Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32384686
PubMed Central
PMC7290794
DOI
10.3390/cells9051143
PII: cells9051143
Knihovny.cz E-zdroje
- Klíčová slova
- fibrillarin, nucleolus, phosphoinositides, rRNA, ribonucleolar particle, viral progression,
- MeSH
- chromozomální proteiny, nehistonové chemie genetika metabolismus MeSH
- fosfolipidy metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- malá jadérková RNA metabolismus MeSH
- mutace genetika MeSH
- proteinové domény MeSH
- rekombinantní proteiny metabolismus MeSH
- ribonukleasy chemie genetika metabolismus MeSH
- ribonukleoproteiny metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- fibrillarin MeSH Prohlížeč
- fosfolipidy MeSH
- malá jadérková RNA MeSH
- rekombinantní proteiny MeSH
- ribonukleasy MeSH
- ribonukleoproteiny MeSH
- RNA, U3 small nucleolar MeSH Prohlížeč
Fibrillarin is a highly conserved nucleolar methyltransferase responsible for ribosomal RNA methylation across evolution from Archaea to humans. It has been reported that fibrillarin is involved in the methylation of histone H2A in nucleoli and other processes, including viral progression, cellular stress, nuclear shape, and cell cycle progression. We show that fibrillarin has an additional activity as a ribonuclease. The activity is affected by phosphoinositides and phosphatidic acid and insensitive to ribonuclease inhibitors. Furthermore, the presence of phosphatidic acid releases the fibrillarin-U3 snoRNA complex. We show that the ribonuclease activity localizes to the GAR (glycine/arginine-rich) domain conserved in a small group of RNA interacting proteins. The introduction of the GAR domain occurred in evolution in the transition from archaea to eukaryotic cells. The interaction of this domain with phospholipids may allow a phase separation of this protein in nucleoli.
Zobrazit více v PubMed
Schimmang T., Tollervey D., Kern H., Frank R., Hurt E.C. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. EMBO J. 1989;8:4015–4024. doi: 10.1002/j.1460-2075.1989.tb08584.x. PubMed DOI PMC
Hernandez-Verdun D., Roussel P., Thiry M., Sirri V., Lafontaine D.L.J. The nucleolus: Structure/function relationship in RNA metabolism. Wiley Interdiscip. Rev. RNA. 2010;1:415–431. doi: 10.1002/wrna.39. PubMed DOI
Narayanan A., Speckmann W., Terns R., Terns M.P. Role of the Box C/D Motif in Localization of Small Nucleolar RNAs to Coiled Bodies and Nucleoli. Mol. Biol. Cell. 1999;10:2131–2147. doi: 10.1091/mbc.10.7.2131. PubMed DOI PMC
Weber S.C., Brangwynne C.P. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. Curr. Biol. 2015;25:641–646. doi: 10.1016/j.cub.2015.01.012. PubMed DOI PMC
Brangwynne C.P., Mitchison T.J., Hyman A.A. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA. 2011;108:4334–4339. doi: 10.1073/pnas.1017150108. PubMed DOI PMC
Falahati H., Wieschaus E. Independent active and thermodynamic processes govern the nucleolus assembly in vivo. Proc. Natl. Acad. Sci. USA. 2017;114:1335–1340. doi: 10.1073/pnas.1615395114. PubMed DOI PMC
Berry J., Weber S.C., Vaidya N., Haataja M., Brangwynne C.P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl. Acad. Sci. USA. 2015;112:E5237–E5245. doi: 10.1073/pnas.1509317112. PubMed DOI PMC
Mitrea D.M., Kriwacki R.W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 2016;14:1. doi: 10.1186/s12964-015-0125-7. PubMed DOI PMC
Mitrea D.M., Cika J.A., Stanley C.B., Nourse A., Onuchic P.L., Banerjee P.R., Phillips A.H., Park C.G., Deniz A.A., Kriwacki R.W. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 2018;9:1–13. doi: 10.1038/s41467-018-03255-3. PubMed DOI PMC
Rodriguez-Corona U., Sobol M., Rodriguez-Zapata L.C., Hozak P., Castano E. Fibrillarin from Archaea to human. Biol. Cell. 2015;107:159–174. doi: 10.1111/boc.201400077. PubMed DOI
Aris J.P., Blobel G. cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera. Proc. Natl. Acad. Sci. USA. 1991;88:931–935. doi: 10.1073/pnas.88.3.931. PubMed DOI PMC
Tessarz P., Santos-Rosa H., Robson S.C., Sylvestersen K.B., Nelson C.J., Nielsen M.L., Kouzarides T. Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature. 2014;505:564–568. doi: 10.1038/nature12819. PubMed DOI PMC
Loza-Muller L., Rodríguez-Corona U., Sobol M., Rodríguez-Zapata L.C., Hozak P., Castano E. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. Front. Plant Sci. 2015;6:976. doi: 10.3389/fpls.2015.00976. PubMed DOI PMC
Chen H., Wurm T., Britton P., Brooks G., Hiscox J.A. Interaction of the coronavirus nucleoprotein with nucleolar antigens and the host cell. J. Virol. 2002;76:5233–5250. doi: 10.1128/JVI.76.10.5233-5250.2002. PubMed DOI PMC
Ponti D., Troiano M., Bellenchi G.C., Battaglia P.A., Gigliani F. The HIV Tat protein affects processing of ribosomal RNA precursor. BMC Cell Biol. 2008;9:32. doi: 10.1186/1471-2121-9-32. PubMed DOI PMC
Melén K., Tynell J., Fagerlund R., Roussel P., Hernandez-Verdun D., Julkunen I. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin. Virol. J. 2012;9:167. doi: 10.1186/1743-422X-9-167. PubMed DOI PMC
Fournier M.J., Maxwell E.S. The nucleolar snRNAs: Catching up with the spliceosomal snRNAs. Trends Biochem. Sci. 1993;18:131–135. doi: 10.1016/0968-0004(93)90020-N. PubMed DOI
Kass S., Tyc K., Steitz J.A., Sollner-Webb B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell. 1990;60:897–908. doi: 10.1016/0092-8674(90)90338-F. PubMed DOI
Hughes J.M., Ares M. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5’ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J. 1991;10:4231–4239. doi: 10.1002/j.1460-2075.1991.tb05001.x. PubMed DOI PMC
Dragon F., Lemay V., Trahan C. snoRNAs: Biogenesis, structure and function. Encycl. Life Sci. 2006:1–7. doi: 10.1038/npg.els.0003813. DOI
Granneman S., Vogelzangs J., Lührmann R., van Venrooij W.J., Pruijn G.J.M., Watkins N.J. Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP. Mol. Cell. Biol. 2004;24:8600–8610. doi: 10.1128/MCB.24.19.8600-8610.2004. PubMed DOI PMC
Sáez-Vasquez J., Caparros-Ruiz D., Barneche F., Echeverría M. Characterization of a crucifer plant pre-rRNA processing complex. Biochem. Soc. Trans. 2004;32:578–580. doi: 10.1042/BST0320578. PubMed DOI
Lin Y., Protter D.S.W., Rosen M.K., Parker R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell. 2015;60:208–219. doi: 10.1016/j.molcel.2015.08.018. PubMed DOI PMC
Smith D.-L., Erce M.A., Lai Y.-W., Tomasetig F., Hart-Smith G., Hamey J.J., Wilkins M.R. Crosstalk of phosphorylation and arginine methylation in disordered SRGG repeats of S. cerevisiae fibrillarin and its association with nucleolar localisation. J. Mol. Biol. 2019;432:448–466. doi: 10.1016/j.jmb.2019.11.006. PubMed DOI
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozak P., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Sobol M., Yildirim S., Philimonenko V.V., Marášek P., Castaño E., Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Hamann B.L., Blind R.D. Nuclear phosphoinositide regulation of chromatin. J. Cell. Physiol. 2017;233:107–123. doi: 10.1002/jcp.25886. PubMed DOI PMC
Castano E., Yildirim S., Fáberová V., Krausová A., Uličná L., Paprčková D., Sztacho M., Hozák P. Nuclear phosphoinositides—Versatile regulators of genome functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC
Kalasova I., Fáberová V., Kalendová A., Yildirim S., Uličná L., Venit T., Hozák P. Tools for visualization of phosphoinositides in the cell nucleus. Histochem. Cell Biol. 2016;145:485–496. doi: 10.1007/s00418-016-1409-8. PubMed DOI
Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI
Arraiano C.M., Mauxion F., Viegas S.C., Matos R.G., Séraphin B. Intracellular ribonucleases involved in transcript processing and decay: Precision tools for RNA. Biochim. Biophys. Acta. 2013;1829:491–513. doi: 10.1016/j.bbagrm.2013.03.009. PubMed DOI
Deutscher M.P. Twenty years of bacterial RNases and RNA processing: How we’ve matured. RNA. 2015;21:597–600. doi: 10.1261/rna.049692.115. PubMed DOI PMC
Moelling K., Broecker F. The reverse transcriptase-RNase H: From viruses to antiviral defense. Ann. N. Y. Acad. Sci. 2015;1341:126–135. doi: 10.1111/nyas.12668. PubMed DOI
Bubeck D., Reijns M.A.M., Graham S.C., Astell K.R., Jones E.Y., Jackson A.P. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res. 2011;39:3652–3666. doi: 10.1093/nar/gkq980. PubMed DOI PMC
Houseley J., Tollervey D. The many pathways of RNA degradation. Cell. 2009;136:763–776. doi: 10.1016/j.cell.2009.01.019. PubMed DOI
Henras A.K., Plisson-Chastang C., O’Donohue M.F., Chakraborty A., Gleizes P.E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA. 2015;6:225–242. doi: 10.1002/wrna.1269. PubMed DOI PMC
Fatica A., Galardi S., Altieri F., Bozzoni I. Fibrillarin binds directly and specifically to U16 box C/D snoRNA. RNA. 2000;6:88–95. doi: 10.1017/S1355838200991623. PubMed DOI PMC
Tschochner H., Hurt E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 2003;13:255–263. doi: 10.1016/S0962-8924(03)00054-0. PubMed DOI
Kassas N., Tanguy E., Thahouly T., Fouillen L., Heintz D., Chasserot-Golaz S., Bader M.-F., Grant N.J., Vitale N. Comparative characterization of phosphatidic acid sensors and their localization during frustrated phagocytosis. J. Biol. Chem. 2017;292:4266–4279. doi: 10.1074/jbc.M116.742346. PubMed DOI PMC
Ulrich A., Andersen K.R., Schwartz T.U. Exponential Megapriming PCR (EMP) Cloning-Seamless DNA Insertion into Any Target Plasmid without Sequence Constraints. PLoS ONE. 2012;7:e0053360. doi: 10.1371/journal.pone.0053360. PubMed DOI PMC
Peng Y., Yu G., Tian S., Li H. Co-expression and co-purification of archaeal and eukaryal box C/D RNPs. PLoS ONE. 2014;9:e0103096. doi: 10.1371/journal.pone.0103096. PubMed DOI PMC
Dudkina E., Ulyanova V., Shah Mahmud R., Khodzhaeva V., Dao L., Vershinina V., Kolpakov A., Ilinskaya O. Three-step procedure for preparation of pure Bacillus altitudinis ribonuclease. FEBS Open Bio. 2016;6:24–32. doi: 10.1002/2211-5463.12023. PubMed DOI PMC
Chen D., Huang S. Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. J. Cell Biol. 2001;153:169–176. doi: 10.1083/jcb.153.1.169. PubMed DOI PMC
Altschul S.F., Koonin E.V. Iterated profile searches with PSI-BLAST--a tool for discovery in protein databases. Trends Biochem. Sci. 1998;23:444–447. doi: 10.1016/S0968-0004(98)01298-5. PubMed DOI
Rosenhouse-Dantsker A., Logothetis D.E., Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys. J. 2011;100:381–389. doi: 10.1016/j.bpj.2010.11.086. PubMed DOI PMC
Morales J., Sobol M., Rodriguez-Zapata L.C., Hozak P., Castano E. Aromatic amino acids and their relevance in the specificity of the PH domain. J. Mol. Recognit. 2017;30 doi: 10.1002/jmr.2649. PubMed DOI
Min J., Wu H., Zeng H., Loppnau P., Weigelt J., Sundstrom M., Arrowsmith C.H., Edwards A.M., Bochkarev A., Plotnikov A.N., et al. Resour. [(accessed on 20 April 2019)];Stud. Biol. Macromol. Protein Data Bank. Available online: https://www.rcsb.org/structure/2IPX.
Schwarz D.S., Blower M.D. The calcium-dependent ribonuclease XendoU promotes ER network formation through local RNA degradation. J. Cell Biol. 2014;207:41–57. doi: 10.1083/jcb.201406037. PubMed DOI PMC
Seidel C.W., Peck L.J. Purification of a calcium dependent ribonuclease from Xenopus laevis. Nucleic Acids Res. 1994;22:1456–1462. doi: 10.1093/nar/22.8.1456. PubMed DOI PMC
Rosta E., Yang W., Hummer G. Calcium inhibition of ribonuclease H1 two-metal ion catalysis. J. Am. Chem. Soc. 2014;136:3137–3144. doi: 10.1021/ja411408x. PubMed DOI PMC
Rodriguez-Corona U., Pereira-Santana A., Sobol M., Rodriguez-Zapata L.C., Hozak P., Castano E. Novel Ribonuclease Activity Differs between Fibrillarins from Arabidopsis thaliana. Front. Plant Sci. 2017;8:1878. doi: 10.3389/fpls.2017.01878. PubMed DOI PMC
Tran E.J., Zhang X., Maxwell E.S. Efficient RNA 2’-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C’/D’ RNPs. EMBO J. 2003;22:3930–3940. doi: 10.1093/emboj/cdg368. PubMed DOI PMC
Watkins N.J., Bohnsack M.T. The box C/D and H/ACA snoRNPs: Key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip. Rev. RNA. 2012;3:397–414. doi: 10.1002/wrna.117. PubMed DOI
Newman D.R., Kuhn J.F., Shanab G.M., Maxwell E.S. Box C/D snoRNA-associated proteins: Two pairs of evolutionarily ancient proteins and possible links to replication and transcription. RNA. 2000;6:861–879. doi: 10.1017/S1355838200992446. PubMed DOI PMC
Tomkuviene M., Ličyte J., Olendraite I., Liutkevičiute Z., Clouet-D’Orval B., Klimašauskas S. Archaeal fibrillarin-Nop5 heterodimer 2′-O-methylates RNA independently of the C/D guide RNP particle. RNA. 2017;23:1329–1337. doi: 10.1261/rna.059832.116. PubMed DOI PMC
Thandapani P., O’Connor T.R., Bailey T.L., Richard S. Defining the RGG/RG Motif. Mol. Cell. 2013;50:613–623. doi: 10.1016/j.molcel.2013.05.021. PubMed DOI
McBride A.E., Conboy A.K., Brown S.P., Ariyachet C., Rutledge K.L. Specific sequences within arginine-glycine-rich domains affect mRNA-binding protein function. Nucleic Acids Res. 2009;37:4322–4330. doi: 10.1093/nar/gkp349. PubMed DOI PMC
Gendra E., Moreno A., Albà M.M., Pages M. Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J. 2004;38:875–886. doi: 10.1111/j.1365-313X.2004.02095.x. PubMed DOI
Donald R.G., Lawrence D.M., Jackson A.O. The barley stripe mosaic virus 58-kilodalton beta (b) protein is a multifunctional RNA binding protein. J. Virol. 1997;71:1538–1546. doi: 10.1128/JVI.71.2.1538-1546.1997. PubMed DOI PMC
Lawrence D.M., Jackson A.O. Requirements for cell-to-cell movement of Barley stripe mosaic virus in monocot and dicot hosts. Mol. Plant Pathol. 2001;2:65–75. doi: 10.1046/j.1364-3703.2001.00052.x. PubMed DOI
Lawrence D.M., Jackson A.O. Interactions of the TGB1 protein during cell-to-cell movement of Barley stripe mosaic virus. J. Virol. 2001;75:8712–8723. doi: 10.1128/JVI.75.18.8712-8723.2001. PubMed DOI PMC
Li Z., Zhang Y., Jiang Z., Jin X., Zhang K., Wang X., Han C., Yu J., Li D. Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. Mol. Plant Pathol. 2018;19:1222–1237. doi: 10.1111/mpp.12612. PubMed DOI PMC
Kim S.H., Macfarlane S., Kalinina N.O., Rakitina D.V., Ryabov E.V., Gillespie T., Haupt S., Brown J.W.S., Taliansky M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl. Acad. Sci. USA. 2007;104:11115–11120. doi: 10.1073/pnas.0704632104. PubMed DOI PMC
Emmott E., Hiscox J.A. Nucleolar targeting: The hub of the matter. EMBO Rep. 2009;10:231–238. doi: 10.1038/embor.2009.14. PubMed DOI PMC
Dixon S.E., Bhatti M.M., Uversky V.N., Dunker A.K., Sullivan W.J., Jr. Regions of intrinsic disorder help identify a novel nuclear localization signal in Toxoplasma gondii histone acetyltransferase TgGCN5-B. Mol. Biochem. Parasitol. 2011;175:192–195. doi: 10.1016/j.molbiopara.2010.10.009. PubMed DOI PMC
Jansen R.P., Hurt E.C., Kern H., Lehtonen H., Carmo-Fonseca M., Lapeyre B., Tollervey D. Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J. Cell Biol. 1991;113:715–729. doi: 10.1083/jcb.113.4.715. PubMed DOI PMC
Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E.C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993;72:443–457. doi: 10.1016/0092-8674(93)90120-F. PubMed DOI
Peña C., Hurt E., Panse V.G. Eukaryotic ribosome assembly, transport and quality control. Nat. Struct. Mol. Biol. 2017;24:689–699. doi: 10.1038/nsmb.3454. PubMed DOI
Correll C.C., Bartek J., Dundr M. The Nucleolus: A multiphase condensate balancing ribosome synthesis and translational capacity in health, aging and ribosomopathies. Cells. 2019;8:869. doi: 10.3390/cells8080869. PubMed DOI PMC
Yao R.-W., Xu G., Wang Y., Shan L., Luan P.-F., Wang Y., Wu M., Yang L.-Z., Xing Y.-H., Yang L., et al. Nascent Pre-rRNA Sorting via Phase Separation Drives the Assembly of Dense Fibrillar Components in the Human Nucleolus. Mol. Cell. 2019;76:767–783. doi: 10.1016/j.molcel.2019.08.014. PubMed DOI
Xing Y.-H., Yao R.-W., Zhang Y., Guo C.-J., Jiang S., Xu G., Dong R., Yang L., Chen L.-L. SLERT Regulates DDX21 Rings Associated with Pol I Transcription. Cell. 2017;169:664–678.e16. doi: 10.1016/j.cell.2017.04.011. PubMed DOI
Tollervey D., Lehtonen H., Carmo-Fonseca M., Hurt E.C. The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre-rRNA processing in yeast. EMBO J. 1991;10:573–583. doi: 10.1002/j.1460-2075.1991.tb07984.x. PubMed DOI PMC
Tiku V., Kew C., Mehrotra P., Ganesan R., Robinson N., Antebi A. Nucleolar fibrillarin is an evolutionarily conserved regulator of bacterial pathogen resistance. Nat. Commun. 2018;9:3607. doi: 10.1038/s41467-018-06051-1. PubMed DOI PMC
Seo J.S., Diloknawarit P., Park B.S., Chua N.H. ELF18-INDUCED LONG NONCODING RNA 1 evicts fibrillarin from mediator subunit to enhance PATHOGENESIS-RELATED GENE 1 (PR1) expression. New Phytol. 2019;221:2067–2079. doi: 10.1111/nph.15530. PubMed DOI
Lapeyre B., Bourbon H., Amalric F. Nucleolin, the major nucleolar protein of growing eukaryotic cells: An unusual protein structure revealed by the nucleotide sequence. Proc. Natl. Acad. Sci. USA. 1987;84:1472–1476. doi: 10.1073/pnas.84.6.1472. PubMed DOI PMC
Lee W.C., Xue Z.X., Mélèse T. The NSR1 gene encodes a protein that specifically binds nuclear localization sequences and has two RNA recognition motifs. J. Cell Biol. 1991;113:1–12. doi: 10.1083/jcb.113.1.1. PubMed DOI PMC
Jong A.Y., Clark M.W., Gilbert M., Oehm A., Campbell J.L. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins. Mol. Cell. Biol. 1987;7:2947–2955. doi: 10.1128/MCB.7.8.2947. PubMed DOI PMC
Girard J.P., Lehtonen H., Caizergues-Ferrer M., Amalric F., Tollervey D., Lapeyre B. GAR1 is an essential small nucleolar RNP protein required for pre-rRNA processing in yeast. EMBO J. 1992;11:673–682. doi: 10.1002/j.1460-2075.1992.tb05099.x. PubMed DOI PMC
Bugler B., Bourbon H., Lapeyre B., Wallace M.O., Chang J.H., Amalric F., Olson M.O. RNA binding fragments from nucleolin contain the ribonucleoprotein consensus sequence. J. Biol. Chem. 1987;262:10922–10925. PubMed
Snaar S., Wiesmeijer K., Jochemsen A.G., Tanke H.J., Dirks R.W. Mutational analysis of fibrillarin and its mobility in living human cells. J. Cell Biol. 2000;151:653–662. doi: 10.1083/jcb.151.3.653. PubMed DOI PMC
Fiume R., Keune W.J., Faenza I., Bultsma Y., Ramazzotti G., Jones D.R., Martelli A.M., Somner L., Follo M.Y., Divecha N., et al. Nuclear phosphoinositides: Location, regulation and function. Subcell. Biochem. 2012;59:335–361. PubMed
Sagaram U.S., El-Mounadi K., Buchko G.W., Berg H.R., Kaur J., Pandurangi R.S., Smith T.J., Shah D.M. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: Identification of an RGFRRR motif governing fungal cell entry. PLoS ONE. 2013;8:e82485. doi: 10.1371/journal.pone.0082485. PubMed DOI PMC
Wawrzyniak A.M., Kashyap R., Zimmermann P. Phosphoinositides and PDZ domain scaffolds. Adv. Exp. Med. Biol. 2013;991:41–57. PubMed
Warner J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 1999;24:437–440. doi: 10.1016/S0968-0004(99)01460-7. PubMed DOI