Theta Burst Stimulation Enhances Connectivity of the Dorsal Attention Network in Young Healthy Subjects: An Exploratory Study

. 2018 ; 2018 () : 3106918. [epub] 20180313

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid29725346

We examined effects of theta burst stimulation (TBS) applied over two distinct cortical areas (the right inferior frontal gyrus and the left superior parietal lobule) on the Stroop task performance in 20 young healthy subjects. Neural underpinnings of the behavioral effect were tested using fMRI. A single session of intermittent TBS of the left superior parietal lobule induced certain cognitive speed enhancement and significantly increased resting-state connectivity of the dorsal attention network. This is an exploratory study that prompts further research with multiple-session TBS in subjects with cognitive impairment.

Zobrazit více v PubMed

Bergmann T. O., Karabanov A., Hartwigsen G., Thielscher A., Siebner H. R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: current approaches and future perspectives. NeuroImage. 2016;140:4–19. doi: 10.1016/j.neuroimage.2016.02.012. PubMed DOI

Fox M. D., Buckner R. L., Liu H., Chakravarty M. M., Lozano A. M., Pascual-Leone A. Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(41):E4367–E4375. doi: 10.1073/pnas.1405003111. PubMed DOI PMC

Gao W., Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Human Brain Mapping. 2012;33(1):192–202. doi: 10.1002/hbm.21204. PubMed DOI PMC

Banich M. T., Milham M. P., Atchley R., et al. fMRI studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Journal of Cognitive Neuroscience. 2000;12(6):988–1000. doi: 10.1162/08989290051137521. PubMed DOI

Roberts K. L., Hall D. A. Examining a supramodal network for conflict processing: a systematic review and novel functional magnetic resonance imaging data for related visual and auditory Stroop tasks. Journal of Cognitive Neuroscience. 2008;20(6):1063–1078. doi: 10.1162/jocn.2008.20074. PubMed DOI

Li C., Zheng J., Wang J., Gui L., Li C. An fMRI Stroop task study of prefrontal cortical function in normal aging, mild cognitive impairment, and Alzheimer’s disease. Current Alzheimer Research. 2009;6(6):525–530. doi: 10.2174/156720509790147142. PubMed DOI

Anderkova L., Eliasova I., Marecek R., Janousova E., Rektorova I. Distinct pattern of gray matter atrophy in mild Alzheimer’s disease impacts on cognitive outcomes of noninvasive brain stimulation. Journal of Alzheimers Disease. 2015;48(1):251–260. doi: 10.3233/JAD-150067. PubMed DOI

Bohnen N. I., Kaufer D. I., Hendrickson R., et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. Journal of Neurology. 2006;253(2):242–247. doi: 10.1007/s00415-005-0971-0. PubMed DOI

Bohnen N. I., Kaufer D. I., Hendrickson R., et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. Journal of Neurology Neurosurgery & Psychiatry. 2005;76(3):315–319. doi: 10.1136/jnnp.2004.038729. PubMed DOI PMC

Rektorová I., Anderková Ľ. Noninvasive brain stimulation and implications for nonmotor symptoms in Parkinson’s disease. International Review of Neurobiology. 2017;134:1091–1110. doi: 10.1016/bs.irn.2017.05.009. PubMed DOI

Anderkova L., Rektorova I. Cognitive effects of repetitive transcranial magnetic stimulation in patients with neurodegenerative diseases—clinician’s perspective. Journal of the Neurological Sciences. 2014;339(1-2):15–25. doi: 10.1016/j.jns.2014.01.037. PubMed DOI

Eliasova I., Anderkova L., Marecek R., Rektorova I. Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer’s disease: a pilot study. Journal of the Neurological Sciences. 2014;346(1-2):318–322. doi: 10.1016/j.jns.2014.08.036. PubMed DOI

Sedlackova S., Rektorova I., Srovnalova H., Rektor I. Effect of high frequency repetitive transcranial magnetic stimulation on reaction time, clinical features and cognitive functions in patients with Parkinson’s disease. Journal of Neural Transmission. 2009;116(9):1093–1101. doi: 10.1007/s00702-009-0259-0. PubMed DOI

Srovnalova H., Marecek R., Rektorova I. The role of the inferior frontal gyri in cognitive processing of patients with Parkinson’s disease: a pilot rTMS study. Movement Disorders. 2011;26(8):1545–8. doi: 10.1002/mds.23663. PubMed DOI

Srovnalova H., Marecek R., Kubikova R., Rektorova I. The role of the right dorsolateral prefrontal cortex in the Tower of London task performance: repetitive transcranial magnetic stimulation study in patients with Parkinson’s disease. Experimental Brain Research. 2012;223(2):251–257. doi: 10.1007/s00221-012-3255-9. PubMed DOI

Huang Y. Z., Edwards M. J., Rounis E., Bhatia K. P., Rothwell J. C. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–206. doi: 10.1016/j.neuron.2004.12.033. PubMed DOI

Ko J. H., Monchi O., Ptito A., Bloomfield P., Houle S., Strafella A. P. Theta burst stimulation-induced inhibition of dorsolateral prefrontal cortex reveals hemispheric asymmetry in striatal dopamine release during a set-shifting task—a TMS–[11C]raclopride PET study. European Journal of Neuroscience. 2008;28(10):2147–2155. doi: 10.1111/j.1460-9568.2008.06501.x. PubMed DOI PMC

Cho S. S., Ko J. H., Pellecchia G., Van Eimeren T., Cilia R., Strafella A. P. Continuous theta burst stimulation of right dorsolateral prefrontal cortex induces changes in impulsivity level. Brain Stimulation. 2010;3(3):170–176. doi: 10.1016/j.brs.2009.10.002. PubMed DOI PMC

Gratton C., Lee T. G., Nomura E. M., D'Esposito M. The effect of theta-burst TMS on cognitive control networks measured with resting state fMRI. Frontiers in Systems Neuroscience. 2013;7:p. 124. doi: 10.3389/fnsys.2013.00124. PubMed DOI PMC

Strafella A. P., Paus T., Barrett J., Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. Journal of Neuroscience. 2001;21(15, article RC157) PubMed PMC

Strafella A. P., Paus T., Fraraccio M., Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain. 2003;126(12):2609–2615. doi: 10.1093/brain/awg268. PubMed DOI

Aron A. R., Robbins T. W., Poldrack R. A. Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences. 2004;8(4):170–177. doi: 10.1016/j.tics.2004.02.010. PubMed DOI

Balaz M., Srovnalova H., Rektorova I., Rektor I. The effect of cortical repetitive transcranial magnetic stimulation on cognitive event-related potentials recorded in the subthalamic nucleus. Experimental Brain Research. 2010;203(2):317–327. doi: 10.1007/s00221-010-2232-4. PubMed DOI

Anderkova L., Barton M., Rektorova I. Striato-cortical connections in Parkinson’s and Alzheimer’s diseases: relation to cognition. Movement Disorders. 2017;32(6):917–922. doi: 10.1002/mds.26956. PubMed DOI

Schulte T., Muller-Oehring E. M., Chanraud S., Rosenbloom M. J., Pfefferbaum A., Sullivan E. V. Age-related reorganization of functional networks for successful conflict resolution: a combined functional and structural MRI study. Neurobiology of Aging. 2011;32(11):2075–2090. doi: 10.1016/j.neurobiolaging.2009.12.002. PubMed DOI PMC

Gajdos M., Mikl M., Marecek R. Mask_explorer: a tool for exploring brain masks in fMRI group analysis. Computer Methods and Programs in Biomedicine. 2016;134:155–163. doi: 10.1016/j.cmpb.2016.07.015. PubMed DOI

Cooper A. C. G., Humphreys G. W., Hulleman J., Praamstra P., Georgeson M. Transcranial magnetic stimulation to right parietal cortex modifies the attentional blink. Experimental Brain Research. 2004;155(1):24–29. doi: 10.1007/s00221-003-1697-9. PubMed DOI

Luber B., Kinnunen L. H., Rakitin B. C., Ellsasser R., Stern Y., Lisanby S. H. Facilitation of performance in a working memory task with rTMS stimulation of the precuneus: frequency- and time-dependent effects. Brain Research. 2007;1128(1):120–129. doi: 10.1016/j.brainres.2006.10.011. PubMed DOI

Romei V., Driver J., Schyns P. G., Thut G. Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Current Biology. 2011;21(4):334–337. doi: 10.1016/j.cub.2011.01.035. PubMed DOI PMC

Voogd J., Schraa-Tam C. K. L., van der Geest J. N., De Zeeuw C. I. Visuomotor cerebellum in human and nonhuman primates. The Cerebellum. 2012;11(2):392–410. doi: 10.1007/s12311-010-0204-7. PubMed DOI PMC

Vincent J. L., Kahn I., Snyder A. Z., Raichle M. E., Buckner R. L. Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology. 2008;100(6):3328–3342. doi: 10.1152/jn.90355.2008. PubMed DOI PMC

Christopher L., Marras C., Duff-Canning S., et al. Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain. 2014;137(2):565–575. doi: 10.1093/brain/awt337. PubMed DOI PMC

Menon V., Uddin L. Q. Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function. 2010;214(5-6):655–667. doi: 10.1007/s00429-010-0262-0. PubMed DOI PMC

Cole M. W., Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage. 2007;37(1):343–360. doi: 10.1016/j.neuroimage.2007.03.071. PubMed DOI

Posner M. I., Rothbart M. K. Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology. 2007;58(1):1–23. doi: 10.1146/annurev.psych.58.110405.085516. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...