Physiology-inspired bifocal fronto-parietal tACS for working memory enhancement
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39315230
PubMed Central
PMC11417162
DOI
10.1016/j.heliyon.2024.e37427
PII: S2405-8440(24)13458-5
Knihovny.cz E-zdroje
- Klíčová slova
- Cognition, Electric field modelling, Healthy aging, Multifocal, Neuroimaging, Orchestrated brain stimulation, Systems neuroscience, Working memory, tACS,
- Publikační typ
- časopisecké články MeSH
Aging populations face significant cognitive challenges, particularly in working memory (WM). Transcranial alternating current stimulation (tACS) offer promising avenues for cognitive enhancement, especially when inspired by brain physiology. This study (NCT04986787) explores the effect of multifocal tACS on WM performance in healthy older adults, focusing on fronto-parietal network modulation. Individualized physiology-inspired tACS applied to the fronto-parietal network was investigated in two blinded cross-over experiments. The first experiment involved monofocal/bifocal theta-tACS to the fronto-parietal network, while in the second experiment cross-frequency theta-gamma interactions between these regions were explored. Participants have done online WM tasks under the stimulation conditions. Network connectivity was assessed via rs-fMRI and multichannel electroencephalography. Prefrontal monofocal theta tACS modestly improved WM accuracy over sham (d = 0.30). Fronto-parietal stimulation enhanced WM task processing speed, with the strongest effects for bifocal in-phase theta tACS (d = 0.41). Cross-frequency stimulations modestly boosted processing speed with or without impairing task accuracy depending on the stimulation protocol. This research adds to the understanding of physiology-inspired brain stimulation for cognitive enhancement in older subjects.
Clinical Neuroscience University of Geneva Medical School Geneva Switzerland
Neuro 10 Institute Chemin des Mines 9 1202 CH Geneva Switzerland
Neuro 10 Institute EPFL Valais Clinique Romande de Réadaptation Sion Switzerland
Zobrazit více v PubMed
GBD 2019 Demographics Collaborators Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1160–1203. https://doi:10.1016/S0140-6736(20)30977-6 PubMed DOI PMC
Park D.C., Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009;60:173–196. doi: 10.1146/annurev.psych.59.103006.093656. PubMed DOI PMC
Alekseichuk I., Turi Z., Amador de Lara G., Antal A., Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 2016;26:1513–1521. doi: 10.1016/J.CUB.2016.04.035. PubMed DOI
Axmacher N., Henseler M.M., Jensen O., Weinreich I., Elger C.E., Fell J. Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. U.S.A. 2010;107:3228–3233. doi: 10.1073/PNAS.0911531107/SUPPL_FILE/PNAS.200911531SI.PDF. PubMed DOI PMC
Cowan N. What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 2008:323–338. doi: 10.1016/S0079-6123(07)00020-9. PubMed DOI PMC
Sederberg P.B., Schulze-Bonhage A., Madsen J.R., Bromfield E.B., Litt B., Brandt A., Kahana M.J. Gamma oscillations distinguish true from false memories. Psychol. Sci. 2007;18:927–932. doi: 10.1111/j.1467-9280.2007.02003.x. PubMed DOI PMC
Cohen J.D., Perlstein W.M., Braver T.S., Nystrom L.E., Noll D.C., Jonides J., Smith E.E. Temporal dynamics of brain activation during a working memory task. Nature. 1997;386:604–608. doi: 10.1038/386604a0. PubMed DOI
Johnson E.L., Dewar C.D., Solbakk A.-K., Endestad T., Meling T.R., Knight R.T. Bidirectional frontoparietal oscillatory systems support working memory. 2017. PubMed DOI PMC
Roux F., Uhlhaas P.J. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? Trends Cognit. Sci. 2014;18:16–25. doi: 10.1016/J.TICS.2013.10.010. PubMed DOI
Buzsáki G., Logothetis N., Singer W., Size Scaling Brain, Timing Keeping. Evolutionary preservation of brain rhythms. Neuron. 2013;80:751–764. doi: 10.1016/j.neuron.2013.10.002. PubMed DOI PMC
Constantinidis C., Klingberg T. The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 2016;17:438–449. doi: 10.1038/nrn.2016.43. PubMed DOI
Lisman J.E., Jensen O. The theta-gamma neural code. Neuron. 2013;77:1002–1016. doi: 10.1016/j.neuron.2013.03.007. PubMed DOI PMC
Lisman J.E., Idiart M.A. Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science. 1995;267:1512–1515. doi: 10.1126/science.7878473. PubMed DOI
Šimko P., Kent J.A., Rektorova I. Is non-invasive brain stimulation effective for cognitive enhancement in Alzheimer's disease? An updated meta-analysis. Clin. Neurophysiol. 2022;144:23–40. doi: 10.1016/j.clinph.2022.09.010. PubMed DOI
Pievani M., Pini L., Ferrari C., Pizzini F.B., Boscolo Galazzo I., Cobelli C., Cotelli M., Manenti R., Frisoni G.B. Coordinate-based meta-analysis of the default mode and salience network for target identification in non-invasive brain stimulation of Alzheimer's disease and behavioral variant Frontotemporal dementia networks. J. Alzheim. Dis. 2017;57:825–843. doi: 10.3233/JAD-161105. PubMed DOI
Grover S., Wen W., Viswanathan V., Gill C.T., Reinhart R.M.G. Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat. Neurosci. 2022;25:1237–1246. doi: 10.1038/s41593-022-01132-3. PubMed DOI PMC
Reinhart R.M.G. Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proc. Natl. Acad. Sci. USA. 2017;114:11542–11547. doi: 10.1073/pnas.1710257114. PubMed DOI PMC
Pupíková M., Šimko P., Gajdoš M., Rektorová I. Modulation of working memory and resting-state fMRI by tDCS of the right frontoparietal network. Neural Plast. 2021;2021 doi: 10.1155/2021/5594305. PubMed DOI PMC
Di Lazzaro V., Bella R., Benussi A., Bologna M., Borroni B., Capone F., Chen K.-H.S., Chen R., V Chistyakov A., Classen J., Kiernan M.C., Koch G., Lanza G., Lefaucheur J.-P., Matsumoto H., Nguyen J.-P., Orth M., Pascual-Leone A., Rektorova I., Simko P., Taylor J.-P., Tremblay S., Ugawa Y., Dubbioso Af R., Ranieri F. Diagnostic contribution and therapeutic perspectives of transcranial magnetic stimulation in dementia. Clin. Neurophysiol. 2021;132:2568–2607. doi: 10.1016/j.clinph.2021.05.035. PubMed DOI
Eliasova I., Anderkova L., Marecek R., Rektorova I. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study. J. Neurol. Sci. 2014;346:318–322. doi: 10.1016/j.jns.2014.08.036. PubMed DOI
Anderkova L., Eliasova I., Marecek R., Janousova E., Rektorova I. Distinct pattern of gray matter atrophy in mild Alzheimer's disease impacts on cognitive outcomes of noninvasive brain stimulation. J. Alzheim. Dis. 2015;48:251–260. doi: 10.3233/JAD-150067. PubMed DOI
Cappon D., Jahanshahi M., Bisiacchi P. Value and efficacy of transcranial direct current stimulation in the cognitive rehabilitation: a critical review since 2000. Front. Neurosci. 2016;10:157. doi: 10.3389/fnins.2016.00157. PubMed DOI PMC
Elder G.J., Taylor J.-P. Transcranial magnetic stimulation and transcranial direct current stimulation: treatments for cognitive and neuropsychiatric symptoms in the neurodegenerative dementias? Alzheimer's Res. Ther. 2014;6:74. doi: 10.1186/s13195-014-0074-1. PubMed DOI PMC
Draaisma L.R., Wessel M.J., Moyne M., Morishita T., Hummel F.C. Targeting the frontoparietal network using bifocal transcranial alternating current stimulation during a motor sequence learning task in healthy older adults. Brain Stimul. 2022;15:968–979. doi: 10.1016/j.brs.2022.06.012. PubMed DOI
Reinhart R.M.G., Nguyen J.A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 2019;22:820–827. doi: 10.1038/s41593-019-0371-x. PubMed DOI PMC
Polanía R., Nitsche M.A., Korman C., Batsikadze G., Paulus W. The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 2012;22:1314–1318. doi: 10.1016/j.cub.2012.05.021. PubMed DOI
Wolinski N., Cooper N.R., Sauseng P., Romei V. The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 2018;16:1–17. doi: 10.1371/journal.pbio.2005348. PubMed DOI PMC
Schwab B.C., Misselhorn J., Engel A.K. Modulation of large-scale cortical coupling by transcranial alternating current stimulation. Brain Stimul. 2019;12:1187–1196. doi: 10.1016/j.brs.2019.04.013. PubMed DOI
Vieira P.G., Krause M.R., Pack C.C. tACS entrains neural activity while somatosensory input is blocked. PLoS Biol. 2020;18 doi: 10.1371/journal.pbio.3000834. PubMed DOI PMC
Fries P. Neuron perspective rhythms for cognition: communication through coherence. Neuron. 2015;88:220–235. doi: 10.1016/j.neuron.2015.09.034. PubMed DOI PMC
Deco G., Buehlmann A., Masquelier T., Hugues E. The role of rhythmic neural synchronization in rest and task conditions. Front. Hum. Neurosci. 2011;5:1–6. doi: 10.3389/fnhum.2011.00004. PubMed DOI PMC
Woods A.J., Antal A., Bikson M., Boggio P.S., Brunoni A.R., Celnik P., Cohen L.G., Fregni F., Herrmann C.S., Kappenman E.S., Knotkova H., Liebetanz D., Miniussi C., Miranda P.C., Paulus W., Priori A., Reato D., Stagg C., Wenderoth N., Nitsche M.A. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016;127:1031–1048. doi: 10.1016/j.clinph.2015.11.012. PubMed DOI PMC
Aktürk T., de Graaf T.A., Güntekin B., Hanoğlu L., Sack A.T. Enhancing memory capacity by experimentally slowing theta frequency oscillations using combined EEG-tACS. Sci. Rep. 2022;12 doi: 10.1038/s41598-022-18665-z. PubMed DOI PMC
Živanović M., Bjekić J., Konstantinović U., Filipović S.R. Effects of online parietal transcranial electric stimulation on associative memory: a direct comparison between tDCS, theta tACS, and theta-oscillatory tDCS. Sci. Rep. 2022;12 doi: 10.1038/s41598-022-18376-5. PubMed DOI PMC
Thielscher A., Antunes A., Saturnino G.B. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) IEEE; 2015. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? pp. 222–225. PubMed DOI
Canolty R.T., Edwards E., Dalal S.S., Soltani M., Nagarajan S.S., Kirsch H.E., Berger M.S., Barbare N.M., Knight R.T. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. doi: 10.1126/SCIENCE.1128115/SUPPL_FILE/CANOLTY_SOM.PDF. 1979. PubMed DOI PMC
Gao W., Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum. Brain Mapp. 2012:192–202. doi: 10.1002/hbm.21204. PubMed DOI PMC
Thielscher A., Antunes A., Saturnino G.B. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2015-Novem. 2015. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? pp. 222–225. PubMed DOI
Li L., Zhao D. Age-related inter-region EEG coupling changes during the control of bottom-Up and top-Down attention. Front. Aging Neurosci. 2015;7 doi: 10.3389/FNAGI.2015.00223/BIBTEX. PubMed DOI PMC
Koechlin E., Hyafil A. Anterior prefrontal function and the limits of human decision-making. Science. 2007;318:594–598. doi: 10.1126/science.1142995. PubMed DOI
Alekseichuk I., Falchier A.Y., Linn G., Xu T., Milham M.P., Schroeder C.E., Opitz A. Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nat. Commun. 2019;10:2573. doi: 10.1038/s41467-019-10581-7. PubMed DOI PMC
Clayton M.S., Yeung N., Cohen Kadosh R. The roles of cortical oscillations in sustained attention. Trends Cognit. Sci. 2015;19:188–195. doi: 10.1016/J.TICS.2015.02.004. PubMed DOI
Violante I.R., Li L.M., Carmichael D.W., Lorenz R., Leech R., Hampshire A., Rothwell J.C., Sharp D.J. Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife. 2017;6:1–22. doi: 10.7554/eLife.22001. PubMed DOI PMC
Sauseng P., Klimesch W., Schabus M., Doppelmayr M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 2005;57:97–103. doi: 10.1016/J.IJPSYCHO.2005.03.018. PubMed DOI
Courtney S.M., Hinault T. When the time is right: temporal dynamics of brain activity in healthy aging and dementia. Prog. Neurobiol. 2021;203 doi: 10.1016/j.pneurobio.2021.102076. PubMed DOI
Tóth B., Kardos Z., File B., Boha R., Stam C.J., Molnár M. Frontal midline theta connectivity is related to efficiency of WM maintenance and is affected by aging. Neurobiol. Learn. Mem. 2014;114:58–69. doi: 10.1016/J.NLM.2014.04.009. PubMed DOI
Alekseichuk I., Pabel S.C., Antal A., Paulus W. Intrahemispheric theta rhythm desynchronization impairs working memory. Restor. Neurol. Neurosci. 2017;35:147–158. doi: 10.3233/RNN-160714. PubMed DOI
Röhner F., Breitling C., Rufener K.S., Heinze H.-J., Hinrichs H., Krauel K., Sweeney-Reed C.M. Modulation of working memory using transcranial electrical stimulation: a direct comparison between tacs and tdcs. Front. Neurosci. 2018;12 doi: 10.3389/fnins.2018.00761. PubMed DOI PMC
Meiron O., Lavidor M. Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin. Neurophysiol. 2014;125:77–82. doi: 10.1016/j.clinph.2013.06.013. PubMed DOI
Hoy K.E., Bailey N., Arnold S., Windsor K., John J., Daskalakis Z.J., Fitzgerald P.B. The effect of γ-tACS on working memory performance in healthy controls. Brain Cognit. 2015;101:51–56. doi: 10.1016/j.bandc.2015.11.002. PubMed DOI
Nissim N.R., McAfee D.C., Edwards S., Prato A., Lin J.X., Lu Z., Coslett H.B., Hamilton R.H. Efficacy of transcranial alternating current stimulation in the enhancement of working memory performance in healthy adults: a systematic meta-analysis. Neuromodulation: Technology at the Neural Interface. 2023;26:728–737. doi: 10.1016/j.neurom.2022.12.014. PubMed DOI PMC
Zanto T.P., Rubens M.T., Thangavel A., Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat. Neurosci. 2011;14:656–661. doi: 10.1038/nn.2773. PubMed DOI PMC
Perinelli A., Assecondi S., Tagliabue C.F., Mazza V. Power shift and connectivity changes in healthy aging during resting-state EEG. Neuroimage. 2022;256 doi: 10.1016/j.neuroimage.2022.119247. PubMed DOI
Zangrossi A., Zanzotto G., Lorenzoni F., Indelicato G., Cannas Aghedu F., Cermelli P., Bisiacchi P.S. Resting-state functional brain connectivity predicts cognitive performance: an exploratory study on a time-based prospective memory task. Behav. Brain Res. 2021;402 doi: 10.1016/J.BBR.2021.113130. PubMed DOI
Abellaneda-Pérez K., Vaqué-Alcázar L., Perellón-Alfonso R., Bargalló N., Kuo M.F., Pascual-Leone A., Nitsche M.A., Bartrés-Faz D. Differential tDCS and tACS effects on working memory-related neural activity and resting-state connectivity. Front. Neurosci. 2020;13 doi: 10.3389/fnins.2019.01440. PubMed DOI PMC
Murphy A.C., Bertolero M.A., Papadopoulos L., Lydon-Staley D.M., Bassett D.S. Multimodal network dynamics underpinning working memory. Nat. Commun. 2020;11(1 11):1–13. doi: 10.1038/s41467-020-15541-0. 2020. PubMed DOI PMC
Reynolds J.R., West R., Braver T. Distinct neural circuits support transient and sustained processes in prospective memory and working memory. Cerebr. Cortex. 2009;19:1208–1221. doi: 10.1093/CERCOR/BHN164. PubMed DOI PMC
Wischnewski M., Berger T.A., Opitz A., Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc. Natl. Acad. Sci. U.S.A. 2024;121 doi: 10.1073/PNAS.2318528121/-/DCSUPPLEMENTAL. PubMed DOI PMC
Tversky A., Kahneman D. Judgment under uncertainty: heuristics and biases. Science. 1974;185:1124–1131. doi: 10.1126/science.185.4157.1124. PubMed DOI
Gigerenzer G., Czerlinski J., Martignon L. How good are fast and frugal heuristics? Decision Science and Technology. 1999:81–103. doi: 10.1007/978-1-4615-5089-1_6. DOI
Reppert T.R., Heitz R.P., Schall J.D. Neural mechanisms for executive control of speed-accuracy trade-off. Cell Rep. 2023;42 doi: 10.1016/j.celrep.2023.113422. PubMed DOI PMC
Standage D., Blohm G., Dorris M.C. On the neural implementation of the speed-accuracy trade-off. Front. Neurosci. 2014;8 doi: 10.3389/FNINS.2014.00236/BIBTEX. PubMed DOI PMC
Forstmann B.U., Anwander A., Schäfer A., Neumann J., Brown S., Wagenmakers E.-J., Bogacz R., Turner R. Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proc. Natl. Acad. Sci. USA. 2010;107:15916–15920. doi: 10.1073/pnas.1004932107. PubMed DOI PMC
Weigard A., Beltz A., Reddy S.N., Wilson S.J. Characterizing the role of the pre‐SMA in the control of speed/accuracy trade‐off with directed functional connectivity mapping and multiple solution reduction. Hum. Brain Mapp. 2019;40:1829–1843. doi: 10.1002/hbm.24493. PubMed DOI PMC
van Veen V., Krug M.K., Carter C.S. The neural and computational basis of controlled speed-accuracy tradeoff during task performance. J. Cognit. Neurosci. 2008;20:1952–1965. doi: 10.1162/jocn.2008.20146. PubMed DOI
Filmer H.L., Ballard T., Don K., Amarasekera R., Sewell D.K., Dux P.E. The causal role of the prefrontal and superior medial frontal cortices in the incidental manipulation of decision strategies. Neuropsychologia. 2023;179 doi: 10.1016/j.neuropsychologia.2022.108466. PubMed DOI
Jones M.W., Wilson M.A. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS Biol. 2005;3:e402. doi: 10.1371/JOURNAL.PBIO.0030402. PubMed DOI PMC
Rutishauser U., Ross I.B., Mamelak A.N., Schuman E.M. Human memory strength is predicted by theta-frequency phase-locking of single neurons. Nature. 2010;464:903–907. doi: 10.1038/nature08860. PubMed DOI
Berger B., Griesmayr B., Minarik T., Biel A.L., Pinal D., Sterr A., Sauseng P. Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory. Nat. Commun. 2019;10:4242. doi: 10.1038/s41467-019-12057-0. PubMed DOI PMC
Kasten F.H., Duecker K., Maack M.C., Meiser A., Herrmann C.S. Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nat. Commun. 2019;10:5427. doi: 10.1038/s41467-019-13417-6. PubMed DOI PMC
Saturnino G.B., Madsen K.H., Siebner H.R., Thielscher A. How to target inter-regional phase synchronization with dual-site Transcranial Alternating Current Stimulation. Neuroimage. 2017;163:68–80. doi: 10.1016/J.NEUROIMAGE.2017.09.024. PubMed DOI
Neuling T., Ruhnau P., Weisz N., Herrmann C.S., Demarchi G. Faith and oscillations recovered: on analyzing EEG/MEG signals during tACS. Neuroimage. 2017;147:960–963. doi: 10.1016/j.neuroimage.2016.11.022. PubMed DOI
Holzmann R., Koppehele-Gossel J., Voss U., Klimke A. Investigating nuisance effects induced in EEG during tACS application. Front. Hum. Neurosci. 2021;15:1–14. doi: 10.3389/fnhum.2021.637080. PubMed DOI PMC
Alekseichuk I., Wischnewski M., Opitz A. A minimum effective dose for (transcranial) alternating current stimulation. Brain Stimul. 2022;15:1221–1222. doi: 10.1016/j.brs.2022.08.018. PubMed DOI PMC
Alam M., Truong D.Q., Khadka N., Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS) Phys. Med. Biol. 2016;61:4506. doi: 10.1088/0031-9155/61/12/4506. PubMed DOI
Mikkonen M., Laakso I., Tanaka S., Hirata A. Cost of focality in TDCS: interindividual variability in electric fields. Brain Stimul. 2020;13:117–124. doi: 10.1016/J.BRS.2019.09.017. PubMed DOI