Cognitive Aftereffects of Acute tDCS Coupled with Cognitive Training: An fMRI Study in Healthy Seniors

. 2021 ; 2021 () : 6664479. [epub] 20210413

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, randomizované kontrolované studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33953741

Enhancing cognitive functions through noninvasive brain stimulation is of enormous public interest, particularly for the aging population in whom processes such as working memory are known to decline. In a randomized double-blind crossover study, we investigated the acute behavioral and neural aftereffects of bifrontal and frontoparietal transcranial direct current stimulation (tDCS) combined with visual working memory (VWM) training on 25 highly educated older adults. Resting-state functional connectivity (rs-FC) analysis was performed prior to and after each stimulation session with a focus on the frontoparietal control network (FPCN). The bifrontal montage with anode over the left dorsolateral prefrontal cortex enhanced VWM accuracy as compared to the sham stimulation. With the rs-FC within the FPCN, we observed significant stimulation × time interaction using bifrontal tDCS. We found no cognitive aftereffects of the frontoparietal tDCS compared to sham stimulation. Our study shows that a single bifrontal tDCS combined with cognitive training may enhance VWM performance and rs-FC within the relevant brain network even in highly educated older adults.

Zobrazit více v PubMed

Iachini T., Iavarone A., Senese V. P., Ruotolo F., Ruggiero G. Visuospatial memory in healthy elderly, AD and MCI: a review. Current Aging Science. 2009;2(1):43–59. doi: 10.2174/1874609810902010043. PubMed DOI

Ko P. C., Duda B., Hussey E., et al. Understanding age-related reductions in visual working memory capacity: examining the stages of change detection. Attention, Perception, & Psychophysics. 2014;76(7):2015–2030. doi: 10.3758/s13414-013-0585-z. PubMed DOI PMC

Baddeley A. D., Hitch G. Working memory. Psychology of learning and motivation. 1974;8:47–89. doi: 10.1016/S0079-7421(08)60452-1. DOI

Baddeley A. Working memory. Science. 1992;255(5044):556–559. doi: 10.1126/science.1736359. PubMed DOI

Baddeley A. Working memory: looking back and looking forward. Nature Reviews. Neuroscience. 2003;4(10):829–839. doi: 10.1038/nrn1201. PubMed DOI

Majerus S., Péters F., Bouffier M., Cowan N., Phillips C. The dorsal attention network reflects both encoding load and top–down control during working memory. Journal of Cognitive Neuroscience. 2018;30(2):144–159. doi: 10.1162/jocn_a_01195. PubMed DOI

Nyberg L., Eriksson J. Working memory: maintenance, updating, and the realization of intentions. Cold Spring Harbor Perspectives in Biology. 2015;8(2, article a021816) doi: 10.1101/cshperspect.a021816. PubMed DOI PMC

Zanto T. P., Rubens M. T., Thangavel A., Gazzaley A. Causal role of the prefrontal cortex in top-down modulation of visual processing and working memory. Nature Neuroscience. 2011;14(5):656–661. doi: 10.1038/nn.2773. PubMed DOI PMC

Bikson M., Name A., Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience. 2013;7:p. 688. doi: 10.3389/fnhum.2013.00688. PubMed DOI PMC

Anderkova L., Pizem D., Klobusiakova P., Gajdos M., Koritakova E., Rektorova I. Theta burst stimulation enhances connectivity of the dorsal attention network in young healthy subjects: an exploratory study. Neural Plasticity. 2018;2018:6. doi: 10.1155/2018/3106918.3106918 PubMed DOI PMC

Antonenko D., Külzow N., Sousa A., Prehn K., Grittner U., Flöel A. Neuronal and behavioral effects of multi-day brain stimulation and memory training. Neurobiology of Aging. 2018;61:245–254. doi: 10.1016/j.neurobiolaging.2017.09.017. PubMed DOI

Antonenko D., Hayek D., Netzband J., Grittner U., Flöel A. tDCS-induced episodic memory enhancement and its association with functional network coupling in older adults. Scientific Reports. 2019;9(1):2273–2311. doi: 10.1038/s41598-019-38630-7. PubMed DOI PMC

Nissim N. R., O’Shea A., Indahlastari A., et al. Effects of transcranial direct current stimulation paired with cognitive training on functional connectivity of the working memory network in older adults. Frontiers in Aging Neuroscience. 2019;11:p. 340. doi: 10.3389/fnagi.2019.00340. PubMed DOI PMC

Novakova L., Gajdos M., Rektorova I. Theta-burst transcranial magnetic stimulation induced cognitive task-related decrease in activity of default mode network: an exploratory study. Brain Stimulation. 2020;13(3):597–599. doi: 10.1016/j.brs.2020.01.015. PubMed DOI

Passow S., Thurm F., Li S. C. Activating developmental reserve capacity via cognitive training or non-invasive brain stimulation: potentials for promoting fronto-parietal and hippocampal-striatal network functions in old age. Frontiers in aging neuroscience. 2017;9:p. 33. doi: 10.3389/fnagi.2017.00033. PubMed DOI PMC

Anderkova L., Eliasova I., Marecek R., Janousova E., Rektorova I. Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. Journal of Alzheimer's Disease. 2015;48(1):251–260. doi: 10.3233/JAD-150067. PubMed DOI

Indahlastari A., Albizu A., O'Shea A., et al. Modeling transcranial electrical stimulation in the aging brain. Brain Stimulation. 2020;13(3):664–674. doi: 10.1016/j.brs.2020.02.007. PubMed DOI PMC

Martin D. M., Liu R., Alonzo A., Green M., Loo C. K. Use of transcranial direct current stimulation (tDCS) to enhance cognitive training: effect of timing of stimulation. Experimental Brain Research. 2014;232(10):3345–3351. doi: 10.1007/s00221-014-4022-x. PubMed DOI

Cespón J., Miniussi C., Pellicciari M. C. Interventional programmes to improve cognition during healthy and pathological ageing: cortical modulations and evidence for brain plasticity. Ageing Research Reviews. 2018;43:81–98. doi: 10.1016/j.arr.2018.03.001. PubMed DOI

Berryhill M., Memory and Brain Lab, Program in Cognitive and Brain Sciences, Department of Psychology, University of Nevada, Reno, NV 89557 Longitudinal tDCS: consistency across working memory training studies. AIMS Neuroscience. 2017;4(2):71–86. doi: 10.3934/Neuroscience.2017.2.71. DOI

Birba A., Ibáñez A., Sedeño L., Ferrari J., García A. M., Zimerman M. Non-invasive brain stimulation: a new strategy in mild cognitive impairment? Frontiers in Aging Neuroscience. 2017;9:p. 16. doi: 10.3389/fnagi.2017.00016. PubMed DOI PMC

Pupíková M., Rektorová I. Non-pharmacological management of cognitive impairment in Parkinson’s disease. Journal of Neural Transmission (Vienna) 2020;127(5):799–820. doi: 10.1007/s00702-019-02113-w. PubMed DOI

Arciniega H., Gözenman F., Jones K. T., Stephens J. A., Berryhill M. E. Frontoparietal tDCS benefits visual working memory in older adults with low working memory capacity. Frontiers in Aging Neuroscience. 2018;10:p. 57. doi: 10.3389/fnagi.2018.00057. PubMed DOI PMC

Park S.-H., Seo J.-H., Kim Y.-H., Ko M.-H. Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport. 2014;25(2):122–126. doi: 10.1097/WNR.0000000000000080. PubMed DOI

Stephens J. A., Berryhill M. E. Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimulation. 2016;9(4):553–559. doi: 10.1016/j.brs.2016.04.001. PubMed DOI PMC

Meinzer M., Lindenberg R., Phan M. T., Ulm L., Volk C., Flöel A. Transcranial direct current stimulation in mild cognitive impairment: behavioral effects and neural mechanisms. Alzheimers Dement. 2015;11(9):1032–1040. doi: 10.1016/j.jalz.2014.07.159. PubMed DOI

Yun K., Song I.-U., Chung Y.-A. Changes in cerebral glucose metabolism after 3 weeks of noninvasive electrical stimulation of mild cognitive impairment patients. Alzheimer's Research & Therapy. 2016;8(1):p. 49. doi: 10.1186/s13195-016-0218-6. PubMed DOI PMC

Nissim N. R., O’Shea A., Indahlastari A., et al. Effects of in-scanner bilateral frontal tDCS on functional connectivity of the working memory network in older adults. Frontiers in Aging Neuroscience. 2019;11:p. 51. doi: 10.3389/fnagi.2019.00051. PubMed DOI PMC

Cespón J., Rodella C., Rossini P. M., Miniussi C., Pellicciari M. C. Anodal transcranial direct current stimulation promotes frontal compensatory mechanisms in healthy elderly subjects. Frontiers in Aging Neuroscience. 2017;9:p. 420. doi: 10.3389/fnagi.2017.00420. PubMed DOI PMC

Nilsson J., Lebedev A. V., Rydström A., Lövdén M. Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science. 2017;28(7):907–920. doi: 10.1177/0956797617698139. PubMed DOI PMC

Edin F., Klingberg T., Johansson P., McNab F., Tegnér J., Compte A. Mechanism for top-down control of working memory capacity. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(16):6802–6807. doi: 10.1073/pnas.0901894106. PubMed DOI PMC

Brosnan M. B., Wiegand I. The dorsolateral prefrontal cortex, a dynamic cortical area to enhance top-down attentional control. The Journal of Neuroscience. 2017;37(13):3445–3446. doi: 10.1523/JNEUROSCI.0136-17.2017. PubMed DOI PMC

Cespón J., Rodella C., Miniussi C., Pellicciari M. C. Behavioural and electrophysiological modulations induced by transcranial direct current stimulation in healthy elderly and Alzheimer’s disease patients: a pilot study. Clinical Neurophysiology. 2019;130(11):2038–2052. doi: 10.1016/j.clinph.2019.08.016. PubMed DOI

Fregni F., Boggio P. S., Nitsche M., et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research. 2005;166(1):23–30. doi: 10.1007/s00221-005-2334-6. PubMed DOI

Nemcova Elfmarkova N., Gajdos M., Rektorova I., Marecek R., Rapcsak S. Z. Neural evidence for defective top-down control of visual processing in Parkinson’s and Alzheimer’s disease. Neuropsychologia. 2017;106:236–244. doi: 10.1016/j.neuropsychologia.2017.09.034. PubMed DOI

Gao W., Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping. 2012;33(1):192–202. doi: 10.1002/hbm.21204. PubMed DOI PMC

Gazzaley A., Cooney J. W., Rissman J., D'Esposito M. Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience. 2005;8(10):1298–1300. doi: 10.1038/nn1543. PubMed DOI

Thielscher A., Antunes A., Saturnino G. B. Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS?. 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2015; Milano, Italy. New York: Curran Associates. pp. 222–225. PubMed DOI

Gajdoš M., Mikl M., Mareček R. Dataset exploration tool for fMRI group analysis. 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP); 2012; Vienna, Austria. New York: Curran Associates. pp. 492–495.

Calhoun V. D., Adali T., Pearlson G. D., Pekar J. J. A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping. 2001;14(3):140–151. doi: 10.1002/hbm.1048. PubMed DOI PMC

Calhoun V. D., Liu J., Adali T. A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data. NeuroImage. 2009;45(1):S163–S172. doi: 10.1016/j.neuroimage.2008.10.057. PubMed DOI PMC

Rachakonda S., Egolf E., Correa N., Calhoun V. Group ICA of fMRI Toolbox (GIFT) Manual. 2009. https://www.nitrc.org/docman/view.php/55/295/v1_203d_GIFTManual.pdf.

Summers J. J., Kang N., Cauraugh J. H. Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta- analysis. Ageing Research Reviews. 2016;25:42–54. doi: 10.1016/j.arr.2015.11.004. PubMed DOI

Markett S., Reuter M., Montag C., et al. Assessing the function of the fronto-parietal attention network: insights from resting-state fMRI and the attentional network test. Human Brain Mapping. 2014;35(4):1700–1709. doi: 10.1002/hbm.22285. PubMed DOI PMC

D'Esposito M., Postle B. R. The cognitive neuroscience of working memory. Annual Review of Psychology. 2015;66(1):115–142. doi: 10.1146/annurev-psych-010814-015031. PubMed DOI PMC

Li S., Cai Y., Liu J., et al. Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. NeuroImage. 2017;149:210–219. doi: 10.1016/j.neuroimage.2017.01.061. PubMed DOI

Geerligs L., Renken R. J., Saliasi E., Maurits N. M., Lorist M. M. A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex. 2015;25(7):1987–1999. doi: 10.1093/cercor/bhu012. PubMed DOI

Keshvari F., Pouretemad H.-R., Ekhtiari H. The polarity-dependent effects of the bilateral brain stimulation on working memory. Basic and clinical neuroscience. 2013;4(3):224–231. PubMed PMC

Ruf S. P., Fallgatter A. J., Plewnia C. Augmentation of working memory training by transcranial direct current stimulation (tDCS) Scientific Reports. 2017;7(1):876–911. doi: 10.1038/s41598-017-01055-1. PubMed DOI PMC

Chan M. Y., Park D. C., Savalia N. K., Petersen S. E., Wig G. S. Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences. 2014;111(46):E4997–E5006. doi: 10.1073/pnas.1415122111. PubMed DOI PMC

Berryhill M. E., Jones K. T. tDCS _selectively_ improves working memory in older adults with more education. Neuroscience Letters. 2012;521(2):148–151. doi: 10.1016/j.neulet.2012.05.074. PubMed DOI

Jones K. T., Stephens J. A., Alam M., Bikson M., Berryhill M. E. Correction: longitudinal neurostimulation in older adults improves working memory. PloS One. 2015;10(5, article e0129751) doi: 10.1371/journal.pone.0129751. PubMed DOI PMC

Berryhill M. E., Peterson D. J., Jones K. T., Stephens J. A. Hits and misses: leveraging tDCS to advance cognitive research. Frontiers in Psychology. 2014;5:p. 800. doi: 10.3389/fpsyg.2014.00800. PubMed DOI PMC

Filmer H. L., Dux P. E., Mattingley J. B. Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences. 2014;37(12):742–753. doi: 10.1016/j.tins.2014.08.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace