Modulation of Working Memory and Resting-State fMRI by tDCS of the Right Frontoparietal Network

. 2021 ; 2021 () : 5594305. [epub] 20210726

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34349797

Many cognitive functions, including working memory, are processed within large-scale brain networks. We targeted the right frontoparietal network (FPN) with one session of transcranial direct current stimulation (tDCS) in an attempt to modulate the cognitive speed of a visual working memory task (WMT) in 27 young healthy subjects using a double-blind crossover design. We further explored the neural underpinnings of induced changes by performing resting-state fMRI prior to and immediately after each stimulation session with the main focus on the interaction between a task-positive FPN and a task-negative default mode network (DMN). Twenty minutes of 2 mA anodal tDCS was superior to sham stimulation in terms of cognitive speed manipulation of a subtask with processing of objects and tools in unconventional views (i.e., the higher cognitive load subtask of the offline WMT). This result was linked to the magnitude of resting-state functional connectivity decreases between the stimulated FPN seed and DMN seeds. We provide the first evidence for the action reappraisal mechanism of object and tool processing. Modulation of cognitive speed of the task by tDCS was reflected by FPN-DMN cross-talk changes.

Zobrazit více v PubMed

Kelly C. A. M., Uddin L. Q., Biswal B. B., Castellanos F. X., Milham M. P. Competition between functional brain networks mediates behavioral variability. NeuroImage. 2008;39(1):527–537. doi: 10.1016/j.neuroimage.2007.08.008. PubMed DOI

Gao W., Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping. 2012;33(1):192–202. doi: 10.1002/hbm.21204. PubMed DOI PMC

Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(27):9673–9678. doi: 10.1073/pnas.0504136102. PubMed DOI PMC

Nováková Ľ., Gajdoš M., Rektorová I. Theta-burst transcranial magnetic stimulation induced cognitive task-related decrease in activity of default mode network: an exploratory study. Brain Stimulation. 2020;13(3):597–599. doi: 10.1016/j.brs.2020.01.015. PubMed DOI

Cole M. W., Bassett D. S., Power J. D., Braver T. S., Petersen S. E. Intrinsic and task-evoked network architectures of the human brain. Neuron. 2014;83(1):238–251. doi: 10.1016/j.neuron.2014.05.014. PubMed DOI PMC

Raichle M. E. The brain’s default mode network. Annual Review of Neuroscience. 2015;38(1):433–447. doi: 10.1146/annurev-neuro-071013-014030. PubMed DOI

Krajcovicova L., Marecek R., Mikl M., Rektorova I. Disruption of resting functional connectivity in Alzheimer’s patients and at-risk subjects. Current Neurology and Neuroscience Reports. 2014;14(10):p. 491. doi: 10.1007/s11910-014-0491-3. PubMed DOI

Zhao Q., Lu H., Metmer H., Li W. X. Y., Lu J. Evaluating functional connectivity of executive control network and frontoparietal network in Alzheimer’s disease. Brain Research. 2018;1678:262–272. doi: 10.1016/j.brainres.2017.10.025. PubMed DOI

Lehericy S., Vaillancourt D. E., Seppi K., et al. The role of high-field magnetic resonance imaging in parkinsonian disorders: pushing the boundaries forward. Movement Disorders. 2017;32(4):510–525. doi: 10.1002/mds.26968. PubMed DOI

Anderkova L., Barton M., Rektorova I. Striato-cortical connections in Parkinson’s and Alzheimer’s diseases: relation to cognition. Movement Disorders. 2017;32(6):917–922. doi: 10.1002/mds.26956. PubMed DOI

Greicius M. D., Krasnow B., Reiss A. L., Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(1):253–258. doi: 10.1073/pnas.0135058100. PubMed DOI PMC

Hsu W. Y., Ku Y., Zanto T. P., Gazzaley A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiology of Aging. 2015;36(8):2348–2359. doi: 10.1016/j.neurobiolaging.2015.04.016. PubMed DOI PMC

Brunoni A. R., Nitsche M. A., Bolognini N., et al. Clinical research with transcranial direct current stimulation (tDCS): challenges and future directions. Brain Stimulation. 2012;5(3):175–195. doi: 10.1016/j.brs.2011.03.002. PubMed DOI PMC

Charvet L. E., Shaw M. T., Bikson M., Woods A. J., Knotkova H. Supervised transcranial direct current stimulation (tDCS) at home: a guide for clinical research and practice. Brain Stimulation. 2020;13(3):686–693. doi: 10.1016/j.brs.2020.02.011. PubMed DOI

Nitsche M. A., Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology. 2000;527(3) Part 3:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. PubMed DOI PMC

Radman T., Ramos R. L., Brumberg J. C., Bikson M. Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation _in vitro_. Brain Stimulation. 2009;2(4):215–228.e3. doi: 10.1016/j.brs.2009.03.007. PubMed DOI PMC

Holczer A., Németh V. L., Vékony T., Vécsei L., Klivényi P., Must A. Non-invasive brain stimulation in Alzheimer’s disease and mild cognitive impairment—a state-of-the-art review on methodological characteristics and stimulation parameters. Frontiers in Human Neuroscience. 2020;14 doi: 10.3389/fnhum.2020.00179. PubMed DOI PMC

Pupíková M., Rektorová I. Non-pharmacological management of cognitive impairment in Parkinson’s disease. Journal of Neural Transmission. 2020;127(5):799–820. doi: 10.1007/s00702-019-02113-w. PubMed DOI

Anderková Ľ., Rektorová I. Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson’s disease. International Review of Neurobiology. 2017;134:1091–1110. PubMed

Baddeley A. Working memory. Current Biology. 2010;20(4):136–140. PubMed

Baddeley A. D., Hitch G. J., Allen R. J. Working Memory: The State of the Science. Oxford university press; 2020. A multicomponent model of working memory; pp. 10–43. DOI

Shipstead Z., Redick T. S., Engle R. W. Does working memory training generalize? Psychologica Belgica. 2010;50(3–4):245–276.

Baddeley A. Working memory: theories, models, and controversies. Annual Review of Psychology. 2012;63(1):1–29. doi: 10.1146/annurev-psych-120710-100422. PubMed DOI

Zachariou V., Bauer C. E., Seago E. R., Raslau F. D., Powell D. K., Gold B. T. Cortical iron disrupts functional connectivity networks supporting working memory performance in older adults. NeuroImage. 2020;223, article 117309 doi: 10.1016/j.neuroimage.2020.117309. PubMed DOI PMC

Yaple Z. A., Stevens W. D., Arsalidou M. Meta-analyses of the n-back working memory task: fMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. NeuroImage. 2019;196:16–31. doi: 10.1016/j.neuroimage.2019.03.074. PubMed DOI

Trujillo J. P., Gerrits N. J. H. M., Veltman D. J., Berendse H. W., van der Werf Y. D., van den Heuvel O. A. Reduced neural connectivity but increased task-related activity during working memory in de novo Parkinson patients. Human Brain Mapping. 2015;36(4):1554–1566. doi: 10.1002/hbm.22723. PubMed DOI PMC

Němcová Elfmarková N., Gajdoš M., Rektorová I., Mareček R., Rapcsak S. Z. Neural evidence for defective top-down control of visual processing in Parkinson’s and Alzheimer’s disease. Neuropsychologia. 2017;106:236–244. doi: 10.1016/j.neuropsychologia.2017.09.034. PubMed DOI

Collie A., Maruff P., Darby D. G., McStephen M. The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. Journal of the International Neuropsychological Society. 2003;9(3):419–428. doi: 10.1017/S1355617703930074. PubMed DOI

Kronberg G., Rahman A., Sharma M., Bikson M., Parra L. C. Direct current stimulation boosts Hebbian plasticity in vitro. Brain Stimulation. 2020;13(2):287–301. doi: 10.1016/j.brs.2019.10.014. PubMed DOI PMC

Nozari N., Woodard K., Thompson-Schill S. L. Consequences of cathodal stimulation for behavior: when does it help and when does it hurt performance? PLoS One. 2014;9(1, article e84338) doi: 10.1371/journal.pone.0084338. PubMed DOI PMC

Hsu T. Y., Juan C. H., Tseng P. Individual differences and state-dependent responses in transcranial direct current stimulation. Frontiers in Human Neuroscience. 2016;10(643) doi: 10.3389/fnhum.2016.00643. PubMed DOI PMC

Ehlis A. C., Haeussinger F. B., Gastel A., Fallgatter A. J., Plewnia C. Task-dependent and polarity-specific effects of prefrontal transcranial direct current stimulation on cortical activation during word fluency. NeuroImage. 2016;140:134–140. doi: 10.1016/j.neuroimage.2015.12.047. PubMed DOI

Gazzaley A., Cooney J. W., Rissman J., D'Esposito M. Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience. 2005;8(10):1298–1300. doi: 10.1038/nn1543. PubMed DOI

Buckner R. L., Krienen F. M., Castellanos A., Diaz J. C., Yeo B. T. T. The organization of the human cerebellum estimated by intrinsic functional connectivity. Journal of Neurophysiology. 2011;106(5):2322–2345. doi: 10.1152/jn.00339.2011. PubMed DOI PMC

Mancuso L. E., Ilieva I. P., Hamilton R. H., Farah M. J. Does transcranial direct current stimulation improve healthy working memory?: a meta-analytic review. Journal of Cognitive Neuroscience. 2016;28(8):1063–1089. doi: 10.1162/jocn_a_00956. PubMed DOI

Anderkova L., Pizem D., Klobusiakova P., Gajdos M., Koritakova E., Rektorova I. Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: an exploratory study. Neural Plasticity. 2018;2018:6. doi: 10.1155/2018/3106918.3106918 PubMed DOI PMC

Wu Y. J., Tseng P., Chang C. F., et al. Modulating the interference effect on spatial working memory by applying transcranial direct current stimulation over the right dorsolateral prefrontal cortex. Brain and Cognition. 2014;91:87–94. doi: 10.1016/j.bandc.2014.09.002. PubMed DOI

Hoy K. E., Emonson M. R. L., Arnold S. L., Thomson R. H., Daskalakis J., Fitzgerald P. B. Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia. 2013;51(9):1777–1784. doi: 10.1016/j.neuropsychologia.2013.05.018. PubMed DOI

Teo F., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Frontiers in Psychiatry. 2011;2 doi: 10.3389/fpsyt.2011.00045. PubMed DOI PMC

Keeser D., Meindl T., Bor J., et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. The Journal of Neuroscience. 2011;31(43):15284–15293. doi: 10.1523/JNEUROSCI.0542-11.2011. PubMed DOI PMC

Mulquiney P. G., Hoy K. E., Daskalakis Z. J., Fitzgerald P. B. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clinical Neurophysiology. 2011;122(12):2384–2389. doi: 10.1016/j.clinph.2011.05.009. PubMed DOI

Dedoncker J., Brunoni A. R., Baeken C., Vanderhasselt M. A. A systematic review and meta-analysis of the effects of transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: influence of stimulation parameters. Brain Stimulation. 2016;9(4):501–517. doi: 10.1016/j.brs.2016.04.006. PubMed DOI

Hill A. T., Fitzgerald P. B., Hoy K. E. Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations. Brain Stimulation. 2016;9(2):197–208. doi: 10.1016/j.brs.2015.10.006. PubMed DOI

Horvath J. C., Forte J. D., Carter O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS) Brain Stimulation. 2015;8(3):535–550. doi: 10.1016/j.brs.2015.01.400. PubMed DOI

Papazova I., Strube W., Wienert A., et al. Effects of 1 mA and 2 mA transcranial direct current stimulation on working memory performance in healthy participants. Consciousness and Cognition. 2020;83:p. 102959. doi: 10.1016/j.concog.2020.102959. PubMed DOI

Dedoncker J., Brunoni A. R., Baeken C., Vanderhasselt M. A. The effect of the interval-between-sessions on prefrontal transcranial direct current stimulation (tDCS) on cognitive outcomes: a systematic review and meta-analysis. Journal of Neural Transmission. 2016;123(10):1159–1172. doi: 10.1007/s00702-016-1558-x. PubMed DOI

Ganis G., Schendan H. E., Kosslyn S. M. Neuroimaging evidence for object model verification theory: role of prefrontal control in visual object categorization. NeuroImage. 2007;34(1):384–398. doi: 10.1016/j.neuroimage.2006.09.008. PubMed DOI PMC

Schendan H. E., Stern C. E. Where vision meets memory: prefrontal-posterior networks for visual object constancy during categorization and recognition. Cerebral Cortex. 2008;18(7):1695–1711. doi: 10.1093/cercor/bhm197. PubMed DOI

Niendam T. A., Laird A. R., Ray K. L., Dean Y. M., Glahn D. C., Carter C. S. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective and Behavioral Neuroscience. 2012;12(2):241–268. doi: 10.3758/s13415-011-0083-5. PubMed DOI PMC

Schendan H. E., Stern C. E. Mental rotation and object categorization share a common network of prefrontal and dorsal and ventral regions of posterior cortex. NeuroImage. 2007;35(3):1264–1277. doi: 10.1016/j.neuroimage.2007.01.012. PubMed DOI

Ishibashi R., Pobric G., Saito S., Ralph M. A. L. The neural network for tool-related cognition : an activation likelihood estimation meta-analysis of 70 neuroimaging contrasts. Cognitive Neuropsychology. 2016;33(3-4):241–256. doi: 10.1080/02643294.2016.1188798. PubMed DOI PMC

Reynaud E., Lesourd M., Navarro J., Osiurak F. On the neurocognitive origins of human tool use : a critical review of neuroimaging data. Neuroscience and Biobehavioral Reviews. 2016;64:421–437. doi: 10.1016/j.neubiorev.2016.03.009. PubMed DOI

Osiurak F., Federico G., Brandimonte M. A., Reynaud E., Lesourd M. On the temporal dynamics of tool use. Frontiers in Human Neuroscience. 2020;14 doi: 10.3389/fnhum.2020.579378. PubMed DOI PMC

Federico G., Brandimonte M. A. Tool and object affordances: An ecological eye-tracking study. Brain and Cognition. 2019;135, article 103582 doi: 10.1016/j.bandc.2019.103582. PubMed DOI

Federico G., Brandimonte M. A. Looking to recognise : the pre-eminence of semantic over sensorimotor processing in human tool use. Scientific Reports. 2020;10 doi: 10.1038/s41598-020-63045-0. PubMed DOI PMC

Federico G., Osiurak F., Brandimonte M. A., Federico G. Hazardous tools : the emergence of reasoning in human tool use. Psychological Research. 2021;43 doi: 10.1007/s00426-020-01466-2. PubMed DOI

Buxbaum L. J., Kalénine S. Action knowledge, visuomotor activation, and embodiment in the two action systems. Annals of the New York Academy of Sciences. 2010;1191(1):201–218. doi: 10.1111/j.1749-6632.2010.05447.x. PubMed DOI PMC

Zivanovic M., Paunovic D., Konstantinovic U., Vulic K., Bjekic J., Filipovic S. R. The effects of offline and online prefrontal vs parietal transcranial direct current stimulation (tDCS) on verbal and spatial working memory. Neurobiology of Learning and Memory. 2021;179, article 107398 doi: 10.1016/j.nlm.2021.107398. PubMed DOI

Li L. M., Violante I. R., Leech R., et al. Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Human Brain Mapping. 2019;40(3):904–915. doi: 10.1002/hbm.24420. PubMed DOI PMC

Baggio H., Segura B., Sala-Llonch R., et al. Cognitive impairment and resting-state network connectivity in Parkinson’s disease. Human Brain Mapping. 2015;36(1):199–212. doi: 10.1002/hbm.22622. PubMed DOI PMC

Hampson M., Driesen N., Roth J. K., Gore J. C., Constable R. T. Functional connectivity between task-positive and task-negative brain areas and its relation to working memory performance. Magnetic Resonance Imaging. 2010;28(8):1051–1057. doi: 10.1016/j.mri.2010.03.021. PubMed DOI PMC

Godwin C. A., Hunter M. A., Bezdek M. A., et al. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering. Neuropsychologia. 2017;103:140–153. doi: 10.1016/j.neuropsychologia.2017.07.006. PubMed DOI

Axelrod V., Zhu X., Qiu J. Transcranial stimulation of the frontal lobes increases propensity of mind- wandering without changing meta-awareness. Scientific Reports. 2018;8(1):p. 15975. doi: 10.1038/s41598-018-34098-z. PubMed DOI PMC

Mcvay J. C., Kane M. J. Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008) Psychological Bulletin. 2010;136(2):188–197. doi: 10.1037/a0018298. PubMed DOI PMC

Thomson D. R., Seli P., Besner D., Smilek D. On the link between mind wandering and task performance over time. Consciousness and Cognition. 2014;27:14–26. doi: 10.1016/j.concog.2014.04.001. PubMed DOI

Abellaneda-Pérez K., Vaqué-Alcázar L., Perellón-Alfonso R., et al. Differential tDCS and tACS effects on working memory-related neural activity and resting-state connectivity. Frontiers in Neuroscience. 2020;13 doi: 10.3389/fnins.2019.01440. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...