Lectin PLL3, a Novel Monomeric Member of the Seven-Bladed β-Propeller Lectin Family

. 2019 Dec 11 ; 24 (24) : . [epub] 20191211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31835851

Grantová podpora
18-18964S Grantová Agentura České Republiky
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
730872 Horizon 2020 Framework Programme
LM2015043 Ministerstvo Školství, Mládeže a Tělovýchovy

The Photorhabdus species is a Gram-negative bacteria of the family Morganellaceae that is known for its mutualistic relationship with Heterorhabditis nematodes and pathogenicity toward insects. This study is focused on the characterization of the recombinant lectin PLL3 with an origin in P. laumondii subsp. laumondii. PLL3 belongs to the PLL family of lectins with a seven-bladed β-propeller fold. The binding properties of PLL3 were tested by hemagglutination assay, glycan array, isothermal titration calorimetry, and surface plasmon resonance, and its structure was determined by X-ray crystallography. Obtained data revealed that PLL3 binds similar carbohydrates to those that the other PLL family members bind, with some differences in the binding properties. PLL3 exhibited the highest affinity toward l-fucose and its derivatives but was also able to interact with O-methylated glycans and other ligands. Unlike the other members of this family, PLL3 was discovered to be a monomer, which might correspond to a weaker avidity effect compared to homologous lectins. Based on the similarity to the related lectins and their proposed biological function, PLL3 might accompany them during the interaction of P. laumondii with both the nematode partner and the insect host.

Zobrazit více v PubMed

Adeolu M., Alnajar S., Naushad S., Gupta R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016;66:5575–5599. PubMed

Waterfield N.R., Ciche T., Clarke D. Photorhabdus and a Host of Hosts. Annu. Rev. Microbiol. 2009;63:557–574. doi: 10.1146/annurev.micro.091208.073507. PubMed DOI

Heinrich A.K., Glaeser A., Tobias N.J., Heermann R., Bode H.B. Heterogeneous regulation of bacterial natural product biosynthesis via a novel transcription factor. Heliyon. 2016;2:e00197. doi: 10.1016/j.heliyon.2016.e00197. PubMed DOI PMC

Clarke D.J. Photorhabdus: A model for the analysis of pathogenicity and mutualism. Cell. Microbiol. 2008;10:2159–2167. doi: 10.1111/j.1462-5822.2008.01209.x. PubMed DOI

Ciche T.A., Kim K.-S., Kaufmann-Daszczuk B., Nguyen K.C.Q., Hall D.H. Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl. Environ. Microbiol. 2008;74:2275–2287. doi: 10.1128/AEM.02646-07. PubMed DOI PMC

Duchaud E., Rusniok C., Frangeul L., Buchrieser C., Givaudan A., Taourit S., Bocs S., Boursaux-Eude C., Chandler M., Charles J.-F., et al. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 2003;21:1307–1313. doi: 10.1038/nbt886. PubMed DOI

Ciche T.A., Bintrim S.B., Horswill A.R., Ensign J.C. A phosphopantetheinyl transferase homolog Is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. J. Bacteriol. 2001;183:3117–3126. doi: 10.1128/JB.183.10.3117-3126.2001. PubMed DOI PMC

Ciche T.A., Ensign J.C. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl. Environ. Microbiol. 2003;69:1890–1897. doi: 10.1128/AEM.69.4.1890-1897.2003. PubMed DOI PMC

Sharon N. Lectins: Carbohydrate-specific reagents and biological recognition molecules. J. Biol. Chem. 2007;282:2753–2764. doi: 10.1074/JBC.X600004200. PubMed DOI

Lis H., Sharon N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998;98:637–674. doi: 10.1021/cr940413g. PubMed DOI

Sharon N. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology. 2004;14:53R–62R. doi: 10.1093/glycob/cwh122. PubMed DOI

Varki A. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY, USA: 2017.

Audfray A., Claudinon J., Abounit S., Ruvoën-Clouet N., Larson G., Smith D.F., Wimmerová M., Le Pendu J., Römer W., Varrot A., et al. Fucose-binding Lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes. J. Biol. Chem. 2012;287:4335–4347. doi: 10.1074/jbc.M111.314831. PubMed DOI PMC

Houser J., Komarek J., Kostlanova N., Cioci G., Varrot A., Kerr S.C., Lahmann M., Balloy V., Fahy J.V., Chignard M., et al. A soluble fucose-specific lectin from Aspergillus fumigatus conidia—Structure, specificity and possible role in fungal pathogenicity. PLoS ONE. 2013;8:e83077. doi: 10.1371/journal.pone.0083077. PubMed DOI PMC

Jančaříková G., Houser J., Dobeš P., Demo G., Hyršl P., Wimmerová M. Characterization of novel bangle lectin from Photorhabdus asymbiotica with dual sugar-binding specificity and its effect on host immunity. PLoS Pathog. 2017;13:e1006564. doi: 10.1371/journal.ppat.1006564. PubMed DOI PMC

Kumar A., Sýkorová P., Demo G., Dobeš P., Hyršl P., Wimmerová M. A novel fucose-binding lectin from Photorhabdus luminescens (PLL) with an unusual heptabladed β-propeller tetrameric structure. J. Biol. Chem. 2016;291:25032–25049. doi: 10.1074/jbc.M115.693473. PubMed DOI PMC

Fujdiarová E., Houser J., Dobeš P., Paulíková G., Kondakov N., Kononov L., Hyršl P., Wimmerová M. Heptabladded β-propeller lectins PLL2 and PHL from Photorhabdus spp. recognize O-methylated sugars and influence the host immune system. submitted. PubMed

Staudacher E. Methylation--an uncommon modification of glycans. Biol. Chem. 2012;393:675–685. doi: 10.1515/hsz-2012-0132. PubMed DOI PMC

Wohlschlager T., Butschi A., Grassi P., Sutov G., Gauss R., Hauck D., Schmieder S.S., Knobel M., Titz A., Dell A., et al. Methylated glycans as conserved targets of animal and fungal innate defense. Proc. Natl. Acad. Sci. USA. 2014;111:E2787–E2796. doi: 10.1073/pnas.1401176111. PubMed DOI PMC

Sweet L., Zhang W., Torres-Fewell H., Serianni A., Boggess W., Schorey J. Mycobacterium avium glycopeptidolipids require specific acetylation and methylation patterns for signaling through Toll-like receptor 2. J. Biol. Chem. 2008;283:33221–33231. doi: 10.1074/jbc.M805539200. PubMed DOI PMC

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Brautigam C.A. Calculations and publication-quality illustrations for analytical ultracentrifugation data. Meth. Enzym. 2015;562:109–133. PubMed

Jecklin M.C., Schauer S., Dumelin C.E., Zenobi R. Label-free determination of protein-ligand binding constants using mass spectrometry and validation using surface plasmon resonance and isothermal titration calorimetry. J. Mol. Recognit. 2009;22:319–329. doi: 10.1002/jmr.951. PubMed DOI

Myszka D.G. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr. Opin. Biotechnol. 1997;8:50–57. doi: 10.1016/S0958-1669(97)80157-7. PubMed DOI

Walski T., De Schutter K., Van Damme E.J.M., Smagghe G. Diversity and functions of protein glycosylation in insects. Insect Biochem. Mol. Biol. 2017;83:21–34. doi: 10.1016/j.ibmb.2017.02.005. PubMed DOI

Stanton R., Hykollari A., Eckmair B., Malzl D., Dragosits M., Palmberger D., Wang P., Wilson I.B.H., Paschinger K. The underestimated N-glycomes of lepidopteran species. Biochim. Et Biophys. Acta (Bba) Gen. Subj. 2017;1861:699–714. doi: 10.1016/j.bbagen.2017.01.009. PubMed DOI PMC

Staudacher E. Mucin-Type O-Glycosylation in Invertebrates. Molecules. 2015;20:10622–10640. doi: 10.3390/molecules200610622. PubMed DOI PMC

Hunter S.W., Fujiwara T., Brennan P.J. Structure and antigenicity of the major specific glycolipid antigen of Mycobacterium leprae. J. Biol. Chem. 1982;257:15072–15078. PubMed

Kondakov N.N., Mel’nikova T.M., Chekryzhova T.V., Mel´nikova M.V., Zinin A.I., Torgov V.I., Chizhov A.O., Kononov L.O. Synthesis of a disaccharide of phenolic glycolipid from Mycobacterium leprae (PGL-I) and its conjugates with bovine serum albumin. Russ. Chem. Bull. 2015;64:1142–1148. doi: 10.1007/s11172-015-0991-6. DOI

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Adamová L., Malinovská L., Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI

Krug M., Weiss M.S., Heinemann U., Mueller U. XDSAPP: A graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Cryst. 2012;45:568–572. doi: 10.1107/S0021889812011715. DOI

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of the CCP 4 suite and current developments. Acta Cryst. D Biol. Cryst. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC

Vagin A., Teplyakov A. Molecular replacement with MOLREP. Acta Cryst. D Biol. Cryst. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI

Emsley P., Lohkamp B., Scott W.G., Cowtan K. Features and development of Coot. Acta Cryst. D Biol. Cryst. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Murshudov G.N., Skubák P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Cryst. D Biol. Cryst. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC

Nierengarten I., Nierengarten J.-F. The impact of copper-catalyzed alkyne-azide 1,3-dipolar cycloaddition in fullerene chemistry. Chem. Rec. 2015;15:31–51. doi: 10.1002/tcr.201402081. PubMed DOI

Buffet K., Nierengarten I., Galanos N., Gillon E., Holler M., Imberty A., Matthews S.E., Vidal S., Vincent S.P., Nierengarten J.-F. Pillar[5]arene-based glycoclusters: Synthesis and multivalent binding to pathogenic bacterial lectins. Chemistry. 2016;22:2955–2963. doi: 10.1002/chem.201504921. PubMed DOI

Bertolotti B., Sutkeviciute I., Ambrosini M., Ribeiro-Viana R., Rojo J., Fieschi F., Dvořáková H., Kašáková M., Parkan K., Hlaváčková M., et al. Polyvalent C-glycomimetics based on l-fucose or d-mannose as potent DC-SIGN antagonists. Org. Biomol. Chem. 2017;15:3995–4004. doi: 10.1039/C7OB00322F. PubMed DOI

Hoyle C.E., Lowe A.B., Bowman C.N. Thiol-click chemistry: A multifaceted toolbox for small molecule and polymer synthesis. Chem. Soc. Rev. 2010;39:1355. doi: 10.1039/b901979k. PubMed DOI

Franc G., Kakkar A.K. “Click” methodologies: Efficient, simple and greener routes to design dendrimers. Chem. Soc. Rev. 2010;39:1536. doi: 10.1039/b913281n. PubMed DOI

Becer C.R., Hoogenboom R., Schubert U.S. Click Chemistry beyond metal-catalyzed cycloaddition. Angew. Chem. Int. Ed. 2009;48:4900–4908. doi: 10.1002/anie.200900755. PubMed DOI

Meldal M., Tornøe C.W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI

Hein J.E., Fokin V.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev. 2010;39:1302. doi: 10.1039/b904091a. PubMed DOI PMC

Finn M.G., Fokin V.V. Click chemistry: Function follows form. Chem. Soc. Rev. 2010;39:1231. doi: 10.1039/c003740k. PubMed DOI

Nierengarten I., Nothisen M., Sigwalt D., Biellmann T., Holler M., Remy J.-S., Nierengarten J.-F. Polycationic pillar[5]arene derivatives: Interaction with DNA and biological applications. Chem. Eur. J. 2013;19:17552–17558. doi: 10.1002/chem.201303029. PubMed DOI

Kašáková M., Bertolotti B., Dong L., Rousset A., Kánya N., Moravcová J., Vidal S. 3-(2,3,4-Tri-O-acetyl-α-l-fucopyranosyl)-prop-1-ene. In: Kosma P., editor. Carbohydrate Chemistry: Proven Synthetic Methods. Volume 5. CRC Press; Boca Raton, FL, USA: 2020. in press.

Kolomiets E., Johansson E.M.V., Renaudet O., Darbre T., Reymond J.-L. Neoglycopeptide dendrimer libraries as a source of lectin binding ligands. Org. Lett. 2007;9:1465–1468. doi: 10.1021/ol070119d. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...