The insight into the biology of five homologous lectins produced by the entomopathogenic bacterium and nematode symbiont Photorhabdus laumondii
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
21-29622S
Czech Science Foundation
730872
EU Framework Programme for Research and Innovation HORIZON 2020
Czech Infrastructure for Integrative Structural Biology
LM2023042
Ministry of Education, Youth and Sports CR
PubMed
40459235
PubMed Central
PMC12203525
DOI
10.1093/glycob/cwaf033
PII: 8155770
Knihovny.cz E-zdroje
- Klíčová slova
- Photorhabdus, glycan array, lectin, nematode, structure-function study,
- MeSH
- bakteriální proteiny * chemie metabolismus genetika MeSH
- hlístice * mikrobiologie MeSH
- lektiny * chemie metabolismus genetika MeSH
- lidé MeSH
- Photorhabdus * metabolismus chemie genetika MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny * MeSH
- lektiny * MeSH
Photorhabdus laumondii is a well-known bacterium with a complex life cycle involving mutualism with nematodes of the genus Heterorhabditis and pathogenicity towards insect hosts. It provides an excellent model for studying the diverse roles of lectins, saccharide-binding proteins, in both symbiosis and pathogenicity. This study focuses on the seven-bladed β-propeller lectins of P. laumondii (PLLs), examining their biochemical properties (structure and saccharide specificity) and biological functions (gene expression, interactions with the nematode symbiont, and the host immune system response). Structural analyses revealed diverse oligomeric states among PLLs and a unique organisation of binding sites not described outside the PLL lectin family. Lectins exhibited high specificity for fucosylated and O-methylated saccharides with a significant avidity effect for multivalent ligands. Gene expression analysis across bacterial growth phases revealed that PLLs are predominantly expressed during the exponential phase. Interaction studies with the host immune system demonstrated that PLL5 uniquely induced melanisation in Galleria mellonella hemolymph. Furthermore, PLL2, PLL3, and PLL5 interfered with reactive oxygen species production in human blood cells, indicating their potential role in modulating host immune responses. Biofilm formation assays and binding studies with nematode life stages showed no significant involvement of PLLs in nematode colonization. Our findings highlight the primary role of PLLs in Photorhabdus pathogenicity rather than in symbiosis and offer valuable insight into the fascinating dynamics within the Photorhabdus-nematode-insect triparted system.
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol. 215:403–410. 10.1016/S0022-2836(05)80360-2. PubMed DOI
Bedding RA, Molyneux AS. 1982. Penetration of insect cuticle by infective juveniles of DOI
Beshr G et al. 2017. PubMed DOI PMC
Blanchard B, Imberty A, Varrot A. 2014. Secondary sugar binding site identified for LecA lectin from PubMed DOI
Brautigam CA. 2015. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Meth Enzymol. 562:109–133. 10.1016/bs.mie.2015.05.001. PubMed DOI
Brown GD, Willment JA, Whitehead L. 2018. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 18:374–389. 10.1038/s41577-018-0004-8. PubMed DOI
Cerenius L, Söderhäll K. 2004. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 198:116–126. 10.1111/j.0105-2896.2004.00116.x. PubMed DOI
Ciche TA, Ensign JC. 2003. For the insect pathogen PubMed DOI PMC
Ciche TA, Kim K-S, Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH. 2008. Cell invasion and matricide during PubMed DOI PMC
Ciche TA, Bintrim SB, Horswill AR, Ensign JC. 2001. A Phosphopantetheinyl transferase homolog is essential for PubMed DOI PMC
Cimen H, Touray M, Gulsen SH, Hazir S. 2022. Natural products from PubMed DOI
Cioci G et al. 2006. Β-propeller crystal structure of PubMed DOI
Clarke DJ. 2014. The genetic basis of the symbiosis between PubMed DOI
Daborn PJ, Waterfield N, Blight MA, Ffrench-Constant RH. 2001. Measuring virulence factor expression by the pathogenic bacterium PubMed DOI PMC
Dominelli N, Platz F, Heermann R. 2022. The insect pathogen PubMed DOI PMC
Duchaud E et al. 2003. The genome sequence of the entomopathogenic bacterium PubMed DOI
Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 66:486–501. 10.1107/S0907444910007493. PubMed DOI PMC
Faltinek L et al. 2019. Lectin PLL3, a novel monomeric member of the seven-bladed β-propeller lectin family. Molecules. 24:4540. 10.3390/molecules24244540. PubMed DOI PMC
Ffrench-Constant R et al. 2003. PubMed DOI
Forst S, Dowds B, Boemare N, Stackebrandt E. 1997. PubMed DOI
Fujdiarová E et al. 2021. Heptabladed β-propeller lectins PLL2 and PHL from PubMed DOI
Hapeshi A, Benarroch JM, Clarke DJ, Waterfield NR. 2019. Iso-propyl stilbene: a life cycle signal? Microbiology. 165:516–526. 10.1099/mic.0.000790. PubMed DOI
Haydak MH. 1936. A food for rearing laboratory animals. J Econ Entomol. 29:1026.
Held KG, LaRock CN, D’Argenio DA, Berg CA, Collins CM. 2007. A metalloprotease secreted by the insect pathogen PubMed DOI PMC
Hokke CH, Deelder AM, Hoffmann KF, Wuhrer M. 2007. Glycomics-driven discoveries in PubMed DOI
Hunter SW, Fujiwara T, Brennan PJ. 1982. Structure and antigenicity of the major specific glycolipid antigen of PubMed DOI
Imai Y et al. 2019. A new antibiotic selectively kills gram-negative pathogens. Nature. 576:459–464. 10.1038/s41586-019-1791-1. PubMed DOI PMC
Jančaříková G et al. 2017. Characterization of novel bangle lectin from PubMed DOI PMC
Jankowska E et al. 2018. A comprehensive PubMed DOI PMC
Jiménez-Castells C et al. 2017. Gender and developmental specific N-glycomes of the porcine parasite PubMed DOI PMC
Kabsch W. 2010. XDS. Acta Crystallogr D Biol Crystallogr. 66:125–132. 10.1107/S0907444909047337. PubMed DOI PMC
Kostlánová N et al. 2005. The fucose-binding lectin from PubMed DOI
Krug M, Weiss MS, Heinemann U, Mueller U. 2012. XDSAPP: a graphical user interface for the convenient processing of diffraction data using XDS. J Appl Crystallogr. 45:568–572. 10.1107/S0021889812011715. DOI
Kumar S et al. 2003. The role of reactive oxygen species on plasmodium melanotic encapsulation in PubMed DOI PMC
Kumar A et al. 2016. A novel Fucose-binding lectin from PubMed DOI PMC
Lacey LA et al. 2015. Insect pathogens as biological control agents: back to the future. J Invertebr Pathol. 132:1–41. 10.1016/j.jip.2015.07.009. PubMed DOI
Lee RT, Lee YC. 2000. Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj J. 17:543–551. 10.1023/A:1011070425430. PubMed DOI
Lis H, Sharon N. 1998. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev. 98:637–674. 10.1021/cr940413g. PubMed DOI
Mersha FB, McClung CM, Chen M, Ruse CI, Foster JM. 2023. Defining the filarial N-glycoproteome by glycosite mapping in the human parasitic nematode PubMed DOI PMC
Murshudov GN et al. 2011. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 67:355–367. 10.1107/S0907444911001314. PubMed DOI PMC
Nakamura-Tsuruta S, Kominami J, Kuno A, Hirabayashi J. 2006. Evidence that PubMed DOI
Regaiolo A, Dominelli N, Andresen K, Heermann R. 2020. The biocontrol agent and insect pathogen PubMed DOI PMC
Schuck P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 78:1606–1619. 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Sharon N. 1987. Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett. 217:145–157. 10.1016/0014-5793(87)80654-3. PubMed DOI
Sharon N. 2007. Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem. 282:2753–2764. 10.1074/jbc.X600004200. PubMed DOI
Sheikh MO et al. 2019. Correlations between LC-MS/MS-detected Glycomics and NMR-detected metabolomics in Caenorhabditis elegans development. Front Mol Biosci. 6:49. 10.3389/fmolb.2019.00049. PubMed DOI PMC
Sievers F et al. 2014. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 7:539–539. 10.1038/msb.2011.75. PubMed DOI PMC
Sommer R et al. 2018. Crystal structures of fungal Tectonin in complex with O-methylated Glycans suggest key role in innate immune Defense. Structure. 26:391–402.e4. 10.1016/j.str.2018.01.003. PubMed DOI
Somvanshi VS, Kaufmann-Daszczuk B, Kim K, Mallon S, Ciche TA. 2010. PubMed DOI
Staudacher E. 2012. Methylation – an uncommon modification of glycans. Biol Chem. 393:675–685. 10.1515/hsz-2012-0132. PubMed DOI PMC
Šulák O et al. 2011. PubMed DOI PMC
Turlin E et al. 2006. Proteome analysis of the phenotypic variation process in PubMed DOI
Walski T, De Schutter K, Van Damme EJM, Smagghe G. 2017. Diversity and functions of protein glycosylation in insects. Insect Biochem Mol Biol. 83:21–34. 10.1016/j.ibmb.2017.02.005. PubMed DOI
Waterfield NR, Ciche T, Clarke D. 2009. PubMed DOI
Wharton DA, Jenkins T. 1978. Structure and chemistry of the egg-Shell of a nematode ( PubMed DOI
Wimmerova M, Mitchell E, Sanchez J-F, Gautier C, Imberty A. 2003. Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for PubMed DOI
Winn MD et al. 2011. Overview of the CCP 4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 67:235–242. 10.1107/S0907444910045749. PubMed DOI PMC
Wiseman T, Williston S, Brandts JF, Lin LN. 1989. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem. 179:131–137. 10.1016/0003-2697(89)90213-3. PubMed DOI
Wohlschlager T et al. 2014. Methylated glycans as conserved targets of animal and fungal innate defense. Proc Natl Acad Sci USA. 111:E2787–E2796. 10.1073/pnas.1401176111. PubMed DOI PMC
Zamora-Lagos M-A et al. 2018. Phenotypic and genomic comparison of PubMed DOI PMC
Zhang J, Chatterjee D, Brennan PJ, Spencer JS, Liav A. 2010. A modified synthesis and serological evaluation of neoglycoproteins containing the natural disaccharide of PGL-I from PubMed DOI PMC