DOI PMC
Zhang, W. et al. Efficacy of repetitive transcranial magnetic stimulation in Parkinson’s disease: a systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine 52, 101589 (2022). PubMed DOI PMC
Li, R. et al. Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson’s disease: a meta-analysis. Neurorehabil. Neural Repair 36, 395–404 (2022). PubMed DOI
Goodwill, A. M. et al. Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis. Sci. Rep. 7, 14840 (2017). PubMed DOI PMC
Pereira, J. B. et al. Modulation of verbal fluency networks by transcranial direct current stimulation (tDCS) in Parkinson’s disease. Brain Stimul. 6, 16–24 (2013). PubMed DOI
Manenti, R. et al. Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson disease: a randomized, placebo-controlled study. Brain Stimul. 11, 1251–1262 (2018). PubMed DOI
Cools, R. Dopaminergic modulation of cognitive function-implications for l-DOPA treatment in Parkinson’s disease. Neurosci. Biobehav. Rev. 30, 1–23 (2006). PubMed DOI
GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet Psychiatry 9, 137–150 (2022). DOI PMC
Ponsford, J. L. et al. Longitudinal follow-up of patients with traumatic brain injury: outcome at two, five, and ten years post-injury. J. Neurotrauma 31, 64–77 (2014). PubMed DOI
Feigin, V. L. et al. Pragmatic solutions to reduce the global burden of stroke: a World Stroke Organization–Lancet Neurology Commission. Lancet Neurol. 22, 1160–1206 (2023). PubMed DOI PMC
Marshall, S. et al. Updated clinical practice guidelines for concussion/mild traumatic brain injury and persistent symptoms. Brain Inj. 29, 688–700 (2015). PubMed DOI
Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin. Neurophysiol. 131, 474–528 (2020). PubMed DOI
Antal, A. et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 128, 1774–1809 (2017). PubMed DOI PMC
Murase, N., Duque, J., Mazzocchio, R. & Cohen, L. G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 55, 400–409 (2004). PubMed DOI
Morishita, T. & Hummel, F. C. Non-invasive brain stimulation (NIBS) in motor recovery after stroke: concepts to increase efficacy. Curr. Behav. Neurosci. Rep. 4, 280–289 (2017). DOI
Coscia, M. et al. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain 142, 2182–2197 (2019). PubMed DOI PMC
Safdar, A., Smith, M. C., Byblow, W. D. & Stinear, C. M. Applications of repetitive transcranial magnetic stimulation to improve upper limb motor performance after stroke: a systematic review. Neurorehabil. Neural Repair 37, 837–849 (2023). PubMed DOI PMC
Savelon, E. C. J., Jordan, H. T., Stinear, C. M. & Byblow, W. D. Noninvasive brain stimulation to improve motor outcomes after stroke. Curr. Opin. Neurol. 37, 621–628 (2024). PubMed DOI
Bornheim, S., Croisier, J. L., Maquet, P. & Kaux, J. F. Transcranial direct current stimulation associated with physical-therapy in acute stroke patients — a randomized, triple blind, sham-controlled study. Brain Stimul. 13, 329–336 (2020). PubMed DOI
Garrido, M. M. et al. Early transcranial direct current stimulation with modified constraint-induced movement therapy for motor and functional upper limb recovery in hospitalized patients with stroke: a randomized, multicentre, double-blind, clinical trial. Brain Stimul. 16, 40–47 (2023). DOI
Cordes, D. et al. Efficacy and safety of transcranial direct current stimulation to the ipsilesional motor cortex in subacute stroke (NETS): a multicenter, randomized, double-blind, placebo-controlled trial. Lancet Reg. Health Eur. 38, 100825 (2024). DOI
Schlaug, G. et al. Safety and efficacy of transcranial direct current stimulation in addition to constraint-induced movement therapy for post-stroke motor recovery (TRANSPORT2): a phase 2, multicentre, randomised, sham-controlled triple-blind trial. Lancet Neurol. 24, 400–412 (2025). PubMed DOI
Harvey, R. L. et al. Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke the NICHE trial. Stroke 49, 2138–2146 (2018). PubMed DOI
Luk, K. Y., Ouyang, H. X. & Pang, M. Y. C. Low-Frequency rTMS over contralesional M1 increases ipsilesional cortical excitability and motor function with decreased interhemispheric asymmetry in subacute stroke: a randomized controlled study. Neural Plast. 2022, 3815357 (2022). PubMed DOI PMC
Ahmed, I., Yeldan, I. & Mustafaoglu, R. The adjunct of electric neurostimulation to rehabilitation approaches in upper limb stroke rehabilitation: a systematic review with network meta-analysis of randomized controlled trials. Neuromodulation 25, 1197–1214 (2022). PubMed DOI
Hofmeijer, J., Ham, F. & Kwakkel, G. Evidence of rTMS for motor or cognitive stroke recovery: hype or hope? Stroke 54, 2500–2511 (2023). PubMed DOI
Lu, J. et al. Effect of intermittent theta burst stimulation on upper limb function in stroke patients: a systematic review and meta-analysis. Front. Neurol. 15, 1450435 (2024). PubMed DOI PMC
Tang, Z. et al. Efficacy and safety of high-dose TBS on poststroke upper extremity motor impairment: a randomized controlled trial. Stroke 55, 2212–2220 (2024). PubMed DOI PMC
Bian, L. et al. Effects of priming intermittent theta burst stimulation with high-definition tDCS on upper limb function in hemiparetic patients with stroke: a randomized controlled study. Neurorehabil. Neural Repair 38, 268–278 (2024). PubMed DOI
Vink, J. J. T. et al. Continuous theta-burst stimulation of the contralesional primary motor cortex for promotion of upper limb recovery after stroke: a randomized controlled trial. Stroke 54, 1962–1971 (2023). PubMed DOI PMC
Barker-Collo, S. & Feigin, V. The impact of neuropsychological deficits on functional stroke outcomes. Neuropsychol. Rev. 16, 53–64 (2006). PubMed DOI
Milosevich, E. T., Moore, M. J., Pendlebury, S. T. & Demeyere, N. Domain-specific cognitive impairment 6 months after stroke: the value of early cognitive screening. Int. J. Stroke 19, 331–341 (2024). PubMed DOI
Draaisma, L. R., Wessel, M. J. & Hummel, F. C. Non-invasive brain stimulation to enhance cognitive rehabilitation after stroke. Neurosci. Lett. 719, 133678 (2020). PubMed DOI
Stockbridge, M. D. et al. Transcranial direct-current stimulation in subacute aphasia: a randomized controlled trial. Stroke 54, 912–920 (2023). PubMed DOI PMC
Jung, I.-Y., Lim, J. Y., Kang, E. K., Sohn, H. M. & Paik, N.-J. The factors associated with good responses to speech therapy combined with transcranial direct current stimulation in post-stroke aphasic patients. Ann. Rehabil. Med. 35, 460 (2011). PubMed DOI PMC
Ren, J. et al. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: a randomized sham-controlled trial. Brain Stimul. 16, 1313–1321 (2023). PubMed DOI
Biou, E. et al. Transcranial direct current stimulation in post-stroke aphasia rehabilitation: a systematic review. Ann. Phys. Rehabil. Med. 62, 104–121 (2019). PubMed DOI
Chai, L. et al. Does SLT combined with NIBS enhance naming recovery in post-stroke aphasia? A meta-analysis and systematic review. NeuroRehabilitation 54, 543–561 (2024). PubMed PMC
Elsner, B., Kugler, J., Pohl, M. & Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 5, CD009760 (2019). PubMed
Raymer, A. M. & Johnson, R. K. Effectiveness of transcranial direct current stimulation as an adjuvant to aphasia treatment following stroke: evidence from systematic reviews and meta-analyses. Am. J. Speech Lang. Pathol. 33, 3431–3443 (2024). PubMed DOI
You, Y. et al. Long-term effects of transcranial direct current stimulation (tDCS) combined with speech language therapy (SLT) on post-stroke aphasia patients: a systematic review and network meta-analysis of randomized controlled trials. NeuroRehabilitation 53, 285–296 (2023). PubMed
Longley, V. et al. Non-pharmacological interventions for spatial neglect or inattention following stroke and other non-progressive brain injury. Cochrane Database Syst. Rev. 7, CD003586 (2021). PubMed
Nyffeler, T. et al. Theta burst stimulation in neglect after stroke: functional outcome and response variability origins. Brain 142, 992–1008 (2019). PubMed DOI
Lin, R. et al. Does repetitive transcranial magnetic stimulation have a beneficial effect on improving unilateral spatial neglect caused by stroke? A meta-analysis. J. Neurol. 271, 6494–6507 (2024). PubMed DOI PMC
Wang, Y., Xu, N., Wang, R. & Zai, W. Systematic review and network meta-analysis of effects of noninvasive brain stimulation on post-stroke cognitive impairment. Front. Neurosci. 16, 1082383 (2022). PubMed DOI PMC
Gong, C. et al. Therapeutic effects of repetitive transcranial magnetic stimulation on cognitive impairment in stroke patients: a systematic review and meta-analysis. Front. Hum. Neurosci. 17, 1177594 (2023). PubMed DOI PMC
Li, Y. et al. The efficacy and safety of post-stroke cognitive impairment therapies: an umbrella review. Front. Pharmacol. 14, 1207075 (2023). PubMed DOI PMC
Li, W. et al. Improvement of poststroke cognitive impairment by intermittent theta bursts: a double-blind randomized controlled trial. Brain Behav. 12, e2569 (2022). PubMed DOI PMC
Liu, Y. et al. High-frequency rTMS broadly ameliorates working memory and cognitive symptoms in stroke patients: a randomized controlled trial. Neurorehabil. Neural Repair 38, 729–741 (2024). PubMed DOI PMC
Liu, Y. W. et al. Explore combined use of transcranial direct current stimulation and cognitive training on executive function after stroke. J. Rehabil. Med. 53, 2766 (2021). PubMed PMC
Guggisberg, A. G., Koch, P. J., Hummel, F. C. & Buetefisch, C. M. Brain networks and their relevance for stroke rehabilitation. Clin. Neurophysiol. 130, 1098–1124 (2019). PubMed DOI PMC
Koch, P. J. et al. The structural connectome and motor recovery after stroke: predicting natural recovery. Brain 144, 2107–2119 (2021). PubMed DOI PMC
Micera, S., Caleo, M., Chisari, C., Hummel, F. C. & Pedrocchi, A. Advanced neurotechnologies for the restoration of motor function. Neuron 105, 604–620 (2020). PubMed DOI
Hummel, F. C. et al. Controversy: noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimul. 1, 370–382 (2008). PubMed DOI
Di Pino, G. et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation. Nat. Rev. Neurol. 10, 597–608 (2014). PubMed DOI
Maceira-Elvira, P. et al. Dissecting motor skill acquisition: spatial coordinates take precedence. Sci. Adv. 8, 3505 (2022). DOI
Maceira-Elvira, P. et al. Native learning ability and not age determines the effects of brain stimulation. npj Sci. Learn. 9, 69 (2024). PubMed DOI PMC
Jiang, L. et al. Optogenetic inhibition of striatal GABAergic neuronal activity improves outcomes after ischemic brain injury. Stroke 48, 3375–3383 (2017). PubMed DOI
Song, M. et al. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol. Dis. 98, 9–24 (2017). PubMed DOI
Proulx, C. E. & Hummel, F. C. Beyond the surface: advancing neurorehabilitation with transcranial temporal interference stimulation — clinical applications and future prospects. Neural Regen. Res. https://doi.org/10.4103/NRR.NRR-D-24-01573 (2025).
Wessel, M. J. et al. Multi-focal stimulation of the cortico-cerebellar loop during the acquisition of a novel hand motor skill in chronic stroke survivors. Cerebellum 23, 341–354 (2024). PubMed DOI
Wessel, M. J. et al. Multifocal stimulation of the cerebro-cerebellar loop during the acquisition of a novel motor skill. Sci. Rep. 11, 1756 (2021). PubMed DOI PMC
Bevilacqua, M. et al. Pathway-dependent brain stimulation responses indicate motion processing integrity after stroke. Brain 139, 16–17 (2025).
Bevilacqua, M. et al. Single session cross-frequency bifocal tACS modulates visual motion network activity in young healthy population and stroke patients. Brain Stimul. 17, 660–667 (2024). PubMed DOI
Raffin E. B. M. et al. Boosting hemianopia recovery: the power of interareal cross-frequency brain stimulation. Brain (in the press).
Arheix-Parras, S. et al. A systematic review of repetitive transcranial magnetic stimulation in aphasia rehabilitation: leads for future studies. Neurosci. Biobehav. Rev. 127, 212–241 (2021). PubMed DOI
Wang, Y. et al. Comparative efficacy of different noninvasive brain stimulation therapies for recovery of global cognitive function, attention, memory, and executive function after stroke: a network meta-analysis of randomized controlled trials. Ther. Adv. Chronic Dis. 14, 20406223231168754 (2023). PubMed DOI PMC
Grover, S., Fayzullina, R., Bullard, B. M., Levina, V. & Reinhart, R. M. G. A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations. Sci. Transl. Med. 15, eabo2044 (2023). PubMed DOI PMC
Schuhmann, T. et al. Transcranial alternating brain stimulation at alpha frequency reduces hemispatial neglect symptoms in stroke patients. Int. J. Clin. Health Psychol. 22, 100326 (2022). PubMed DOI PMC
Chen, J. et al. Efficacy of rTMS combined with cognitive training in TBI with cognition disorder: a systematic review and meta-analysis. Neurol. Sci. 45, 3683–3697 (2024). PubMed DOI
Tsai, P. Y., Chen, Y. C., Wang, J. Y., Chung, K. H. & Lai, C. H. Effect of repetitive transcranial magnetic stimulation on depression and cognition in individuals with traumatic brain injury: a systematic review and meta-analysis. Sci. Rep. 11, 16940 (2021). PubMed DOI PMC
Franke, L. M. et al. Randomized trial of rTMS in traumatic brain injury: improved subjective neurobehavioral symptoms and increases in EEG delta activity. Brain Inj. 36, 683–692 (2022). PubMed DOI
Neville, I. S. et al. Repetitive TMS does not improve cognition in patients with TBI: a randomized double-blind trial. Neurology 93, E190–E199 (2019). PubMed DOI PMC
Verisezan Rosu, O. et al. Cerebrolysin and repetitive transcranial magnetic stimulation (rTMS) in patients with traumatic brain injury: a three-arm randomized trial. Front. Neurosci. 17, 1186751 (2023). PubMed DOI PMC
Afsharipoor, M. et al. Combined transcranial direct current stimulation with occupational therapy improves activities of daily living in traumatic brain injuries: a pilot randomized clinical trial. J. Mod. Rehabil. 18, 114–120 (2024).
Motes, M. A. et al. High-definition transcranial direct current stimulation to improve verbal retrieval deficits in chronic traumatic brain injury. J. Neurotrauma 37, 170–177 (2020). PubMed DOI
Quinn, D. K. et al. Transcranial direct current stimulation modulates working memory and prefrontal-insula connectivity after mild-moderate traumatic brain injury. Front. Hum. Neurosci. 16, 1026639 (2022). PubMed DOI PMC
Sacco, K. et al. Concomitant use of transcranial direct current stimulation and computer-assisted training for the rehabilitation of attention in traumatic brain injured patients: behavioral and neuroimaging results. Front. Behav. Neurosci. 10, 57 (2016). PubMed DOI PMC
Li, L. M. et al. Traumatic axonal injury influences the cognitive effect of non-invasive brain stimulation. Brain 142, 3280–3293 (2019). PubMed DOI PMC
Chiang, H. S., Motes, M., Kraut, M., Vanneste, S. & Hart, J. High-definition transcranial direct current stimulation modulates theta response during a Go-NoGo task in traumatic brain injury. Clin. Neurophysiol. 143, 36–47 (2022). PubMed DOI PMC
Galimberti, A., Tik, M., Pellegrino, G. & Schuler, A. L. Effectiveness of rTMS and tDCS treatment for chronic TBI symptoms: a systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 128, 110863 (2024). PubMed DOI
Yang, Z. et al. Behavioral effects of repetitive transcranial magnetic stimulation in disorders of consciousness: a systematic review and meta-analysis. Brain Sci. 13, 1362 (2023). PubMed DOI PMC
Hoy, K. E. et al. A pilot investigation of repetitive transcranial magnetic stimulation for post-traumatic brain injury depression: safety, tolerability, and efficacy. J. Neurotrauma 36, 2092–2098 (2019). PubMed DOI
Kim, W. S., Lee, K., Kim, S., Cho, S. & Paik, N. J. Transcranial direct current stimulation for the treatment of motor impairment following traumatic brain injury. J. Neuroeng. Rehabil. 16, 14 (2019). PubMed DOI PMC
Surendrakumar, S. et al. Neuromodulation therapies in pre-clinical models of traumatic brain injury: systematic review and translational applications. J. Neurotrauma 40, 435–448 (2023). PubMed DOI
Middleton, A., Fritz, S. L., Liuzzo, D. M., Newman-Norlund, R. & Herter, T. M. Using clinical and robotic assessment tools to examine the feasibility of pairing tDCS with upper extremity physical therapy in patients with stroke and TBI: a consideration-of-concept pilot study. NeuroRehabilitation 35, 741–754 (2014). PubMed PMC
Ryan, J. L., Beal, D. S., Levac, D. E., Fehlings, D. L. & Wright, F. V. Integrating transcranial direct current stimulation into an existing inpatient physiotherapy program to enhance motor learning in an adolescent with traumatic brain injury: a case report. Phys. Occup. Ther. Pediatr. 43, 463–481 (2023). PubMed DOI
Lutkenhoff, E. S. et al. The subcortical basis of outcome and cognitive impairment in TBI: a longitudinal cohort study. Neurology 95, E2398–E2408 (2020). PubMed DOI PMC
Sandry, J. & Dobryakova, E. Global hippocampal and selective thalamic nuclei atrophy differentiate chronic TBI from non-TBI. Cortex 145, 37–56 (2021). PubMed DOI
Sharp, D. J., Scott, G. & Leech, R. Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10, 156–166 (2014). PubMed DOI
Siegel, J. S., Shulman, G. L. & Corbetta, M. Mapping correlated neurological deficits after stroke to distributed brain networks. Brain Struct. Funct. 227, 3173–3187 (2022). PubMed DOI PMC
Talozzi, L. et al. Latent disconnectome prediction of long-term cognitive-behavioural symptoms in stroke. Brain 146, 1963–1978 (2023). PubMed DOI PMC
Fox, M. D. Mapping symptoms to brain networks with the human connectome. N. Engl. J. Med. 379, 2237–2245 (2018). PubMed DOI
Baldassarre, A., Metcalf, N. V., Shulman, G. L. & Corbetta, M. Brain networks’ functional connectivity separates aphasic deficits in stroke. Neurology 92, E125–E135 (2019). PubMed DOI PMC
Siddiqi, S. H., Kording, K. P., Parvizi, J. & Fox, M. D. Causal mapping of human brain function. Nat. Rev. Neurosci. 23, 361–375 (2022). PubMed DOI PMC
Lai, M. H. et al. Effectiveness and brain mechanism of multi-target transcranial alternating current stimulation (tACS) on motor learning in stroke patients: study protocol for a randomized controlled trial. Trials 25, 97 (2024). PubMed DOI PMC
Tashiro, S., Takemi, M., Yamada, S. & Tsuji, T. Synchronized application of closed-loop NMES and precision tACS in post-stroke hand rehabilitation: a protocol of neurorehabilitation trial. Ther. Adv. Chronic Dis. 15, 20406223241297396 (2024). DOI
Sinisalo, H. et al. Multi-locus transcranial magnetic stimulation with pulse-width modulation. Brain Stimul. 18, 948–956 (2025). PubMed DOI
Siddiqi, S. H. & Fox, M. D. Targeting symptom-specific networks with transcranial magnetic stimulation. Biol. Psychiatry 95, 502–509 (2024). PubMed DOI
Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A. & Paulus, W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26, 1513–1521 (2016). PubMed DOI
Diedrich, L., Kolhoff, H. I., Bergmann, C., Bähr, M. & Antal, A. Boosting working memory in the elderly: driving prefrontal theta–gamma coupling via repeated neuromodulation. Geroscience 47, 1425–1440 (2024). PubMed DOI PMC
Reinhart, R. M. G. & Nguyen, J. A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22, 820–827 (2019). DOI PMC
Grover, S., Wen, W., Viswanathan, V., Gill, C. T. & Reinhart, R. M. G. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 25, 1237–1246 (2022). PubMed DOI PMC
Xie, X., Hu, P., Tian, Y., Wang, K. & Bai, T. Transcranial alternating current stimulation enhances speech comprehension in chronic post-stroke aphasia patients: a single-blind sham-controlled study. Brain Stimul. 15, 1538–1540 (2022). PubMed DOI
Antal, A. & Paulus, W. Transcranial alternating current stimulation (tACS). Front. Hum. Neurosci. 7, 317 (2013). PubMed DOI PMC
Yang, S., Yi, Y. G. & Chang, M. C. The effect of transcranial alternating current stimulation on functional recovery in patients with stroke: a narrative review. Front. Neurol. 14, 1327383 (2024). PubMed DOI PMC
Gamage, N. N. et al. Theta-gamma transcranial alternating current stimulation enhances ballistic motor performance in healthy young and older adults. Neurobiol. Aging 152, 1–12 (2025). PubMed DOI
Grigutsch, L. S. et al. Differential effects of theta-gamma tACS on motor skill acquisition in young individuals and stroke survivors: a double-blind, randomized, sham-controlled study. Brain Stimul. 17, 1076–1085 (2024). PubMed DOI
Zrenner, C. & Ziemann, U. Closed-loop brain stimulation. Biol. Psychiatry 95, 545–552 (2024). PubMed DOI PMC
Zrenner, B. et al. Brain oscillation-synchronized stimulation of the left dorsolateral prefrontal cortex in depression using real-time EEG-triggered TMS. Brain Stimul. 13, 197–205 (2020). PubMed DOI
Lieb, A. et al. Brain-oscillation-synchronized stimulation to enhance motor recovery in early subacute stroke: a randomized controlled double-blind three- arm parallel-group exploratory trial comparing personalized, non-personalized and sham repetitive transcranial magnetic stimulation (acronym: BOSS-STROKE). BMC Neurol. 23, 204 (2023). PubMed DOI PMC
Mahmoud, W. et al. Brain state-dependent repetitive transcranial magnetic stimulation for motor stroke rehabilitation: a proof of concept randomized controlled trial. Front. Neurol. 15, 1427198 (2024). PubMed DOI PMC
Kahana, M. J. et al. Biomarker-guided neuromodulation aids memory in traumatic brain injury. Brain Stimul. 16, 1086–1093 (2023). PubMed DOI
Nojima, I. et al. Gait-combined closed-loop brain stimulation can improve walking dynamics in Parkinsonian gait disturbances: a randomised-control trial. J. Neurol. Neurosurg. Psychiatry 94, 938–944 (2023). PubMed DOI
Grossman, N. et al. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169, 1029–1041.e16 (2017). PubMed DOI PMC
Huang, Z. et al. Low intensity focused ultrasound stimulation in stroke: a phase I safety and feasibility trial. Brain Stimul. 18, 179–187 (2025). PubMed DOI
Yuksel, M. M. et al. Low-intensity focused ultrasound neuromodulation for stroke recovery: a novel deep brain stimulation approach for neurorehabilitation? IEEE Open J. Eng. Med. Biol. 4, 300–318 (2023). PubMed DOI
Cataldi, S., Stanley, A. T., Miniaci, M. C. & Sulzer, D. Interpreting the role of the striatum during multiple phases of motor learning. FEBS J. 289, 2263–2281 (2022). PubMed DOI
Berron, D., van Westen, D., Ossenkoppele, R., Strandberg, O. & Hansson, O. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease. Brain 143, 1233–1248 (2020). PubMed DOI PMC
Dues, D. J., Nguyen, A. P. T., Becker, K., Ma, J. & Moore, D. J. Hippocampal subfield vulnerability to α-synuclein pathology precedes neurodegeneration and cognitive dysfunction. npj Parkinsons Dis. 9, 125 (2023). PubMed DOI PMC
Ye, R. et al. Differential vulnerability of hippocampal subfields to amyloid and tau deposition in the Lewy body diseases. Neurology 102, e209460 (2024). PubMed DOI PMC
Krajcovicova, L., Klobusiakova, P. & Rektorova, I. Gray matter changes in Parkinson’s and Alzheimer’s disease and relation to cognition. Curr. Neurol. Neurosci. Rep. 19, 85 (2019). PubMed DOI PMC
Železníková, Ž et al. Early changes in the locus coeruleus in mild cognitive impairment with Lewy bodies. Mov. Disord. 40, 276–284 (2025). PubMed DOI
Lamoš, M. et al. Non-invasive temporal interference stimulation of the subthalamic nucleus in Parkinson’s disease reduces beta activity. Mov. Disord. 40, 1051–1060 (2025). PubMed DOI PMC
Yang, C. et al. Transcranial temporal interference subthalamic stimulation for treating motor symptoms in Parkinson’s disease: a pilot study. Brain Stimul. 17, 1250–1252 (2024). PubMed DOI
Wang, Y. et al. The safety and efficacy of applying a high-current temporal interference electrical stimulation in humans. Front. Hum. Neurosci. 18, 1484593 (2024). PubMed DOI PMC
Antonenko, D. et al. Cognitive training and brain stimulation in patients with cognitive impairment: a randomized controlled trial. Alzheimers Res. Ther. 16, 6 (2024). PubMed DOI PMC
O’Flaherty, D. & Ali, K. Recommendations for upper limb motor recovery: an overview of the UK and European rehabilitation after stroke guidelines (2023). Healthcare 12, 1433 (2024). PubMed DOI PMC
Lee, S. H. & Yoo, Y. J. A literature review on optimal stimulation parameters of transcranial direct current stimulation for motor recovery after stroke. Brain Neurorehabil. 17, e24 (2024). PubMed DOI PMC
Cole, E., O’Sullivan, S. J., Tik, M. & Williams, N. R. Accelerated theta burst stimulation: safety, efficacy, and future advancements. Biol. Psychiatry 95, 523–535 (2024). PubMed DOI PMC
Sonmez, A. I. et al. Accelerated TMS for depression: a systematic review and meta-analysis. Psychiatry Res. 273, 770–781 (2019). PubMed DOI
Pastore-Wapp, M., Nyffeler, T., Nef, T., Bohlhalter, S. & Vanbellingen, T. Non-invasive brain stimulation in limb praxis and apraxia: a scoping review in healthy subjects and patients with stroke. Cortex 138, 152–164 (2021). PubMed DOI
Pastore-Wapp, M. et al. Feasibility of a combined intermittent theta-burst stimulation and video game-based dexterity training in Parkinson’s disease. J. Neuroeng. Rehabil. 20, 2 (2023). PubMed DOI PMC
Lefaucheur, J. P. et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 125, 2150–2206 (2014). PubMed DOI
Fox, M. D., Halko, M. A., Eldaief, M. C. & Pascual-Leone, A. Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). Neuroimage 62, 2232–2243 (2012). PubMed DOI
Siebner, H. R. et al. Transcranial magnetic stimulation of the brain: What is stimulated? – a consensus and critical position paper. Clin. Neurophysiol. 140, 59–97 (2022). PubMed DOI PMC
Liu, A. et al. Immediate neurophysiological effects of transcranial electrical stimulation. Nat. Commun. 9, 5092 (2018). PubMed DOI PMC
Reato, D., Rahman, A., Bikson, M. & Parra, L. C. Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J. Neurosci. 30, 15067–15079 (2010). PubMed DOI PMC
Moret, B., Donato, R., Nucci, M., Cona, G. & Campana, G. Transcranial random noise stimulation (tRNS): a wide range of frequencies is needed for increasing cortical excitability. Sci. Rep. 9, 15150 (2019). PubMed DOI PMC