Nuclear Phosphoinositides-Versatile Regulators of Genome Functions
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
31261688
PubMed Central
PMC6678639
DOI
10.3390/cells8070649
PII: cells8070649
Knihovny.cz E-zdroje
- Klíčová slova
- cell nucleus, gene expression, genome, phosphoinositides,
- MeSH
- buněčné jádro genetika metabolismus MeSH
- Eukaryota genetika metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- genetická transkripce MeSH
- genom * MeSH
- posttranskripční úpravy RNA MeSH
- restrukturace chromatinu MeSH
- RNA-polymerasa I metabolismus MeSH
- RNA-polymerasa II metabolismus MeSH
- vazba proteinů fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- RNA-polymerasa I MeSH
- RNA-polymerasa II MeSH
The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2's role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets-recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide-protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.
Zobrazit více v PubMed
Warwick N., Somerville C.R., Slack C.R. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem. J. 1986;235:25–31. PubMed PMC
Thompson W., Macdonald G. Cytidine diphosphate diglyceride of bovine brain. Positional distribution of fatty acids and analysis of major molecular species. Eur. J. Biochem. 1976;65:107–111. doi: 10.1111/j.1432-1033.1976.tb10394.x. PubMed DOI
Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–657. doi: 10.1038/nature05185. PubMed DOI
Balla T., Szentpetery Z., Kim Y.J. Phosphoinositide signaling: New tools and insights. Physiology. 2009;24:231–244. doi: 10.1152/physiol.00014.2009. PubMed DOI PMC
Saarikangas J., Zhao H., Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 2010;90:259–289. doi: 10.1152/physrev.00036.2009. PubMed DOI
Shewan A., Eastburn D.J., Mostov K. Phosphoinositides in cell architecture. Cold Spring Harb Perspect. Biol. 2011;3:a004796. doi: 10.1101/cshperspect.a004796. PubMed DOI PMC
Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. PubMed DOI PMC
Sun Y., Thapa N., Hedman A.C., Anderson R.A. Phosphatidylinositol 4,5-bisphosphate: Targeted production and signaling. Bioessays. 2013;35:513–522. doi: 10.1002/bies.201200171. PubMed DOI PMC
Phan T.K., Williams S.A., Bindra G.K., Lay F.T., Poon I.K., Hulett M.D. Phosphoinositides: Multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ. 2019;26:781–793. doi: 10.1038/s41418-018-0269-2. PubMed DOI PMC
Dickson E.J., Hille B. Understanding phosphoinositides: Rare, dynamic, and essential membrane phospholipids. Biochem. J. 2019;476:1–23. doi: 10.1042/BCJ20180022. PubMed DOI PMC
Ratti S., Ramazzotti G., Faenza I., Fiume R., Mongiorgi S., Billi A.M., McCubrey J.A., Suh P.G., Manzoli L., Cocco L., et al. Nuclear inositide signaling and cell cycle. Adv. Biol. Regul. 2018;67:1–6. doi: 10.1016/j.jbior.2017.10.008. PubMed DOI
Hamann B.L., Blind R.D. Nuclear phosphoinositide regulation of chromatin. J. Cell Physiol. 2018;233:107–123. doi: 10.1002/jcp.25886. PubMed DOI PMC
Sobol M., Yildirim S., Philimonenko V.V., Marášek P., Castaño E., Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns (4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;14:2501–2511. PubMed
Prasanth K.V., Sacco-Bubulya P.A., Prasanth S.G., Spector D.L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell. 2003;14:1043–1057. doi: 10.1091/mbc.e02-10-0669. PubMed DOI PMC
de Vries K.J., Heinrichs A.A.J., Cunningham E., Brunink F., Westerman J., Somerharju P.J., Cockcroft S., Wirtz K.W.A., Snoek G.T. An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system. Biochem. J. 1995;310:643–649. doi: 10.1042/bj3100643. PubMed DOI PMC
De Vries K.J., Westerman J., Bastiaens P.I., Jovin T.M., Wirtz K.W., Snoek G.T. Fluorescently labeled phosphatidylinositol transfer protein isoforms (a and b), microinjected into fetal bovine heart endothelial cells, are targeted to distinct intracellular sites. Exp. Cell Res. 1996;227:33–39. doi: 10.1006/excr.1996.0246. PubMed DOI
Rubbini S., Cocco L., Manzoli L., Lutterman J., Billi A.M., Matteucci A., Wirtz K.W. Phosphoinositide signalling in nuclei of friend cells: DMSO-induced differentiation reduces the association of phosphatidylinositol-transfer protein with the nucleus. Biochem. Biophys. Res. Commun. 1997;230:30230–30235. doi: 10.1006/bbrc.1996.5950. PubMed DOI
Smith C.D., Wells W.W. Phosphorylation of rat liver nuclear envelopes. I. Characterization of in vitro protein phosphorylation. J. Biol. Chem. 1983;258:9360–9367. PubMed
Cocco L., Gilmour R.S., Ognibene A., Letcher A.J., Manzoli F.A., Irvine R.F. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 1987;248:765–770. doi: 10.1042/bj2480765. PubMed DOI PMC
Vann R.L., Wooding P.F., Irvine F.R., Divecha N. Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem. J. 1997;327:569–576. doi: 10.1042/bj3270569. PubMed DOI PMC
Payrastre B., Nievers M., Boonstra J., Breton M., Verkleij A.J., en Henegouwen P.V.B. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 1992;267:5078–5084. PubMed
York J.D., Majerus P.W. Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J. Biol. Chem. 1994;269:7847–7850. PubMed
Clarke J.H., Letcher A.J., D’Santos C.S., Halstead J.R., Irvine R.F., Divecha N. Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem. J. 2001;357:905–910. doi: 10.1042/bj3570905. PubMed DOI PMC
Višnjić D., Ćurić J., Crljen V., Batinić D., Volinia S., Banfić H. Nuclear phosphoinositide 3-kinase C2beta activation during G2/M phase of the cell cycle in HL-60 cells. Biochim. Biophys. Acta. 2003;1631:61–71. doi: 10.1016/S1388-1981(02)00356-6. PubMed DOI
Stallings J.D., Tall E.G., Pentyala S., Rebecchi M.J. Nuclear translocation of phospholipase C-delta1 is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 2005;280:22060–22069. doi: 10.1074/jbc.M413813200. PubMed DOI
Zheng L., Lee W.H. The retinoblastoma gene: A prototypic and multifunctional tumor suppressor. Exp. Cell Res. 2001;264:2–18. doi: 10.1006/excr.2000.5129. PubMed DOI
Divecha N., Roefs M., Los A., Halstead J., Bannister A., D’Santos C. Type I PIPkinases interact with and are regulated by the retinoblastoma susceptibility gene product-pRB. Curr. Biol. 2002;12:582–587. doi: 10.1016/S0960-9822(02)00769-8. PubMed DOI
Didichenko S.A., Thelen M. Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J. Biol. Chem. 2001;276:48135–48142. doi: 10.1074/jbc.M104610200. PubMed DOI
Sinđić A., Aleksandrova A., Fields A.P., Volinia S., Banfić H. Presence and activation of nuclear phosphoinositide 3-kinase C2beta during compensatory liver growth. J. Biol. Chem. 2001;276:17754–17761. doi: 10.1074/jbc.M006533200. PubMed DOI
De Graaf P., Klapisz E.E., Schulz T.K., Cremers A.F., Verkleij A.J., en Henegouwen P.M.V.B. Nuclear localization of phosphatidylinositol 4-kinase beta. J. Cell Sci. 2002;115:1769–1775. PubMed
Strahl T., Hama H., DeWald D.B., Thorner J. Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J. Cell Biol. 2005;171:967–979. doi: 10.1083/jcb.200504104. PubMed DOI PMC
Kakuk A., Friedländer E., Vereb Jr G., Kása A., Balla A., Balla T., Heilmeyer Jr L.M., Gergely P., Vereb G. Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytom. A. 2006;69:1174–1183. doi: 10.1002/cyto.a.20347. PubMed DOI
Damen J.E., Liu L., Rosten P., Humphries R.K., Jefferson A.B., Majerus P.W., Krystal G. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA. 1996;93:1689–1693. doi: 10.1073/pnas.93.4.1689. PubMed DOI PMC
Lioubin M.N., Algate P.A., Tsai S., Carlberg K., Aebersold A., Rohrschneider L.R. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes. Dev. 1996;10:1084–1095. doi: 10.1101/gad.10.9.1084. PubMed DOI
Derua R., Janssens V., Nakamura T., Vanderwinden J.M., Waelkens E., Erneux C. Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem. J. 2011;439:391–401. PubMed
Boronenkov I.V., Loijens J.C., Umeda M., Anderson R.A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell. 1998;9:3547–3560. doi: 10.1091/mbc.9.12.3547. PubMed DOI PMC
Mellman D.L., Gonzales M.L., Song C., Barlow C.A., Wang P., Kendziorski C., Anderson R.A. A PtdIns4,5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature. 2008;451:1013–1017. doi: 10.1038/nature06666. PubMed DOI
Szivak I., Lamb N., Heilmeyer L.M. Subcellular localization and structural function of endogenous phosphorylated phosphatidylinositol 4-kinase (PI4K92) J. Biol. Chem. 2006;281:16740–16749. doi: 10.1074/jbc.M511645200. PubMed DOI
Richardson J.P., Wang M., Clarke J.H., Patel K.J., Irvine R.F. Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localisation. Cell Signal. 2007;19:1309–1314. doi: 10.1016/j.cellsig.2007.01.010. PubMed DOI PMC
Jones D.R., Bultsma Y., Keune W.J., Halstead J.R., Elouarrat D., Mohammed S., Heck A.J., D’Santos C.S., Divecha N. Nuclear PtdIns5P as a transducer of stress signaling: An in vivo role for PIP4Kbeta. Mol. Cell. 2006;23:685–695. doi: 10.1016/j.molcel.2006.07.014. PubMed DOI
Zou J., Marjanovic J., Kisseleva M.V., Wilson M., Majerus P.W. Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc. Natl. Acad. Sci. USA. 2007;104:16834–16839. doi: 10.1073/pnas.0708189104. PubMed DOI PMC
Schill N.J., Anderson R.A. Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem. J. 2009;422:473–482. doi: 10.1042/BJ20090638. PubMed DOI PMC
Wang M., Bond N.J., Letcher A.J., Richardson J.P., Lilley K.S., Irvine R.F., Clarke J.H. Genomic tagging reveals a random association of endogenous PtdIns5P 4-kinases IIalpha and IIbeta and a partial nuclear localization of the IIalpha isoform. Biochem. J. 2010;430:215–221. doi: 10.1042/BJ20100340. PubMed DOI PMC
Clarke J.H., Irvine R.F. The activity, evolution and association of phosphatidylinositol 5-phosphate 4-kinases. Adv. Biol. Regul. 2012;52:40–45. doi: 10.1016/j.advenzreg.2011.09.002. PubMed DOI
Doughman R.L., Firestone A.J., Wojtasiak M.L., Bunce M.W., Anderson R.A. Membrane ruffling requires coordination between type Ialpha phosphatidylinositol phosphate kinase and Rac signaling. J. Biol. Chem. 2003;278:23036–23045. doi: 10.1074/jbc.M211397200. PubMed DOI
Neri L.M., Milani D., Bertolaso L., Stroscio M., Bertagnolo V., Capitani S. Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor. Cell Mol. Biol. 1994;40:619–626. PubMed
Zini N., Ognibene A., Bavelloni A., Santi S., Sabatelli P., Baldini N., Scotlandi K., Serra M., Maraldi N.M. Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem. Cell Biol. 1996;106:457–464. doi: 10.1007/BF02473307. PubMed DOI
Metjian A., Roll R.L., Ma A.D., Abrams C.S. Agonists cause nuclear translocation of phosphatidylinositol 3-kinase gamma. A Gbetagamma-dependent pathway that requires the p110gamma amino terminus. J. Biol. Chem. 1999;274:27943–27947. doi: 10.1074/jbc.274.39.27943. PubMed DOI
Bacqueville D., Déléris P., Mendre C., Pieraggi M.T., Chap H., Guillon G., Perret B., Breton-Douillon M. Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J. Biol. Chem. 2001;276:22170–22176. doi: 10.1074/jbc.M011572200. PubMed DOI
Resnick A.C., Snowman A.M., Kang B.N., Hurt K.J., Snyder S.H., Saiardi A. Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc. Natl. Acad. Sci. USA. 2005;102:12783–12788. doi: 10.1073/pnas.0506184102. PubMed DOI PMC
Maag D., Maxwell M.J., Hardesty D.A., Boucher K.L., Choudhari N., Hanno A.G., Ma J.F., Snowman A.S., Pietropaoli J.W., Xu R., et al. Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. USA. 2011;108:1391–1396. doi: 10.1073/pnas.1017831108. PubMed DOI PMC
Vanhaesebroeck B., Leevers S.J., Ahmadi K., Timms J., Katso R., Driscoll P.C., Woscholski R., Parker P.J., Waterfield M.D. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. PubMed DOI
Lachyankar M.B., Sultana N., Schonhoff C.M., Mitra P., Poluha W., Lambert S., Quesenberry P.J., Litofsky N.S., Recht L.D., Nabi R., et al. A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 2000;20:1404–1413. doi: 10.1523/JNEUROSCI.20-04-01404.2000. PubMed DOI PMC
Gimm O., Perren A., Weng L.P., Marsh D.J., Yeh J.J., Ziebold U., Gil E., Hinze R., Delbridge L., Lees J.A., et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol. 2000;156:1693–1700. doi: 10.1016/S0002-9440(10)65040-7. PubMed DOI PMC
Déléris P., Bacqueville D., Gayral S., Carrez L., Salles J.P., Perret B., Breton-Douillon M. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J. Biol. Chem. 2003;278:38884–38891. doi: 10.1074/jbc.M300816200. PubMed DOI
Lindsay Y., McCoull D., Davidson L., Leslie N.R., Fairservice A., Gray A., Lucocq J., Downes C.P. Localization of agonist-sensitive PtdIns (3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J. Cell Sci. 2006;119:5160–5168. doi: 10.1242/jcs.000133. PubMed DOI
Tran D., Gascard P., Berthon B., Fukami K., Takenawa T., Giraud F., Claret M. Cellular distribution of polyphosphoinositides in rat hepatocytes. Cell Signal. 1993;5:565–581. doi: 10.1016/0898-6568(93)90052-N. PubMed DOI
Kim C.G., Park D., Rhee S.G. The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J. Biol. Chem. 1996;271:21187–21192. doi: 10.1074/jbc.271.35.21187. PubMed DOI
Zini N., Martelli A.M., Cocco L., Manzoli F.A., Maraldi N.M. Phosphoinositidase C isoforms are specifically localized in the nuclear matrix and cytoskeleton of Swiss 3T3 cells. Exp. Cell Res. 1993;208:257–269. doi: 10.1006/excr.1993.1245. PubMed DOI
Tabellini G., Bortul R., Santi S., Riccio M., Baldini G., Cappellini A., Billi A.M., Berezney R., Ruggeri A., Cocco L., et al. Diacylglycerol kinase-theta is localized in the speckle domains of the nucleus. Exp. Cell Res. 2003;287:143–154. doi: 10.1016/S0014-4827(03)00115-0. PubMed DOI
Bertagnolo V., Mazzoni M., Ricci D., Carini C., Neri L.M., Previati M., Capitani S. Identification of PI-PLC beta 1, gamma 1, and delta 1 in rat liver: Subcellular distribution and relationship to inositol lipid nuclear signalling. Cell Signal. 1995;7:669–678. doi: 10.1016/0898-6568(95)00036-O. PubMed DOI
Liu N., Fukami K., Yu H., Takenawa T. A new phospholipase C delta 4 is induced at S-phase of the cell cycle and appears in the nucleus. J. Biol. Chem. 1996;271:355–360. doi: 10.1074/jbc.271.1.355. PubMed DOI
Bertagnolo V., Marchisio M., Capitani S., Neri L.M. Intranuclear translocation of phospholipase C beta2 during HL-60 myeloid differentiation. Biochem. Biophys. Res. Commun. 1997;235:831–837. doi: 10.1006/bbrc.1997.6893. PubMed DOI
Yamaga M., Fujii M., Kamata H., Hirata H., Yagisawa H. Phospholipase C-delta1 contains a functional nuclear export signal sequence. J. Biol. Chem. 1999;274:28537–28541. doi: 10.1074/jbc.274.40.28537. PubMed DOI
Ye K., Aghdasi B., Luo H.R., Moriarity J.L., Wu F.Y., Hong J.J., Hurt K.J., Bae S.S., Suh P.G., Snyder S.H. Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature. 2002;415:541–544. doi: 10.1038/415541a. PubMed DOI
Yoda A., Oda S., Shikano T., Kouchi Z., Awaji T., Shirakawa H., Kinoshita K., Miyazaki S. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev. Biol. 2004;268:245–257. doi: 10.1016/j.ydbio.2003.12.028. PubMed DOI
Larman M.G., Saunders C.M., Carroll J., Lai F.A., Swann K. Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCzeta. J. Cell Sci. 2004;117:2513–2521. doi: 10.1242/jcs.01109. PubMed DOI
Klein B.M., Andrews J.B., Bannan B.A., Nazario-Toole A.E., Jenkins T.C., Christensen K.D., Oprisan S.A., Meyer-Bernstein E.L. Phospholipase C beta 4 in mouse hepatocytes: Rhythmic expression and cellular distribution. Comp. Hepatol. 2008;7:8. doi: 10.1186/1476-5926-7-8. PubMed DOI PMC
Cooney M.A., Malcuit C., Cheon B., Holland M.K., Fissore R.A., D’Cruz N.T. Species-specific differences in the activity and nuclear localization of murine and bovine phospholipase C zeta 1. Biol. Reprod. 2010;83:92–101. doi: 10.1095/biolreprod.109.079814. PubMed DOI PMC
Fiume R., Keune W.J., Faenza I., Bultsma Y., Ramazzotti G., Jones D.R., Martelli A.M., Somner L., Follo M.Y., Divecha N., et al. Nuclear phosphoinositides: Location, regulation and function. Subcell. Biochem. 2012;59:335–361. PubMed
Kalasova I., Fáberová V., Kalendová A., Yildirim S., Uličná L., Venit T., Hozák P. Tools for visualization of phosphoinositides in the cell nucleus. Histochem. Cell Biol. 2016;145:485–496. doi: 10.1007/s00418-016-1409-8. PubMed DOI
Tsuji T., Takatori S., Fujimoto T. Definition of phosphoinositide distribution in the nanoscale. Curr. Opin. Cell Biol. 2019;57:33–39. doi: 10.1016/j.ceb.2018.10.008. PubMed DOI
Gillooly D.J., Morrow I.C., Lindsay M., Gould R., Bryant N.J., Gaullier J.M., Parton R.G., Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 2000;19:4577–4588. doi: 10.1093/emboj/19.17.4577. PubMed DOI PMC
Yokogawa T., Nagata S., Nishio Y., Tsutsumi T., Ihara S., Shirai R., Morita K., Umeda M., Shirai Y., Saitoh N., et al. Evidence that 3’-phosphorylated polyphosphoinositides are generated at the nuclear surface: Use of immunostaining technique with monoclonal antibodies specific for PI 3,4-P (2) FEBS Lett. 2000;473:222–226. doi: 10.1016/S0014-5793(00)01535-0. PubMed DOI
Mazzotti G., Zini N., Rizzi E., Rizzoli R., Galanzi A., Ognibene A., Santi S., Matteucci A., Martelli A.M., Maraldi N.M. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem. Cytochem. 1995;43:181–191. doi: 10.1177/43.2.7822774. PubMed DOI
Kular G., Fleming I.N., Downes C.P., Lucocq J.M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem. J. 2002;363:657–666. PubMed PMC
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozák P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI
Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI
Maraldi N.M., Zini N., Santi S., Manzoli F.A. Topology of inositol lipid signal transduction in the nucleus. J. Cell. Physiol. 1999;181:203–217. doi: 10.1002/(SICI)1097-4652(199911)181:2<203::AID-JCP3>3.0.CO;2-O. PubMed DOI
Sztacho M., Sobol M., Balaban C., Lopes S.E.E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI
Toska E., Campbell H.A., Shandilya J., Goodfellow S.J., Shore P., Medler K.F., Roberts S.G. Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Rep. 2012;2:462–469. doi: 10.1016/j.celrep.2012.08.005. PubMed DOI PMC
Blind R.D., Suzawa M., Ingraham H.A. Direct modification and activation of a nuclear receptor-PIP(2) complex by the inositol lipid kinase IPMK. Sci. Signal. 2012;5:ra44. doi: 10.1126/scisignal.2003111. PubMed DOI PMC
Lewis A.E., Sommer L., Arntzen M.Ø., Strahm Y., Morrice N.A., Divecha N., D’Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell Proteomics. 2011;10:M110-003376. doi: 10.1074/mcp.M110.003376. PubMed DOI PMC
Gelato K.A., Tauber M., Ong M.S., Winter S., Hiragami-Hamada K., Sindlinger J., Lemak A., Bultsma Y., Houliston S., Schwarzer D., et al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol. Cell. 2014;54:905–919. doi: 10.1016/j.molcel.2014.04.004. PubMed DOI
Gozani O., Karuman P., Jones D.R., Ivanov D., Cha J., Lugovskoy A.A., Baird C.L., Zhu H., Field S.J., Lessnick S.L., et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 2003;114:99–111. doi: 10.1016/S0092-8674(03)00480-X. PubMed DOI
Ndamukong I., Jones D.R., Lapko H., Divecha N., Avramova Z. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLoS ONE. 2010;5:e13396. doi: 10.1371/journal.pone.0013396. PubMed DOI PMC
Jungmichel S., Sylvestersen K.B., Choudhary C., Nguyen S., Mann M., Nielsen M.L. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep. 2014;6:578–591. doi: 10.1016/j.celrep.2013.12.038. PubMed DOI
Bertagnolo V., Neri L.M., Marchisio M., Mischiati C., Capitani S. Phosphoinositide 3-kinase activity is essential for all-trans-retinoic acid-induced granulocytic differentiation of HL-60 cells. Cancer Res. 1999;59:542–546. PubMed
Ahn J.Y., Rong R., Liu X., Ye K. PIKE/nuclear PI 3-kinase signaling mediates the antiapoptotic actions of NGF in the nucleus. EMBO J. 2004;23:3995–4006. doi: 10.1038/sj.emboj.7600392. PubMed DOI PMC
Ahn J.Y., Liu X., Cheng D., Peng J., Chan P.K., Wade P.A., Ye K. Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol. Cell. 2005;18:435–445. doi: 10.1016/j.molcel.2005.04.010. PubMed DOI
Borgatti P., Martelli A.M., Tabellini G., Bellacosa A., Capitani S., Neri L.M. Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear matrix protein nucleolin. J. Cell Physiol. 2003;196:79–88. doi: 10.1002/jcp.10279. PubMed DOI
Nguyen T.L.X., Choi J.W., Lee S.B., Ye K., Woo S.D., Lee K.H., Ahn J.Y. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells. Biochem. Biophys. Res. Commun. 2006;349:789–798. doi: 10.1016/j.bbrc.2006.08.120. PubMed DOI
Lee S.B., Nguyen T.L.X., Choi J.W., Lee K.H., Cho S.W., Liu Z., Ye K., Bae S.S., Ahn J.Y. Nuclear akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc. Natl. Acad. Sci. USA. 2008;105:16584–165689. doi: 10.1073/pnas.0807668105. PubMed DOI PMC
Lin A., Hu Q., Li C., Xing Z., Ma G., Wang C., Li J., Ye Y., Yao J., Liang K., et al. The LINK-A lncRNA interacts with PtdIns (3,4,5) P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol. 2017;19:238–251. doi: 10.1038/ncb3473. PubMed DOI PMC
Karlsson T., Altankhuyag A., Dobrovolska O., Turcu D.C., Lewis A.E. polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem. J. 2016;473:2033–2047. doi: 10.1042/BCJ20160274. PubMed DOI PMC
Bunce M.W., Boronenkov I.V., Anderson R.A. Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J. Biol. Chem. 2008;283:8678–8686. doi: 10.1074/jbc.M710222200. PubMed DOI
Yu H., Fukami K., Watanabe Y., Ozaki C., Takenawa T. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 1998;251:281–287. doi: 10.1046/j.1432-1327.1998.2510281.x. PubMed DOI
Croston G.E., Kerrigan L.A., Lira L.M., Marshak D.R., Kadonaga J.T. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science. 1991;251:643–649. doi: 10.1126/science.1899487. PubMed DOI
Johnson C.A., Goddard J.P., Adams R.L. The effect of histone H1 and DNA methylation on transcription. Biochem. J. 1995;305:791–798. doi: 10.1042/bj3050791. PubMed DOI PMC
Levine A., Yeivin A., Ben-Asher E., Aloni Y., Razin A. Histone H1-mediated inhibition of transcription initiation of methylated templates in vitro. J. Biol. Chem. 1993;268:21754–21759. PubMed
Rando O.J., Zhao K., Janmey P., Crabtree G.R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA. 2002;99:2824–2829. doi: 10.1073/pnas.032662899. PubMed DOI PMC
Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 1998;95:625–636. doi: 10.1016/S0092-8674(00)81633-5. PubMed DOI
Viiri K.M., Jänis J., Siggers T., Heinonen T.Y., Valjakka J., Bulyk M.L., Mäki M., Lohi O. DNA-binding and -bending activities of SAP30L and SAP30 are mediated by a zinc-dependent module and monophosphoinositides. Mol. Cell Biol. 2009;29:342–356. doi: 10.1128/MCB.01213-08. PubMed DOI PMC
Garcia-Ramirez M., Rocchini C., Ausio J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 1995;270:17923–17928. doi: 10.1074/jbc.270.30.17923. PubMed DOI
Lee D.Y., Hayes J.J., Pruss D., Wolffe A.P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72:73–84. doi: 10.1016/0092-8674(93)90051-Q. PubMed DOI
Nagashima M., Shiseki M., Miura K., Hagiwara K., Linke S.P., Pedeux R., Wang X.W., Yokota J., Riabowol K., Harris C.C. DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc. Natl. Acad. Sci. USA. 2001;98:9671–9676. doi: 10.1073/pnas.161151798. PubMed DOI PMC
Choi S., Chen M., Cryns V.L., Anderson R.A. A nuclear phosphoinositide kinase complex regulates p53. Nature. 2019;21:462–475. doi: 10.1038/s41556-019-0297-2. PubMed DOI PMC
Alvarez-Venegas R., Sadder M., Hlavacka A., Baluška F., Xia Y., Lu G., Firsov A., Sarath G., Moriyama H., Dubrovsky J.G., et al. The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc. Natl. Acad. Sci. USA. 2006;103:6049–6054. doi: 10.1073/pnas.0600944103. PubMed DOI PMC
Stijf-Bultsma Y., Sommer L., Tauber M., Baalbaki M., Giardoglou P., Jones D.R., Gelato K.A., van Pelt J., Shah Z., Rahnamoun H., et al. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol. Cell. 2015;58:453–467. doi: 10.1016/j.molcel.2015.03.009. PubMed DOI PMC
Tanaka K., Horiguchi K., Yoshida T., Takeda M., Fujisawa H., Takeuchi K., Umeda M., Kato S., Ihara S., Nagata S., et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J. Biol. Chem. 1999;274:3919–3922. doi: 10.1074/jbc.274.7.3919. PubMed DOI
Blind R.D., Sablin E.P., Kuchenbecker K.M., Chiu H.J., Deacon A.M., Das D., Fletterick R.J., Ingraham H.A. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Proc. Natl. Acad. Sci. USA. 2014;111:15054–15059. doi: 10.1073/pnas.1416740111. PubMed DOI PMC
Lalli E., Doghman M., de Late P.L., El Wakil A., Mus-Veteau I. Beyond steroidogenesis: Novel target genes for SF-1 discovered by genomics. Mol. Cell Endocrinol. 2013;371:154–159. doi: 10.1016/j.mce.2012.11.005. PubMed DOI
Ulicna L., Rohozkova J., Hozak P. Multiple aspects of PIP2 involvement in C. elegans gametogenesis. Int. J. Mol. Sci. 2018;19:2679. doi: 10.3390/ijms19092679. PubMed DOI PMC
Nojima T., Hirose T., Kimura H., Hagiwara M. The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J. Biol. Chem. 2007;282:15645–15651. doi: 10.1074/jbc.M700629200. PubMed DOI
Fuke H., Ohno M. Role of poly (A) tail as an identity element for mRNA nuclear export. Nucl. Acids Res. 2008;36:1037–1049. doi: 10.1093/nar/gkm1120. PubMed DOI PMC
Okada M., Jang S.W., Ye K. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc. Natl. Acad. Sci. USA. 2008;105:8649–8654. doi: 10.1073/pnas.0802533105. PubMed DOI PMC
Wickramasinghe V.O., Savill J.M., Chavali S., Jonsdottir A.B., Rajendra E., Grüner T., Laskey R.A., Babu M.M., Venkitaraman A.R. Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity. Mol. Cell. 2013;51:737–750. doi: 10.1016/j.molcel.2013.08.031. PubMed DOI
Grummt I. Wisely chosen paths—Regulation of rRNA synthesis. FEBS J. 2010;277:4626–4639. doi: 10.1111/j.1742-4658.2010.07892.x. PubMed DOI
Hozák P., Cook P.R., Schofer C., Mosgoller W., Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J. Cell Sci. 1994;107:639–648. PubMed
Bell S.P., Learned R.M., Jantzen H.M., Tjian R. Functional cooperativity between transcription factor-Ubf1 and factor-Sl1 mediates human ribosomal-Rna synthesis. Science. 1988;241:1192–1197. doi: 10.1126/science.3413483. PubMed DOI
Leblanc B., Read C., Moss T. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J. 1993;12:513–525. doi: 10.1002/j.1460-2075.1993.tb05683.x. PubMed DOI PMC
Mais C., Wright J.E., Prieto J.L., Raggett S.L., McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 2005;19:50–64. doi: 10.1101/gad.310705. PubMed DOI PMC
Mougey E.B., Pape L.K., Sollner-Webb B. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription. J. Biol. Chem. 1996;271:27138–27145. doi: 10.1074/jbc.271.43.27138. PubMed DOI
O’Sullivan A.C., Sullivan G.J., McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell Biol. 2002;22:657–668. doi: 10.1128/MCB.22.2.657-668.2002. PubMed DOI PMC
Pikaard C.S., McStay B., Schultz M.C., Bell S.P., Reeder R.H. The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF. Genes Dev. 1989;3:1779–1788. doi: 10.1101/gad.3.11.1779. PubMed DOI
Putnam C.D., Pikaard C.S. Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers. Mol. Cell Biol. 1992;12:4970–4980. doi: 10.1128/MCB.12.11.4970. PubMed DOI PMC
Loza-Muller L., Rodríguez-Corona U., Sobol M., Rodríguez-Zapata L.C., Hozak P., Castano E. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. Front. Plant Sci. 2015;6:976. doi: 10.3389/fpls.2015.00976. PubMed DOI PMC
Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E.C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993;72:443–457. doi: 10.1016/0092-8674(93)90120-F. PubMed DOI
Newton K., Petfalski E., Tollervey D., Cáceres J.F. Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Mol. Cell Biol. 2003;23:8519–8527. doi: 10.1128/MCB.23.23.8519-8527.2003. PubMed DOI PMC
Uličná L., Paprčková D., Fáberová V., Hozák P. Phospholipids and inositol phosphates linked to the epigenome. Histochem. Cell Biol. 2018;150:245–253. doi: 10.1007/s00418-018-1690-9. PubMed DOI
Tribble E.K., Ivanova P.T., Grabon A., Alb J.G., Faenza I., Cocco L., Brown H.A., Bankaitis V.A. Quantitative profiling of the endonuclear glycerophospholipidome of murine embryonic fibroblasts. J. Lipid Res. 2016;57:1492–1506. doi: 10.1194/jlr.M068734. PubMed DOI PMC
Ferrero G.O., Renner M.L., Gil G.A., Rodríguez-Berdini L., Caputto B.L. c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate PtdIns (4,5)P(2) promotes global transcriptional changes. Biochem. J. 2014;461:521–530. doi: 10.1042/BJ20131376. PubMed DOI
Chakrabarti R., Sanyal S., Ghosh A., Bhar K., Das C., Siddhanta A. Phosphatidylinositol-4-phosphate 5-kinase 1alpha modulates ribosomal RNA gene silencing through its interaction with histone H3 lysine 9 trimethylation and heterochromatin protein HP1-alpha. J. Biol. Chem. 2015;290:20893–20903. doi: 10.1074/jbc.M114.633727. PubMed DOI PMC
Bua D.J., Martin G.M., Binda O., Gozani O. Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Sci. Rep. 2013;3:2137. doi: 10.1038/srep02137. PubMed DOI PMC
Li W., Laishram R.S., Ji Z., Barlow C.A., Tian B., Anderson R.A. Star-PAP control of BIK expression and apoptosis is regulated by nuclear PIPKIalpha and PKCdelta signaling. Mol. Cell. 2012;45:25–37. doi: 10.1016/j.molcel.2011.11.017. PubMed DOI PMC
Brangwynne C.P., Mitchison T.J., Hyman A.A. Hyman, Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA. 2011;108:4334–4339. doi: 10.1073/pnas.1017150108. PubMed DOI PMC
Feric M., Vaidya N., Harmon T.S., Mitrea D.M., Zhu L., Richardson T.M., Kriwacki R.W., Pappu R.V., Brangwynne C.P. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 2016;165:1686–1697. doi: 10.1016/j.cell.2016.04.047. PubMed DOI PMC
Jost D., Carrivain P., Cavalli G., Vaillant C. Modeling epigenome folding: Formation and dynamics of topologically associated chromatin domains. Nucl. Acids Res. 2014;42:9553–9561. doi: 10.1093/nar/gku698. PubMed DOI PMC
Strom A.R., Emelyanov A.V., Mir M., Fyodorov D.V., Darzacq X., Karpen G.H. Phase separation drives heterochromatin domain formation. Nature. 2017;547:241–245. doi: 10.1038/nature22989. PubMed DOI PMC
Boehning M., Dugast-Darzacq C., Rankovic M., Hansen A.S., Yu T., Marie-Nelly H., McSwiggen D.T., Kokic G., Dailey G.M., Cramer P., et al. RNA polymerase II clustering through carboxyterminal domain phase separation. Nat. Struct. Mol. Biol. 2018;25:833–840. doi: 10.1038/s41594-018-0112-y. PubMed DOI
Yamazaki T., Souquere S., Chujo T., Kobelke S., Chong Y.S., Fox A.H., Bond C.S., Nakagawa S., Pierron G., Hirose T. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell. 2018;70:1038–1053. doi: 10.1016/j.molcel.2018.05.019. PubMed DOI
Kim J., Han K.Y., Khanna N., Ha T., Belmont A.S. Nuclear speckle fusion via long-range directional motion regulates the number and size of speckles. J. Cell Sci. 2019;132:1–14. doi: 10.1242/jcs.226563. PubMed DOI PMC
Keenen M.M., Larson A.G., Narlikar G.J. Visualization and quantitation of phase-separated droplet Formation By Human HP1alpha. Methods Enzymol. 2018;611:51–66. PubMed PMC
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer
PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription
Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome
Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids