Contribution of the multi-echo approach in accelerated functional magnetic resonance imaging multiband acquisition

. 2022 Feb 15 ; 43 (3) : 955-973. [epub] 20211030

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34716738

We wanted to verify the effect of combining multi-echo (ME) functional magnetic resonance imaging (fMRI) with slice acceleration in simultaneous multi-slice acquisition. The aim was to shed light on the benefits of multiple echoes for various acquisition settings, especially for levels of slice acceleration and flip angle. Whole-brain ME fMRI data were obtained from 26 healthy volunteers (using three echoes; seven runs with slice acceleration 1, 4, 6, and 8; and two different flip angles for each of the first three acceleration factors) and processed as single-echo (SE) data and ME data based on optimal combinations weighted by the contrast-to-noise ratio. Global metrics (temporal signal-to-noise ratio, signal-to-noise separation, number of active voxels, etc.) and local characteristics in regions of interest were used to evaluate SE and ME data. ME results outperformed SE results in all runs; the differences became more apparent for higher acceleration, where a significant decrease in data quality is observed. ME fMRI can improve the observed data quality metrics over SE fMRI for a wide range of accelerated fMRI acquisitions.

Zobrazit více v PubMed

Amemiya, S. , Yamashita, H. , Takao, H. , & Abe, O. (2019). Integrated multi‐echo denoising strategy improves identification of inherent language laterality. Magnetic Resonance in Medicine, 81(5), 3262–3271. 10.1002/mrm.27620 PubMed DOI

Bartoň, M. , Mareček, R. , Krajčovičová, L. , Slavíček, T. , Kašpárek, T. , Zemánková, P. , … Mikl, M. (2019). Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies—Quantifying noise removal and neural signal preservation. Human Brain Mapping, 40(4), 1114–1138. 10.1002/hbm.24433 PubMed DOI PMC

Boyacioğlu, R. , Schulz, J. , Koopmans, P. J. , Barth, M. , & Norris, D. G. (2015). Improved sensitivity and specificity for resting state and task fMRI with multiband multi‐echo EPI compared to multi‐echo EPI at 7T. NeuroImage, 119, 352–361. 10.1016/j.neuroimage.2015.06.089 PubMed DOI

Chen, L. , Vu, A. T. , Xu, J. , Moeller, S. , Ugurbil, K. , Yacoub, E. , & Feinberg, D. A. (2015). Evaluation of highly accelerated simultaneous multi‐slice EPI for fMRI. NeuroImage, 104, 452–459. 10.1016/j.neuroimage.2014.10.027 PubMed DOI PMC

Cohen, A. D. , Jagra, A. S. , Yang, B. , Fernandez, B. , Banerjee, S. , & Wang, Y. (2020). Detecting task functional MRI activation using the multiband multiecho (MBME) echo‐planar imaging (EPI) sequence. Journal of Magnetic Resonance Imaging, 53, 1366–1374. 10.1002/jmri.27448 PubMed DOI PMC

Cohen, A. D. , Nencka, A. S. , Marc Lebel, R. , & Wang, Y. (2017). Multiband multi‐echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity. PLoS One, 12(3), 1–23. 10.1371/journal.pone.0169253 PubMed DOI PMC

Cohen, A. D. , Yang, B. , Fernandez, B. , Banerjee, S. , & Wang, Y. (2021). Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi‐echo acquisition. NeuroImage, 225(April 2020), 117461. 10.1016/j.neuroimage.2020.117461 PubMed DOI PMC

Demetriou, L. , Kowalczyk, O. S. , Tyson, G. , Bello, T. , Newbould, R. D. , & Wall, M. B. (2018). A comprehensive evaluation of increasing temporal resolution with multiband‐accelerated protocols and effects on statistical outcome measures in fMRI. NeuroImage, 176(April), 404–416. 10.1016/j.neuroimage.2018.05.011 PubMed DOI

Feinberg, D. A. , & Setsompop, K. (2013). Ultra‐fast MRI of the human brain with simultaneous multi‐slice imaging. Journal of Magnetic Resonance, 229, 90–100. 10.1016/j.jmr.2013.02.002 PubMed DOI PMC

Fernandez, B. , Leuchs, L. , Sämann, P. G. , Czisch, M. , & Spoormaker, V. I. (2017). Multi‐echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. NeuroImage, 156(November 2016), 65–77. 10.1016/j.neuroimage.2017.05.005 PubMed DOI

Friston, K. J. , Williams, S. , Howard, R. , Frackowiak, R. S. J. , & Turner, R. (1996). Movement‐related effects in fMRI time‐series. Magnetic Resonance in Medicine, 35(3), 346–355. 10.1002/mrm.1910350312 PubMed DOI

Gajdoš, M. , Mikl, M. , & Mareček, R. (2016). Mask_explorer: A tool for exploring brain masks in fMRI group analysis. Computer Methods and Programs in Biomedicine, 134, 155–163. 10.1016/J.CMPB.2016.07.015 PubMed DOI

Gajdoš, M. , Výtvarová, E. , Fousek, J. , Lamoš, M. , & Mikl, M. (2018). Robustness of representative signals relative to data loss using atlas‐based parcellations. Brain Topography, 31, 767–779. 10.1007/s10548-018-0647-6 PubMed DOI

Gonzalez‐Castillo, J. , Panwar, P. , Buchanan, L. C. , Caballero‐Gaudes, C. , Handwerker, D. A. , Jangraw, D. C. , … Bandettini, P. A. (2016). Evaluation of multi‐echo ICA denoising for task based fMRI studies: Block designs, rapid event‐related designs, and cardiac‐gated fMRI. NeuroImage, 141, 452–468. 10.1016/j.neuroimage.2016.07.049 PubMed DOI PMC

Gonzalez‐Castillo, J. , Roopchansingh, V. , Bandettini, P. A. , & Bodurka, J. (2011). Physiological noise effects on the flip angle selection in BOLD fMRI. NeuroImage, 54(4), 2764–2778. 10.1016/j.neuroimage.2010.11.020 PubMed DOI PMC

Griswold, M. A. , Jakob, P. M. , Heidemann, R. M. , Nittka, M. , Jellus, V. , Wang, J. , … Haase, A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47(6), 1202–1210. 10.1002/mrm.10171 PubMed DOI

Hamilton, J. , Franson, D. , & Seiberlich, N. (2017). Recent advances in parallel imaging for MRI. Progress in Nuclear Magnetic Resonance Spectroscopy, 101, 71–95. 10.1016/j.pnmrs.2017.04.002 PubMed DOI PMC

Heunis, S. , Breeuwer, M. , Caballero‐Gaudes, C. , Hellrung, L. , Huijbers, W. , Jansen, J. F. , … Aldenkamp, A. P. (2021). The effects of multi‐echo fMRI combination and rapid T2*‐mapping on offline and real‐time BOLD sensitivity. NeuroImage, 238, 118244. 10.1016/J.NEUROIMAGE.2021.118244 PubMed DOI

Krüger, G. , & Glover, G. H. (2001). Physiological noise in oxygenation‐sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637. 10.1002/mrm.1240 PubMed DOI

Kundu, P. , Brenowitz, N. D. , Voon, V. , Worbe, Y. , Vértes, P. E. , Inati, S. J. , … Bullmore, E. T. (2013). Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proceedings of the National Academy of Sciences of the United States of America, 110(40), 16187–16192. 10.1073/pnas.1301725110 PubMed DOI PMC

Kundu, P. , Inati, S. J. , Evans, J. W. , Luh, W. M. , & Bandettini, P. A. (2012). Differentiating BOLD and non‐BOLD signals in fMRI time series using multi‐echo EPI. NeuroImage, 60(3), 1759–1770. 10.1016/j.neuroimage.2011.12.028 PubMed DOI PMC

Kundu, P. , Voon, V. , Balchandani, P. , Lombardo, M. V. , Poser, B. A. , & Bandettini, P. A. (2017). Multi‐echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. NeuroImage, 154(March), 59–80. 10.1016/j.neuroimage.2017.03.033 PubMed DOI

Luo, W. L. , & Nichols, T. E. (2003). Diagnosis and exploration of massively univariate neuroimaging models. NeuroImage, 19(3), 1014–1032. 10.1016/S1053-8119(03)00149-6 PubMed DOI

Marcus, D. S. , Harms, M. P. , Snyder, A. Z. , Jenkinson, M. , Wilson, J. A. , Glasser, M. F. , … Van Essen, D. C. (2013). Human Connectome Project informatics: Quality control, database services, and data visualization. NeuroImage, 80, 202–219. 10.1016/j.neuroimage.2013.05.077 PubMed DOI PMC

McDowell, A. R. , & Carmichael, D. W. (2019). Optimal repetition time reduction for single subject event‐related functional magnetic resonance imaging. Magnetic Resonance in Medicine, 81(3), 1890–1897. 10.1002/mrm.27498 PubMed DOI PMC

Ogawa, S. , Lee, T. M. , Kay, A. R. , & Tank, D. W. (1990). Brain magnetic‐resonance‐imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872. 10.1073/pnas.87.24.9868 PubMed DOI PMC

Olafsson, V. , Kundu, P. , Wong, E. C. , Bandettini, P. A. , & Liu, T. T. (2015). Enhanced identification of BOLD‐like components with multi‐echo simultaneous multi‐slice (MESMS) fMRI and multi‐echo ICA. NeuroImage, 112, 43–51. 10.1016/j.neuroimage.2015.02.052 PubMed DOI PMC

Poser, B. A. , Versluis, M. J. , Hoogduin, J. M. , & Norris, D. G. (2006). BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI. Magnetic Resonance in Medicine, 55(6), 1227–1235. 10.1002/mrm.20900 PubMed DOI

Posse, S. , Wiese, S. , Gembris, D. , Mathiak, K. , Kessler, C. , Grosse‐Ruyken, M. L. , … Kiselev, V. G. (1999). Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging. Magnetic Resonance in Medicine, 42(1), 87–97. 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O PubMed DOI

Power, J. D. , Barnes, K. A. , Snyder, A. Z. , Schlaggar, B. L. , & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. 10.1016/j.neuroimage.2011.10.018 PubMed DOI PMC

Pruessmann, K. P. , Weiger, M. , Scheidegger, M. B. , & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42(5), 952–962. 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S PubMed DOI

Puckett, A. M. , Bollmann, S. , Poser, B. A. , Palmer, J. , Barth, M. , & Cunnington, R. (2018). Using multi‐echo simultaneous multi‐slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra‐high field (7T). NeuroImage, 172(November 2017), 886–895. 10.1016/j.neuroimage.2017.12.005 PubMed DOI

Sahib, A. K. , Mathiak, K. , Erb, M. , Elshahabi, A. , Klamer, S. , Scheffler, K. , … Ethofer, T. (2016). Effect of temporal resolution and serial autocorrelations in event‐related functional MRI. Magnetic Resonance in Medicine, 76(6), 1805–1813. 10.1002/mrm.26073 PubMed DOI

Setsompop, K. , Gagoski, B. A. , Polimeni, J. R. , Witzel, T. , Wedeen, V. J. , & Wald, L. L. (2012). Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty. Magnetic Resonance in Medicine, 67(5), 1210–1224. 10.1002/mrm.23097 PubMed DOI PMC

Shirer, W. R. , Jiang, H. , Price, C. M. , Ng, B. , & Greicius, M. D. (2015). Optimization of rs‐fMRI pre‐processing for enhanced signal‐noise separation, test‐retest reliability, and group discrimination. NeuroImage, 117, 67–79. 10.1016/j.neuroimage.2015.05.015 PubMed DOI

Šimko, P. , Pupíková, M. , Gajdoš, M. , & Rektorová, I. (2021). Cognitive aftereffects of acute tDCS coupled with cognitive training: An fMRI study in healthy seniors. Neural Plasticity, 2021, 1–10. 10.1155/2021/6664479 PubMed DOI PMC

Smith, S. M. , Beckmann, C. F. , Andersson, J. L. R. , Auerbach, E. J. , Bijsterbosch, J. , Douaud, G. , … Glasser, M. F. (2013). Resting‐state fMRI in the Human Connectome Project for the WU‐Minn HCP Consortium. NeuroImage, 80, 144–168. 10.1016/j.neuroimage.2013.05.039 PubMed DOI PMC

Todd, N. , Moeller, S. , Auerbach, E. J. , Yacoub, E. , Flandin, G. , & Weiskopf, N. (2016). Evaluation of 2D multiband EPI imaging for high‐resolution, whole‐brain, task‐based fMRI studies at 3T: Sensitivity and slice leakage artifacts. NeuroImage, 124, 32–42. 10.1016/j.neuroimage.2015.08.056 PubMed DOI PMC

Triantafyllou, C. , Wald, L. L. , & Hoge, R. D. (2011). Echo‐time and field strength dependence of BOLD reactivity in veins and parenchyma using flow‐normalized hypercapnic manipulation. PLoS One, 6(9), e24519. 10.1371/journal.pone.0024519 PubMed DOI PMC

Tzourio‐Mazoyer, N. , Landeau, B. , Papathanassiou, D. , Crivello, F. , Etard, O. , Delcroix, N. , … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain. NeuroImage, 15(1), 273–289. 10.1006/nimg.2001.0978 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...