Contribution of the multi-echo approach in accelerated functional magnetic resonance imaging multiband acquisition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34716738
PubMed Central
PMC8764472
DOI
10.1002/hbm.25698
Knihovny.cz E-zdroje
- Klíčová slova
- BOLD, TE dependence, acquisition acceleration, multi-echo fMRI, simultaneous multi-slice imaging,
- MeSH
- dospělí MeSH
- echoplanární zobrazování metody MeSH
- globus pallidus diagnostické zobrazování fyziologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- mozková kůra diagnostické zobrazování fyziologie MeSH
- počítačové zpracování obrazu metody MeSH
- psychomotorický výkon fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We wanted to verify the effect of combining multi-echo (ME) functional magnetic resonance imaging (fMRI) with slice acceleration in simultaneous multi-slice acquisition. The aim was to shed light on the benefits of multiple echoes for various acquisition settings, especially for levels of slice acceleration and flip angle. Whole-brain ME fMRI data were obtained from 26 healthy volunteers (using three echoes; seven runs with slice acceleration 1, 4, 6, and 8; and two different flip angles for each of the first three acceleration factors) and processed as single-echo (SE) data and ME data based on optimal combinations weighted by the contrast-to-noise ratio. Global metrics (temporal signal-to-noise ratio, signal-to-noise separation, number of active voxels, etc.) and local characteristics in regions of interest were used to evaluate SE and ME data. ME results outperformed SE results in all runs; the differences became more apparent for higher acceleration, where a significant decrease in data quality is observed. ME fMRI can improve the observed data quality metrics over SE fMRI for a wide range of accelerated fMRI acquisitions.
1st Department of Neurology Faculty of Medicine of the Masaryk University Brno Czech Republic
CEITEC Central European Institute of Technology Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Amemiya, S. , Yamashita, H. , Takao, H. , & Abe, O. (2019). Integrated multi‐echo denoising strategy improves identification of inherent language laterality. Magnetic Resonance in Medicine, 81(5), 3262–3271. 10.1002/mrm.27620 PubMed DOI
Bartoň, M. , Mareček, R. , Krajčovičová, L. , Slavíček, T. , Kašpárek, T. , Zemánková, P. , … Mikl, M. (2019). Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies—Quantifying noise removal and neural signal preservation. Human Brain Mapping, 40(4), 1114–1138. 10.1002/hbm.24433 PubMed DOI PMC
Boyacioğlu, R. , Schulz, J. , Koopmans, P. J. , Barth, M. , & Norris, D. G. (2015). Improved sensitivity and specificity for resting state and task fMRI with multiband multi‐echo EPI compared to multi‐echo EPI at 7T. NeuroImage, 119, 352–361. 10.1016/j.neuroimage.2015.06.089 PubMed DOI
Chen, L. , Vu, A. T. , Xu, J. , Moeller, S. , Ugurbil, K. , Yacoub, E. , & Feinberg, D. A. (2015). Evaluation of highly accelerated simultaneous multi‐slice EPI for fMRI. NeuroImage, 104, 452–459. 10.1016/j.neuroimage.2014.10.027 PubMed DOI PMC
Cohen, A. D. , Jagra, A. S. , Yang, B. , Fernandez, B. , Banerjee, S. , & Wang, Y. (2020). Detecting task functional MRI activation using the multiband multiecho (MBME) echo‐planar imaging (EPI) sequence. Journal of Magnetic Resonance Imaging, 53, 1366–1374. 10.1002/jmri.27448 PubMed DOI PMC
Cohen, A. D. , Nencka, A. S. , Marc Lebel, R. , & Wang, Y. (2017). Multiband multi‐echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity. PLoS One, 12(3), 1–23. 10.1371/journal.pone.0169253 PubMed DOI PMC
Cohen, A. D. , Yang, B. , Fernandez, B. , Banerjee, S. , & Wang, Y. (2021). Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi‐echo acquisition. NeuroImage, 225(April 2020), 117461. 10.1016/j.neuroimage.2020.117461 PubMed DOI PMC
Demetriou, L. , Kowalczyk, O. S. , Tyson, G. , Bello, T. , Newbould, R. D. , & Wall, M. B. (2018). A comprehensive evaluation of increasing temporal resolution with multiband‐accelerated protocols and effects on statistical outcome measures in fMRI. NeuroImage, 176(April), 404–416. 10.1016/j.neuroimage.2018.05.011 PubMed DOI
Feinberg, D. A. , & Setsompop, K. (2013). Ultra‐fast MRI of the human brain with simultaneous multi‐slice imaging. Journal of Magnetic Resonance, 229, 90–100. 10.1016/j.jmr.2013.02.002 PubMed DOI PMC
Fernandez, B. , Leuchs, L. , Sämann, P. G. , Czisch, M. , & Spoormaker, V. I. (2017). Multi‐echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex. NeuroImage, 156(November 2016), 65–77. 10.1016/j.neuroimage.2017.05.005 PubMed DOI
Friston, K. J. , Williams, S. , Howard, R. , Frackowiak, R. S. J. , & Turner, R. (1996). Movement‐related effects in fMRI time‐series. Magnetic Resonance in Medicine, 35(3), 346–355. 10.1002/mrm.1910350312 PubMed DOI
Gajdoš, M. , Mikl, M. , & Mareček, R. (2016). Mask_explorer: A tool for exploring brain masks in fMRI group analysis. Computer Methods and Programs in Biomedicine, 134, 155–163. 10.1016/J.CMPB.2016.07.015 PubMed DOI
Gajdoš, M. , Výtvarová, E. , Fousek, J. , Lamoš, M. , & Mikl, M. (2018). Robustness of representative signals relative to data loss using atlas‐based parcellations. Brain Topography, 31, 767–779. 10.1007/s10548-018-0647-6 PubMed DOI
Gonzalez‐Castillo, J. , Panwar, P. , Buchanan, L. C. , Caballero‐Gaudes, C. , Handwerker, D. A. , Jangraw, D. C. , … Bandettini, P. A. (2016). Evaluation of multi‐echo ICA denoising for task based fMRI studies: Block designs, rapid event‐related designs, and cardiac‐gated fMRI. NeuroImage, 141, 452–468. 10.1016/j.neuroimage.2016.07.049 PubMed DOI PMC
Gonzalez‐Castillo, J. , Roopchansingh, V. , Bandettini, P. A. , & Bodurka, J. (2011). Physiological noise effects on the flip angle selection in BOLD fMRI. NeuroImage, 54(4), 2764–2778. 10.1016/j.neuroimage.2010.11.020 PubMed DOI PMC
Griswold, M. A. , Jakob, P. M. , Heidemann, R. M. , Nittka, M. , Jellus, V. , Wang, J. , … Haase, A. (2002). Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47(6), 1202–1210. 10.1002/mrm.10171 PubMed DOI
Hamilton, J. , Franson, D. , & Seiberlich, N. (2017). Recent advances in parallel imaging for MRI. Progress in Nuclear Magnetic Resonance Spectroscopy, 101, 71–95. 10.1016/j.pnmrs.2017.04.002 PubMed DOI PMC
Heunis, S. , Breeuwer, M. , Caballero‐Gaudes, C. , Hellrung, L. , Huijbers, W. , Jansen, J. F. , … Aldenkamp, A. P. (2021). The effects of multi‐echo fMRI combination and rapid T2*‐mapping on offline and real‐time BOLD sensitivity. NeuroImage, 238, 118244. 10.1016/J.NEUROIMAGE.2021.118244 PubMed DOI
Krüger, G. , & Glover, G. H. (2001). Physiological noise in oxygenation‐sensitive magnetic resonance imaging. Magnetic Resonance in Medicine, 46(4), 631–637. 10.1002/mrm.1240 PubMed DOI
Kundu, P. , Brenowitz, N. D. , Voon, V. , Worbe, Y. , Vértes, P. E. , Inati, S. J. , … Bullmore, E. T. (2013). Integrated strategy for improving functional connectivity mapping using multiecho fMRI. Proceedings of the National Academy of Sciences of the United States of America, 110(40), 16187–16192. 10.1073/pnas.1301725110 PubMed DOI PMC
Kundu, P. , Inati, S. J. , Evans, J. W. , Luh, W. M. , & Bandettini, P. A. (2012). Differentiating BOLD and non‐BOLD signals in fMRI time series using multi‐echo EPI. NeuroImage, 60(3), 1759–1770. 10.1016/j.neuroimage.2011.12.028 PubMed DOI PMC
Kundu, P. , Voon, V. , Balchandani, P. , Lombardo, M. V. , Poser, B. A. , & Bandettini, P. A. (2017). Multi‐echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals. NeuroImage, 154(March), 59–80. 10.1016/j.neuroimage.2017.03.033 PubMed DOI
Luo, W. L. , & Nichols, T. E. (2003). Diagnosis and exploration of massively univariate neuroimaging models. NeuroImage, 19(3), 1014–1032. 10.1016/S1053-8119(03)00149-6 PubMed DOI
Marcus, D. S. , Harms, M. P. , Snyder, A. Z. , Jenkinson, M. , Wilson, J. A. , Glasser, M. F. , … Van Essen, D. C. (2013). Human Connectome Project informatics: Quality control, database services, and data visualization. NeuroImage, 80, 202–219. 10.1016/j.neuroimage.2013.05.077 PubMed DOI PMC
McDowell, A. R. , & Carmichael, D. W. (2019). Optimal repetition time reduction for single subject event‐related functional magnetic resonance imaging. Magnetic Resonance in Medicine, 81(3), 1890–1897. 10.1002/mrm.27498 PubMed DOI PMC
Ogawa, S. , Lee, T. M. , Kay, A. R. , & Tank, D. W. (1990). Brain magnetic‐resonance‐imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872. 10.1073/pnas.87.24.9868 PubMed DOI PMC
Olafsson, V. , Kundu, P. , Wong, E. C. , Bandettini, P. A. , & Liu, T. T. (2015). Enhanced identification of BOLD‐like components with multi‐echo simultaneous multi‐slice (MESMS) fMRI and multi‐echo ICA. NeuroImage, 112, 43–51. 10.1016/j.neuroimage.2015.02.052 PubMed DOI PMC
Poser, B. A. , Versluis, M. J. , Hoogduin, J. M. , & Norris, D. G. (2006). BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel‐acquired inhomogeneity‐desensitized fMRI. Magnetic Resonance in Medicine, 55(6), 1227–1235. 10.1002/mrm.20900 PubMed DOI
Posse, S. , Wiese, S. , Gembris, D. , Mathiak, K. , Kessler, C. , Grosse‐Ruyken, M. L. , … Kiselev, V. G. (1999). Enhancement of BOLD‐contrast sensitivity by single‐shot multi‐echo functional MR imaging. Magnetic Resonance in Medicine, 42(1), 87–97. 10.1002/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O PubMed DOI
Power, J. D. , Barnes, K. A. , Snyder, A. Z. , Schlaggar, B. L. , & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. 10.1016/j.neuroimage.2011.10.018 PubMed DOI PMC
Pruessmann, K. P. , Weiger, M. , Scheidegger, M. B. , & Boesiger, P. (1999). SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42(5), 952–962. 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S PubMed DOI
Puckett, A. M. , Bollmann, S. , Poser, B. A. , Palmer, J. , Barth, M. , & Cunnington, R. (2018). Using multi‐echo simultaneous multi‐slice (SMS) EPI to improve functional MRI of the subcortical nuclei of the basal ganglia at ultra‐high field (7T). NeuroImage, 172(November 2017), 886–895. 10.1016/j.neuroimage.2017.12.005 PubMed DOI
Sahib, A. K. , Mathiak, K. , Erb, M. , Elshahabi, A. , Klamer, S. , Scheffler, K. , … Ethofer, T. (2016). Effect of temporal resolution and serial autocorrelations in event‐related functional MRI. Magnetic Resonance in Medicine, 76(6), 1805–1813. 10.1002/mrm.26073 PubMed DOI
Setsompop, K. , Gagoski, B. A. , Polimeni, J. R. , Witzel, T. , Wedeen, V. J. , & Wald, L. L. (2012). Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty. Magnetic Resonance in Medicine, 67(5), 1210–1224. 10.1002/mrm.23097 PubMed DOI PMC
Shirer, W. R. , Jiang, H. , Price, C. M. , Ng, B. , & Greicius, M. D. (2015). Optimization of rs‐fMRI pre‐processing for enhanced signal‐noise separation, test‐retest reliability, and group discrimination. NeuroImage, 117, 67–79. 10.1016/j.neuroimage.2015.05.015 PubMed DOI
Šimko, P. , Pupíková, M. , Gajdoš, M. , & Rektorová, I. (2021). Cognitive aftereffects of acute tDCS coupled with cognitive training: An fMRI study in healthy seniors. Neural Plasticity, 2021, 1–10. 10.1155/2021/6664479 PubMed DOI PMC
Smith, S. M. , Beckmann, C. F. , Andersson, J. L. R. , Auerbach, E. J. , Bijsterbosch, J. , Douaud, G. , … Glasser, M. F. (2013). Resting‐state fMRI in the Human Connectome Project for the WU‐Minn HCP Consortium. NeuroImage, 80, 144–168. 10.1016/j.neuroimage.2013.05.039 PubMed DOI PMC
Todd, N. , Moeller, S. , Auerbach, E. J. , Yacoub, E. , Flandin, G. , & Weiskopf, N. (2016). Evaluation of 2D multiband EPI imaging for high‐resolution, whole‐brain, task‐based fMRI studies at 3T: Sensitivity and slice leakage artifacts. NeuroImage, 124, 32–42. 10.1016/j.neuroimage.2015.08.056 PubMed DOI PMC
Triantafyllou, C. , Wald, L. L. , & Hoge, R. D. (2011). Echo‐time and field strength dependence of BOLD reactivity in veins and parenchyma using flow‐normalized hypercapnic manipulation. PLoS One, 6(9), e24519. 10.1371/journal.pone.0024519 PubMed DOI PMC
Tzourio‐Mazoyer, N. , Landeau, B. , Papathanassiou, D. , Crivello, F. , Etard, O. , Delcroix, N. , … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain. NeuroImage, 15(1), 273–289. 10.1006/nimg.2001.0978 PubMed DOI