Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu randomizované kontrolované studie, časopisecké články, práce podpořená grantem
PubMed
36456622
PubMed Central
PMC9715685
DOI
10.1038/s41598-022-25016-5
PII: 10.1038/s41598-022-25016-5
Knihovny.cz E-zdroje
- MeSH
- individualita MeSH
- kognice MeSH
- lidé MeSH
- mozek MeSH
- přímá transkraniální stimulace mozku * MeSH
- progrese nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- randomizované kontrolované studie MeSH
Transcranial direct current stimulation (tDCS) has the potential to modulate cognitive training in healthy aging; however, results from various studies have been inconsistent. We hypothesized that inter-individual differences in baseline brain state may contribute to the varied results. We aimed to explore whether baseline resting-state dynamic functional connectivity (rs-dFC) and/or conventional resting-state static functional connectivity (rs-sFC) may be related to the magnitude of cognitive aftereffects of tDCS. To achieve this aim, we used data from our double-blind randomized sham-controlled cross-over tDCS trial in 25 healthy seniors in which bifrontal tDCS combined with cognitive training had induced significant behavioral aftereffects. We performed a backward regression analysis including rs-sFC/rs-dFC measures to explain the variability in the magnitude of tDCS-induced improvements in visual object-matching task (VOMT) accuracy. Rs-dFC analysis revealed four rs-dFC states. The occurrence rate of a rs-dFC state 4, characterized by a high correlation between the left fronto-parietal control network and the language network, was significantly associated with tDCS-induced VOMT accuracy changes. The rs-sFC measure was not significantly associated with the cognitive outcome. We show that flexibility of the brain state representing readiness for top-down control of object identification implicated in the studied task is linked to the tDCS-enhanced task accuracy.
Zobrazit více v PubMed
Wang H, Abbas KM, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1160–1203. doi: 10.1016/S0140-6736(20)30977-6. PubMed DOI PMC
Scott AJ, Ellison M, Sinclair DA. The economic value of targeting aging. Nat. Aging. 2021;1:616–623. doi: 10.1038/s43587-021-00080-0. PubMed DOI PMC
Fjell AM, Walhovd KB. Structural brain changes in aging: Courses, causes and cognitive consequences. Rev. Neurosci. 2010;21:187–221. doi: 10.1515/REVNEURO.2010.21.3.187. PubMed DOI
Harada CN, Natelson Love MC, Triebel K. Normal cognitive aging. Clin. Geriatr. Med. 2013;29:737–752. doi: 10.1016/j.cger.2013.07.002. PubMed DOI PMC
Park DC, Reuter-Lorenz P. The adaptive brain: Aging and neurocognitive scaffolding. Annu. Rev. Psychol. 2009;60:173–196. doi: 10.1146/annurev.psych.59.103006.093656. PubMed DOI PMC
Arciniega H, Gözenman F, Jones KT, Stephens JA, Berryhill ME. Frontoparietal tDCS benefits visual working memory in older adults with Low working memory capacity. Front. Aging Neurosci. 2018;10:1–12. doi: 10.3389/fnagi.2018.00057. PubMed DOI PMC
Pupíková M, Rektorová I. Non-pharmacological management of cognitive impairment in Parkinson’s disease. J. Neural Transm. 2020;127:799–820. doi: 10.1007/s00702-019-02113-w. PubMed DOI
Kropacova S, Mitterova K, Klobusiakova P, Brabenec L, Anderkova L, Nemcova-Elfmarkova N, et al. Cognitive effects of dance-movement intervention in a mixed group of seniors are not dependent on hippocampal atrophy. J. Neural. Transm. 2019;126:1455–1463. doi: 10.1007/s00702-019-02068-y. PubMed DOI
Park SH, Seo JH, Kim YH, Ko MH. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. NeuroReport. 2014;25:122–126. doi: 10.1097/WNR.0000000000000080. PubMed DOI
Whitty E, Mansour H, Aguirre E, Palomo M, Charlesworth G, Ramjee S, et al. Efficacy of lifestyle and psychosocial interventions in reducing cognitive decline in older people: Systematic review. Ageing Res. Rev. 2020;62:101113. doi: 10.1016/j.arr.2020.101113. PubMed DOI
van Balkom TD, van den Heuvel OA, Berendse HW, van der Werf YD, Vriend C. The effects of cognitive training on brain network activity and connectivity in aging and neurodegenerative diseases: A systematic review. Neuropsychol. Rev. 2020;30:267–286. doi: 10.1007/s11065-020-09440-w. PubMed DOI PMC
Indahlastari A, Hardcastle C, Albizu A, Alvarez-Alvarado S, Boutzoukas EM, Evangelista ND, et al. A systematic review and meta-analysis of transcranial direct current stimulation to remediate age-related cognitive decline in healthy older adults. Neuropsychiatr. Dis. Treat. 2021;17:971–990. doi: 10.2147/NDT.S259499. PubMed DOI PMC
Sprague BN, Freed SA, Webb CE, Phillips CB, Hyun J, Ross LA. The impact of behavioral interventions on cognitive function in healthy older adults: A systematic review. Ageing Res. Rev. 2019;52:32–52. doi: 10.1016/j.arr.2019.04.002. PubMed DOI PMC
Hsu WY, Ku Y, Zanto TP, Gazzaley A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol. Aging. 2015;36:2348–2359. doi: 10.1016/j.neurobiolaging.2015.04.016. PubMed DOI PMC
Bikson M, Rahman A. Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Front. Hum. Neurosci. 2013;7:1–5. doi: 10.3389/fnhum.2013.00688. PubMed DOI PMC
Mencarelli L, Menardi A, Neri F, Monti L, Ruffini G, Salvador R, et al. Impact of network-targeted multichannel transcranial direct current stimulation on intrinsic and network-to-network functional connectivity. J. Neurosci. Res. 2020;98:1843–1856. doi: 10.1002/jnr.24690. PubMed DOI PMC
Antonenko D, Külzow N, Sousa A, Prehn K, Grittner U, Flöel A. Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiol. Aging. 2018;61:245–254. doi: 10.1016/j.neurobiolaging.2017.09.017. PubMed DOI
Antonenko D, Hayek D, Netzband J, Grittner U, Flöel A. tDCS-induced episodic memory enhancement and its association with functional network coupling in older adults. Sci. Rep. 2019;9:1–11. doi: 10.1038/s41598-019-38630-7. PubMed DOI PMC
Pupíková M, Šimko P, Gajdoš M, Rektorová I. Modulation of working memory and resting-state fMRI by tDCS of the right frontoparietal network. Neural Plast. 2021 doi: 10.1155/2021/5594305. PubMed DOI PMC
Šimko P, Pupíková M, Gajdoš M, Rektorová I. Cognitive aftereffects of acute tDCS coupled with cognitive training: An fMRI study in healthy seniors. Neural Plast. 2021;2021:1–10. doi: 10.1155/2021/6664479. PubMed DOI PMC
Nissim NR, O’Shea A, Indahlastari A, Telles R, Richards L, Porges E, et al. Effects of in-scanner bilateral frontal tDCS on functional connectivity of the working memory network in older adults. Front. Aging Neurosci. 2019;11:1–10. doi: 10.3389/fnagi.2019.00051. PubMed DOI PMC
Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000;527:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x. PubMed DOI PMC
Richmond LL, Wolk D, Chein J, Olson IR. Transcranial direct current stimulation enhances verbal working memory training performance over time and near transfer outcomes. J. Cogn. Neurosci. 2014;26:2443–2454. doi: 10.1162/jocn_a_00657. PubMed DOI
Jones KT, Stephens JA, Alam M, Bikson M, Berryhill ME. Longitudinal neurostimulation in older adults improves working memory. PLoS ONE. 2015;10:1–18. doi: 10.1371/journal.pone.0121904. PubMed DOI PMC
Karabanov A, Thielscher A, Siebner HR. Transcranial brain stimulation: Closing the loop between brain and stimulation. Curr. Opin. Neurol. 2016;29:397–404. doi: 10.1097/WCO.0000000000000342. PubMed DOI PMC
Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018;21:174–187. doi: 10.1038/s41593-017-0054-4. PubMed DOI
Morishita T, Hummel FC. Non-invasive brain stimulation (NIBS) in motor recovery after stroke: Concepts to increase efficacy. Curr Behav. Neurosci. Rep. 2017;4:280–289. doi: 10.1007/s40473-017-0121-x. DOI
Vergallito A, Feroldi S, Pisoni A, Lauro LJR. Inter-individual variability in tDCS effects: A narrative review on the contribution of stable, variable, and contextual factors. Brain Sci. 2022 doi: 10.3390/brainsci12050522. PubMed DOI PMC
Horvath JC, Forte JD, Carter O. Brain stimulation quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation ( tDCS ) Brain Stimul. 2015;8:535–550. doi: 10.1016/j.brs.2015.01.400. PubMed DOI
Mancuso LE, Ilieva IP, Hamilton RH, Farah MJ. Does transcranial direct current stimulation improve healthy working memory?: A meta-analytic review. J. Cogn. Neurosci. 2016;28:1063–1089. doi: 10.1162/jocn_a_00956. PubMed DOI
Luque-Casado A, Fogelson N, Iglesias-Soler E, Fernandez-del-Olmo M. Exploring the effects of transcranial direct current stimulation over the prefrontal cortex on working memory: A cluster analysis approach. Behav. Brain Res. 2019;375:112144. doi: 10.1016/j.bbr.2019.112144. PubMed DOI
Luque-Casado A, Rodríguez-Freiría R, Fogelson N, Iglesias-Soler E, Fernández-del-Olmo M. An integrative clustering approach to tDCS individual response variability in cognitive performance: Beyond a null effect on working memory. Neuroscience. 2020;443:120–130. doi: 10.1016/j.neuroscience.2020.07.036. PubMed DOI
Berryhill ME, Jones KT. tDCS selectively improves working memory in older adults with more education. Neurosci. Lett. 2012;521:148–151. doi: 10.1016/j.neulet.2012.05.074. PubMed DOI
Katz B, Au J, Buschkuehl M, Abagis T, Zabel C, Jaeggi SM, et al. Individual differences and long-term consequences of tDCS-augmented cognitive training. J. Cogn. Neurosci. 2017;29:1498–1508. doi: 10.1162/jocn. PubMed DOI
Krause B, Kadosh RC. Not all brains are created equal: The relevance of individual differences in responsiveness to transcranial electrical stimulation. Front. Syst. Neurosci. 2014;8:1–12. doi: 10.3389/fnsys.2014.00025. PubMed DOI PMC
Johnson EL, Arciniega H, Jones KT, Kilgore-Gomez A, Berryhill ME. Individual predictors and electrophysiological signatures of working memory enhancement in aging. Neuroimage. 2022;250:118939. doi: 10.1016/j.neuroimage.2022.118939. PubMed DOI PMC
Jones KT, Berryhill ME. Parietal contributions to visual working memory depend on task difficulty. Front. Psychiatry. 2012;3:1–11. doi: 10.3389/fpsyt.2012.00081. PubMed DOI PMC
Gözenman F, Berryhill ME. Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task. Neurosci. Lett. 2016;629:105–109. doi: 10.1016/j.neulet.2016.06.056. PubMed DOI PMC
Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: Electric field simulation using individual MRI data. Neurosci. Lett. 2014;564:6–10. doi: 10.1016/j.neulet.2014.01.054. PubMed DOI
Hayek D, Antonenko D, Witte AV, Lehnerer SM, Meinzer M, Külzow N, et al. Impact of COMT val158met on tDCS-induced cognitive enhancement in older adults. Behav. Brain Res. 2021 doi: 10.1016/j.bbr.2020.113081. PubMed DOI
Wiegand A, Nieratschker V, Plewnia C. Genetic modulation of transcranial direct current stimulation effects on cognition. Front. Hum. Neurosci. 2016;10:1–7. doi: 10.3389/fnhum.2016.00651. PubMed DOI PMC
Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage. 2016;140:4–19. doi: 10.1016/j.neuroimage.2016.02.012. PubMed DOI
Cerreta AGB, Mruczek REB, Berryhill ME. Predicting working memory training benefits from transcranial direct current stimulation using resting-state fMRI. Front. Psychol. 2020;11:1–8. doi: 10.3389/fpsyg.2020.570030. PubMed DOI PMC
Lurie DJ, Kessler D, Bassett DS, Betzel RF, Breakspear M, Kheilholz S, et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 2020;4:30–69. doi: 10.1162/netn_a_00116. PubMed DOI PMC
Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex. 2014;24:663–676. doi: 10.1093/cercor/bhs352. PubMed DOI PMC
Cohen JR. The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. Neuroimage. 2018;180:515–525. doi: 10.1016/j.neuroimage.2017.09.036. PubMed DOI PMC
Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis NK, et al. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage. 2016;127:242–256. doi: 10.1016/j.neuroimage.2015.11.055. PubMed DOI PMC
Preti MG, Bolton TA, Van De Ville D. The dynamic functional connectome: State-of-the-art and perspectives. Neuroimage. 2017;160:41–54. doi: 10.1016/j.neuroimage.2016.12.061. PubMed DOI
Allen EA, Damaraju E, Eichele T, Wu L, Calhoun VD. EEG signatures of dynamic functional network connectivity states. Brain Topogr. 2018;31:101–116. doi: 10.1007/s10548-017-0546-2. PubMed DOI PMC
Tu Y, Cao J, Guler S, Chai-Zhang T, Camprodon JA, Vangel M, et al. Perturbing fMRI brain dynamics using transcranial direct current stimulation. Neuroimage. 2021;237:118100. doi: 10.1016/j.neuroimage.2021.118100. PubMed DOI PMC
Fong AHC, Yoo K, Rosenberg MD, Zhang S, Li CSR, Scheinost D, et al. Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage. 2019;188:14–25. doi: 10.1016/j.neuroimage.2018.11.057. PubMed DOI PMC
Fu Z, Caprihan A, Chen J, Du Y, Adair JC, Sui J, et al. Altered static and dynamic functional network connectivity in Alzheimer’s disease and subcortical ischemic vascular disease: shared and specific brain connectivity abnormalities. Hum. Brain Mapp. 2019;40(11):3203–3221. doi: 10.1002/hbm.24591. PubMed DOI PMC
Zabelina DL, Andrews-Hanna JR. Dynamic network interactions supporting internally-oriented cognition. Curr. Opin. Neurobiol. 2016;40:86–93. doi: 10.1016/j.conb.2016.06.014. PubMed DOI
Yoo K, Rosenberg MD, Kwon YH, Scheinost D, Constable RT, Chun MM. A cognitive state transformation model for task-general and task-specific subsystems of the brain connectome. Neuroimage. 2022;257:119279. doi: 10.1016/j.neuroimage.2022.119279. PubMed DOI PMC
Gonzalez-Castillo J, Hoy CW, Handwerker DA, Robinson ME, Buchanan LC, Saad ZS, et al. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc. Natl. Acad. Sci. USA. 2015;112:8762–8767. doi: 10.1073/pnas.1501242112. PubMed DOI PMC
Shine JM, Bissett PG, Bell PT, Koyejo O, Balsters JH, Gorgolewski KJ, et al. The dynamics of functional brain networks: Integrated network states during cognitive task performance. Neuron. 2016;92:544–554. doi: 10.1016/j.neuron.2016.09.018. PubMed DOI PMC
Calhoun VD, Miller R, Pearlson G, Adali T. The chronnectome: Time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron. 2014;84:262–274. doi: 10.1016/j.neuron.2014.10.015. PubMed DOI PMC
Chen X, Zhang H, Gao Y, Wee CY, Li G, Shen D. High-order resting-state functional connectivity network for MCI classification. Hum. Brain Mapp. 2016;37:3282–3296. doi: 10.1002/hbm.23240. PubMed DOI PMC
Schumacher J, Peraza LR, Firbank M, Thomas AJ, Kaiser M, Gallagher P, et al. Dynamic functional connectivity changes in dementia with Lewy bodies and Alzheimer’s disease. NeuroImage Clin. 2019;22:101812. doi: 10.1016/j.nicl.2019.101812. PubMed DOI PMC
Nomi JS, Vij SG, Dajani DR, Steimke R, Damaraju E, Rachakonda S, et al. Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage. 2017;147:861–871. doi: 10.1016/j.neuroimage.2016.10.026. PubMed DOI PMC
Baddeley A. Working memory. Curr. Biol. 2010;20:136–140. doi: 10.1016/j.cub.2009.12.014. PubMed DOI
Baddeley, A. D., Hitch, G. J., Allen, R. J. A multicomponent model of working memory. Work. Mem. State Sci. 10–43 (2020).
Shipstead Z, Redick TS, Engle RW. Does working memory training generalize? Psychol. Belg. 2010;50:245–276. doi: 10.5334/pb-50-3-4-245. DOI
Baddeley A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003;4:829–839. doi: 10.1038/nrn1201. PubMed DOI
Zanto TP, Rubens MT, Thangavel A, Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nat. Neurosci. 2011;14:656–661. doi: 10.1038/nn.2773. PubMed DOI PMC
Majerus S, Péters F, Bouffier M, Cowan N, Phillips C. The dorsal attention network reflects both encoding load and top–down control during working memory. J. Cogn. Neurosci. 2018;30:144–159. doi: 10.1162/jocn_a_01195. PubMed DOI
Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb. Cortex. 2010;20:1432–1447. doi: 10.1093/cercor/bhp207. PubMed DOI PMC
Littow H, Elseoud AA, Haapea M, Isohanni M, Moilanen I, Mankinen K, et al. Age-related differences in functional nodes of the brain cortex-a high model order group ICA study. Front. Syst. Neurosci. 2010;4:1–11. doi: 10.3389/fnsys.2010.00032. PubMed DOI PMC
Tomasi D, Volkow ND. Functional connectivity density and the aging brain. Mol. Psychiatry. 2012;17:471. doi: 10.1038/mp.2012.27. PubMed DOI PMC
Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014;1316:29–52. doi: 10.1111/nyas.12360. PubMed DOI PMC
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008;1124:1–38. doi: 10.1196/annals.1440.011. PubMed DOI
Spreng RN, Schacter DL. Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb. Cortex. 2012 doi: 10.1093/cercor/bhr339. PubMed DOI PMC
Rieck JR, Rodrigue KM, Boylan MA, Kennedy KM. Age-related reduction of BOLD modulation to cognitive difficulty predicts poorer task accuracy and poorer fluid reasoning ability. Neuroimage. 2017;147:262–271. doi: 10.1016/J.NEUROIMAGE.2016.12.022. PubMed DOI PMC
Damoiseaux JS. Effects of aging on functional and structural brain connectivity. Neuroimage. 2017;160:32–40. doi: 10.1016/j.neuroimage.2017.01.077. PubMed DOI
Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased segregation of brain systems across the healthy adult lifespan. Proc. Natl. Acad. Sci. USA. 2014;111:E4997–5006. doi: 10.1073/PNAS.1415122111. PubMed DOI PMC
Keller JB, Hedden T, Thompson TW, Anteraper SA, Gabrieli JDE, Whitfield-Gabrieli S. Resting-state anticorrelations between medial and lateral prefrontal cortex: Association with working memory, aging, and individual differences. Cortex. 2015;64:271–280. doi: 10.1016/j.cortex.2014.12.001. PubMed DOI PMC
Sambataro F, Murty VP, Callicott JH, Tan HY, Das S, Weinberger DR, et al. Age-related alterations in default mode network: Impact on working memory performance. Neurobiol. Aging. 2010;31:839–852. doi: 10.1016/j.neurobiolaging.2008.05.022. PubMed DOI PMC
Gazzaley A, Cooney JW, Rissman J, D’Esposito M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 2005;8:1298–1300. doi: 10.1038/nn1543. PubMed DOI
Reuter-Lorenz PA, Sylvester C-YC. The cognitive neuroscience of working memory and aging. Cogn. Neurosci. Aging. 2004 doi: 10.1093/acprof:oso/9780195156744.003.0008. DOI
Murphy AC, Bertolero MA, Papadopoulos L, Lydon-Staley DM, Bassett DS. Multimodal network dynamics underpinning working memory. Nat. Commun. 2020;11:1–13. doi: 10.1038/s41467-020-15541-0. PubMed DOI PMC
Finc K, Bonna K, He X, Lydon-Staley DM, Kühn S, Duch W, et al. Dynamic reconfiguration of functional brain networks during working memory training. Nat. Commun. 2020;11:1–15. doi: 10.1038/s41467-020-15631-z. PubMed DOI PMC
Cohen JR, D’Esposito M. The segregation and integration of distinct brain networks and their relationship to cognition. J. Neurosci. 2016;36:12083–12094. doi: 10.1523/JNEUROSCI.2965-15.2016. PubMed DOI PMC
Xia Y, Chen Q, Shi L, Li MZ, Gong W, Chen H, et al. Tracking the dynamic functional connectivity structure of the human brain across the adult lifespan. Hum. Brain Mapp. 2019;40:717–728. doi: 10.1002/hbm.24385. PubMed DOI PMC
Lee B, Cai W, Young CB, Yuan R, Ryman S, Kim J, et al. Latent brain state dynamics and cognitive flexibility in older adults. Prog. Neurobiol. 2022;208:102180. doi: 10.1016/j.pneurobio.2021.102180. PubMed DOI PMC
Kupis L, Goodman ZT, Kornfeld S, Hoang S, Romero C, Dirks B, et al. Brain dynamics underlying cognitive flexibility across the Lifespan. Cereb. Cortex. 2021;31:5263–5274. doi: 10.1093/cercor/bhab156. PubMed DOI PMC
Ezaki T, Sakaki M, Watanabe T, Masuda N. Age-related changes in the ease of dynamical transitions in human brain activity. Hum. Brain Mapp. 2018;39:2673–2688. doi: 10.1002/hbm.24033. PubMed DOI PMC
Ma DS, Correll J, Wittenbrink B. The Chicago face database: A free stimulus set of faces and norming data. Behav. Res. Methods. 2015;47:1122–1135. doi: 10.3758/s13428-014-0532-5. PubMed DOI
Mike Burton A, White D, McNeill A. The glasgow face matching test. Behav. Res Methods. 2010;42:286–291. doi: 10.3758/BRM.42.1.286. PubMed DOI
Gajdoš M, Mikl M, Mareček R. Mask_explorer: A tool for exploring brain masks in fMRI group analysis. Comput. Methods Progr. Biomed. 2016 doi: 10.1016/j.cmpb.2016.07.015. PubMed DOI
Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154. doi: 10.1016/j.neuroimage.2011.10.018. PubMed DOI PMC
Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 2001;14:140–151. doi: 10.1002/hbm.1048. PubMed DOI PMC
Calhoun VD, Liu J, Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. Neuroimage. 2009;45:S163–S172. doi: 10.1016/j.neuroimage.2008.10.057. PubMed DOI PMC
Ma S, Correa NM, Li XL, Eichele T, Calhoun VD, Adali T, et al. Automatic identification of functional clusters in fMRI data using spatial dependence. IEEE Trans. Biomed. Eng. 2011;58:3406–3417. doi: 10.1109/TBME.2011.2167149. PubMed DOI PMC
Li Y-O, Adalı T, Calhoun VD. Estimating the number of independent components for functional magnetic resonance imaging data. Hum. Brain Mapp. 2007;28:1251–1266. doi: 10.1002/hbm.20359. PubMed DOI PMC
Chang C, Liu Z, Chen MC, Liu X, Duyn JH. EEG correlates of time-varying BOLD functional connectivity. Neuroimage. 2013;72:227–236. doi: 10.1016/j.neuroimage.2013.01.049. PubMed DOI PMC
Shakil S, Lee CH, Keilholz SD. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states. Neuroimage. 2016;133:111–128. doi: 10.1016/j.neuroimage.2016.02.074. PubMed DOI PMC
Díez-Cirarda M, Strafella AP, Kim J, Peña J, Ojeda N, Cabrera-Zubizarreta A, et al. Dynamic functional connectivity in Parkinson’s disease patients with mild cognitive impairment and normal cognition. NeuroImage Clin. 2018;17:847–855. doi: 10.1016/j.nicl.2017.12.013. PubMed DOI PMC
Schumacher J, Peraza LR, Firbank M, Thomas AJ, Kaiser M, Gallagher P, et al. Dysfunctional brain dynamics and their origin in Lewy body dementia. Brain. 2019;142:1767–1782. doi: 10.1093/brain/awz069. PubMed DOI PMC
Dobromyslin VI, Salat DH, Fortier CB, Leritz EC, Beckmann CF, Milberg WP, et al. Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis. Neuroimage. 2012;60:2073–2085. doi: 10.1016/j.neuroimage.2012.01.139. PubMed DOI PMC
Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, et al. A baseline for the multivariate comparison of resting-state networks. Front. Syst. Neurosci. 2011;5:1–23. doi: 10.3389/fnsys.2011.00002. PubMed DOI PMC
Philippi CL, Pujara MS, Motzkin JC, Newman J, Kiehl KA, Koenigs M. Altered resting-state functional connectivity in cortical networks in psychopathy. J. Neurosci. 2015;35:6068–6078. doi: 10.1523/JNEUROSCI.5010-14.2015. PubMed DOI PMC
Kong J, Jensen K, Loiotile R, Cheetham A, Wey H-Y, Tan Y, et al. Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. Pain. 2013;154:459–467. doi: 10.1016/j.pain.2012.12.004. PubMed DOI PMC
Menon V. Large-Scale Functional Brain Organization. Vol. 2. (Elsevier Inc., 2015) 10.1016/B978-0-12-397025-1.00024-5.
Osiurak F, Federico G, Brandimonte MA, Reynaud E, Lesourd M. On the temporal dynamics of tool use. Front. Hum. Neurosci. 2020 doi: 10.3389/fnhum.2020.579378. PubMed DOI PMC
Avena-Koenigsberger A, Misic B, Sporns O. Communication dynamics in complex brain networks. Nat. Rev. Neurosci. 2018;19:17–33. doi: 10.1038/nrn.2017.149. PubMed DOI
Jia H, Hu X, Deshpande G. Behavioral relevance of the dynamics of the functional brain connectome. Brain Connect. 2014;4:741–759. doi: 10.1089/brain.2014.0300. PubMed DOI PMC
Viviano RP, Raz N, Yuan P, Damoiseaux JS. Associations between dynamic functional connectivity and age, metabolic risk, and cognitive performance. Neurobiol. Aging. 2017;59:135–143. doi: 10.1016/j.neurobiolaging.2017.08.003. PubMed DOI PMC
Marusak HA, Calhoun VD, Brown S, Crespo LM, Sala-hamrick K, Gotlib IH. Dynamic functional connectivity of neurocognitive networks in children. Hum. Brain Mapp. 2016 doi: 10.1002/hbm.23346. PubMed DOI PMC
Bassett DS, Bullmore ED. Small-world brain networks. Neurosci. 2006 doi: 10.1177/1073858406293182. PubMed DOI
Hellyer PJ, Scott G, Shanahan M, Sharp DJ, Leech R. Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome. J. Neurosci. 2015;35:9050–9063. doi: 10.1523/JNEUROSCI.4648-14.2015. PubMed DOI PMC
Friederici AD. The brain basis of language processing: From structure to function. Physiol. Rev. 2011;91:1357–1392. doi: 10.1152/physrev.00006.2011. PubMed DOI
Brandimonte MA, Schooler JW, Gabbino P. Attenuating verbal overshadowing through color retrieval cues. J. Exp. Psychol. Learn Mem. Cogn. 1997;23:915–931. doi: 10.1037/0278-7393.23.4.915. PubMed DOI
Souza AS, Skóra Z. The interplay of language and visual perception in working memory q. Cognition. 2017;166:277–297. doi: 10.1016/j.cognition.2017.05.038. PubMed DOI
Lewis-peacock JA, Drysdale AT, Postle BR. Neural evidence for the flexible control of mental representations. Cereb. Cortex. 2015;25:3303–3313. doi: 10.1093/cercor/bhu130. PubMed DOI PMC
Büchel C, Price C, Friston K. A multimodal language region in the ventral visual pathway. Nature. 1998;394:14–17. doi: 10.1038/28389. PubMed DOI
Clarke A, Taylor KI, Devereux B, Randall B, Tyler LK. From perception to conception: How meaningful objects are processed over time. Cereb. Cortex. 2013;23:187–197. doi: 10.1093/cercor/bhs002. PubMed DOI PMC
Li Y, Fang Y, Wang X, Song L, Huang R, Han Z. Connectivity of the ventral visual cortex is necessary for object recognition in patients. Hum. Brain Mapp. 2018;39:2786–2799. doi: 10.1002/hbm.24040. PubMed DOI PMC
Price ACJ, Moore CJ, Humphreys GW, Frackowiak RSJ, Price CJ, Moore CJ, et al. The neural regions sustaining object recognition and naming. Proc. Biol. Sci. 1996;263:1501–1507. doi: 10.1098/rspb.1996.0219. PubMed DOI
Dronkers NF, Wilkins DP, Van VRD, Redfern BB, Jaeger JJ. Lesion analysis of the brain areas involved in language comprehension. Cognition. 2004;92:145–177. doi: 10.1016/j.cognition.2003.11.002. PubMed DOI
Binder JR, Desai RH, Graves WW, Conant L. Where Is the semantic system ? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex. 2009 doi: 10.1093/cercor/bhp055. PubMed DOI PMC
Wei T, Liang X, He Y, Zang Y, Han Z, Caramazza A, et al. Predicting conceptual processing capacity from spontaneous neuronal activity of the left middle temporal gyrus. J. Neurosci. 2012;32:481–489. doi: 10.1523/JNEUROSCI.1953-11.2012. PubMed DOI PMC
Zalesky A, Fornito A, Cocchi L, Gollo LL, Breakspear M. Time-resolved resting-state brain networks. PNAS. 2014;111:10341–10346. doi: 10.1073/pnas.1400181111. PubMed DOI PMC
Douw L, Wakeman DG, Tanaka N, Liu H, Stufflebeam SM. State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility. Neuroscience. 2016;339:12–21. doi: 10.1016/j.neuroscience.2016.09.034. PubMed DOI PMC
Spreng RN, Turner GR. The shifting architecture of cognition and brain function in older adulthood. Perspect. Psychol. Sci. 2019;14:523–542. doi: 10.1177/1745691619827511. PubMed DOI
Prenatal exposure to alcohol and its impact on reward processing and substance use in adulthood