Nuclear Phosphoinositides-Versatile Regulators of Genome Functions

. 2019 Jun 28 ; 8 (7) : . [epub] 20190628

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid31261688

The many functions of phosphoinositides in cytosolic signaling were extensively studied; however, their activities in the cell nucleus are much less clear. In this review, we summarize data about their nuclear localization and metabolism, and review the available literature on their involvements in chromatin remodeling, gene transcription, and RNA processing. We discuss the molecular mechanisms via which nuclear phosphoinositides, in particular phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2), modulate nuclear processes. We focus on PI(4,5)P2's role in the modulation of RNA polymerase I activity, and functions of the nuclear lipid islets-recently described nucleoplasmic PI(4,5)P2-rich compartment involved in RNA polymerase II transcription. In conclusion, the high impact of the phosphoinositide-protein complexes on nuclear organization and genome functions is only now emerging and deserves further thorough studies.

Zobrazit více v PubMed

Warwick N., Somerville C.R., Slack C.R. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis in the ‘16:3’ plant Arabidopsis thaliana. Biochem. J. 1986;235:25–31. PubMed PMC

Thompson W., Macdonald G. Cytidine diphosphate diglyceride of bovine brain. Positional distribution of fatty acids and analysis of major molecular species. Eur. J. Biochem. 1976;65:107–111. doi: 10.1111/j.1432-1033.1976.tb10394.x. PubMed DOI

Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–657. doi: 10.1038/nature05185. PubMed DOI

Balla T., Szentpetery Z., Kim Y.J. Phosphoinositide signaling: New tools and insights. Physiology. 2009;24:231–244. doi: 10.1152/physiol.00014.2009. PubMed DOI PMC

Saarikangas J., Zhao H., Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 2010;90:259–289. doi: 10.1152/physrev.00036.2009. PubMed DOI

Shewan A., Eastburn D.J., Mostov K. Phosphoinositides in cell architecture. Cold Spring Harb Perspect. Biol. 2011;3:a004796. doi: 10.1101/cshperspect.a004796. PubMed DOI PMC

Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. PubMed DOI PMC

Sun Y., Thapa N., Hedman A.C., Anderson R.A. Phosphatidylinositol 4,5-bisphosphate: Targeted production and signaling. Bioessays. 2013;35:513–522. doi: 10.1002/bies.201200171. PubMed DOI PMC

Phan T.K., Williams S.A., Bindra G.K., Lay F.T., Poon I.K., Hulett M.D. Phosphoinositides: Multipurpose cellular lipids with emerging roles in cell death. Cell Death Differ. 2019;26:781–793. doi: 10.1038/s41418-018-0269-2. PubMed DOI PMC

Dickson E.J., Hille B. Understanding phosphoinositides: Rare, dynamic, and essential membrane phospholipids. Biochem. J. 2019;476:1–23. doi: 10.1042/BCJ20180022. PubMed DOI PMC

Ratti S., Ramazzotti G., Faenza I., Fiume R., Mongiorgi S., Billi A.M., McCubrey J.A., Suh P.G., Manzoli L., Cocco L., et al. Nuclear inositide signaling and cell cycle. Adv. Biol. Regul. 2018;67:1–6. doi: 10.1016/j.jbior.2017.10.008. PubMed DOI

Hamann B.L., Blind R.D. Nuclear phosphoinositide regulation of chromatin. J. Cell Physiol. 2018;233:107–123. doi: 10.1002/jcp.25886. PubMed DOI PMC

Sobol M., Yildirim S., Philimonenko V.V., Marášek P., Castaño E., Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC

Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns (4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;14:2501–2511. PubMed

Prasanth K.V., Sacco-Bubulya P.A., Prasanth S.G., Spector D.L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell. 2003;14:1043–1057. doi: 10.1091/mbc.e02-10-0669. PubMed DOI PMC

de Vries K.J., Heinrichs A.A.J., Cunningham E., Brunink F., Westerman J., Somerharju P.J., Cockcroft S., Wirtz K.W.A., Snoek G.T. An isoform of the phosphatidylinositol-transfer protein transfers sphingomyelin and is associated with the Golgi system. Biochem. J. 1995;310:643–649. doi: 10.1042/bj3100643. PubMed DOI PMC

De Vries K.J., Westerman J., Bastiaens P.I., Jovin T.M., Wirtz K.W., Snoek G.T. Fluorescently labeled phosphatidylinositol transfer protein isoforms (a and b), microinjected into fetal bovine heart endothelial cells, are targeted to distinct intracellular sites. Exp. Cell Res. 1996;227:33–39. doi: 10.1006/excr.1996.0246. PubMed DOI

Rubbini S., Cocco L., Manzoli L., Lutterman J., Billi A.M., Matteucci A., Wirtz K.W. Phosphoinositide signalling in nuclei of friend cells: DMSO-induced differentiation reduces the association of phosphatidylinositol-transfer protein with the nucleus. Biochem. Biophys. Res. Commun. 1997;230:30230–30235. doi: 10.1006/bbrc.1996.5950. PubMed DOI

Smith C.D., Wells W.W. Phosphorylation of rat liver nuclear envelopes. I. Characterization of in vitro protein phosphorylation. J. Biol. Chem. 1983;258:9360–9367. PubMed

Cocco L., Gilmour R.S., Ognibene A., Letcher A.J., Manzoli F.A., Irvine R.F. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 1987;248:765–770. doi: 10.1042/bj2480765. PubMed DOI PMC

Vann R.L., Wooding P.F., Irvine F.R., Divecha N. Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem. J. 1997;327:569–576. doi: 10.1042/bj3270569. PubMed DOI PMC

Payrastre B., Nievers M., Boonstra J., Breton M., Verkleij A.J., en Henegouwen P.V.B. A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J. Biol. Chem. 1992;267:5078–5084. PubMed

York J.D., Majerus P.W. Nuclear phosphatidylinositols decrease during S-phase of the cell cycle in HeLa cells. J. Biol. Chem. 1994;269:7847–7850. PubMed

Clarke J.H., Letcher A.J., D’Santos C.S., Halstead J.R., Irvine R.F., Divecha N. Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem. J. 2001;357:905–910. doi: 10.1042/bj3570905. PubMed DOI PMC

Višnjić D., Ćurić J., Crljen V., Batinić D., Volinia S., Banfić H. Nuclear phosphoinositide 3-kinase C2beta activation during G2/M phase of the cell cycle in HL-60 cells. Biochim. Biophys. Acta. 2003;1631:61–71. doi: 10.1016/S1388-1981(02)00356-6. PubMed DOI

Stallings J.D., Tall E.G., Pentyala S., Rebecchi M.J. Nuclear translocation of phospholipase C-delta1 is linked to the cell cycle and nuclear phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 2005;280:22060–22069. doi: 10.1074/jbc.M413813200. PubMed DOI

Zheng L., Lee W.H. The retinoblastoma gene: A prototypic and multifunctional tumor suppressor. Exp. Cell Res. 2001;264:2–18. doi: 10.1006/excr.2000.5129. PubMed DOI

Divecha N., Roefs M., Los A., Halstead J., Bannister A., D’Santos C. Type I PIPkinases interact with and are regulated by the retinoblastoma susceptibility gene product-pRB. Curr. Biol. 2002;12:582–587. doi: 10.1016/S0960-9822(02)00769-8. PubMed DOI

Didichenko S.A., Thelen M. Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J. Biol. Chem. 2001;276:48135–48142. doi: 10.1074/jbc.M104610200. PubMed DOI

Sinđić A., Aleksandrova A., Fields A.P., Volinia S., Banfić H. Presence and activation of nuclear phosphoinositide 3-kinase C2beta during compensatory liver growth. J. Biol. Chem. 2001;276:17754–17761. doi: 10.1074/jbc.M006533200. PubMed DOI

De Graaf P., Klapisz E.E., Schulz T.K., Cremers A.F., Verkleij A.J., en Henegouwen P.M.V.B. Nuclear localization of phosphatidylinositol 4-kinase beta. J. Cell Sci. 2002;115:1769–1775. PubMed

Strahl T., Hama H., DeWald D.B., Thorner J. Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J. Cell Biol. 2005;171:967–979. doi: 10.1083/jcb.200504104. PubMed DOI PMC

Kakuk A., Friedländer E., Vereb Jr G., Kása A., Balla A., Balla T., Heilmeyer Jr L.M., Gergely P., Vereb G. Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytom. A. 2006;69:1174–1183. doi: 10.1002/cyto.a.20347. PubMed DOI

Damen J.E., Liu L., Rosten P., Humphries R.K., Jefferson A.B., Majerus P.W., Krystal G. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc. Natl. Acad. Sci. USA. 1996;93:1689–1693. doi: 10.1073/pnas.93.4.1689. PubMed DOI PMC

Lioubin M.N., Algate P.A., Tsai S., Carlberg K., Aebersold A., Rohrschneider L.R. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes. Dev. 1996;10:1084–1095. doi: 10.1101/gad.10.9.1084. PubMed DOI

Derua R., Janssens V., Nakamura T., Vanderwinden J.M., Waelkens E., Erneux C. Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem. J. 2011;439:391–401. PubMed

Boronenkov I.V., Loijens J.C., Umeda M., Anderson R.A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell. 1998;9:3547–3560. doi: 10.1091/mbc.9.12.3547. PubMed DOI PMC

Mellman D.L., Gonzales M.L., Song C., Barlow C.A., Wang P., Kendziorski C., Anderson R.A. A PtdIns4,5P2-regulated nuclear poly (A) polymerase controls expression of select mRNAs. Nature. 2008;451:1013–1017. doi: 10.1038/nature06666. PubMed DOI

Szivak I., Lamb N., Heilmeyer L.M. Subcellular localization and structural function of endogenous phosphorylated phosphatidylinositol 4-kinase (PI4K92) J. Biol. Chem. 2006;281:16740–16749. doi: 10.1074/jbc.M511645200. PubMed DOI

Richardson J.P., Wang M., Clarke J.H., Patel K.J., Irvine R.F. Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localisation. Cell Signal. 2007;19:1309–1314. doi: 10.1016/j.cellsig.2007.01.010. PubMed DOI PMC

Jones D.R., Bultsma Y., Keune W.J., Halstead J.R., Elouarrat D., Mohammed S., Heck A.J., D’Santos C.S., Divecha N. Nuclear PtdIns5P as a transducer of stress signaling: An in vivo role for PIP4Kbeta. Mol. Cell. 2006;23:685–695. doi: 10.1016/j.molcel.2006.07.014. PubMed DOI

Zou J., Marjanovic J., Kisseleva M.V., Wilson M., Majerus P.W. Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc. Natl. Acad. Sci. USA. 2007;104:16834–16839. doi: 10.1073/pnas.0708189104. PubMed DOI PMC

Schill N.J., Anderson R.A. Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem. J. 2009;422:473–482. doi: 10.1042/BJ20090638. PubMed DOI PMC

Wang M., Bond N.J., Letcher A.J., Richardson J.P., Lilley K.S., Irvine R.F., Clarke J.H. Genomic tagging reveals a random association of endogenous PtdIns5P 4-kinases IIalpha and IIbeta and a partial nuclear localization of the IIalpha isoform. Biochem. J. 2010;430:215–221. doi: 10.1042/BJ20100340. PubMed DOI PMC

Clarke J.H., Irvine R.F. The activity, evolution and association of phosphatidylinositol 5-phosphate 4-kinases. Adv. Biol. Regul. 2012;52:40–45. doi: 10.1016/j.advenzreg.2011.09.002. PubMed DOI

Doughman R.L., Firestone A.J., Wojtasiak M.L., Bunce M.W., Anderson R.A. Membrane ruffling requires coordination between type Ialpha phosphatidylinositol phosphate kinase and Rac signaling. J. Biol. Chem. 2003;278:23036–23045. doi: 10.1074/jbc.M211397200. PubMed DOI

Neri L.M., Milani D., Bertolaso L., Stroscio M., Bertagnolo V., Capitani S. Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor. Cell Mol. Biol. 1994;40:619–626. PubMed

Zini N., Ognibene A., Bavelloni A., Santi S., Sabatelli P., Baldini N., Scotlandi K., Serra M., Maraldi N.M. Cytoplasmic and nuclear localization sites of phosphatidylinositol 3-kinase in human osteosarcoma sensitive and multidrug-resistant Saos-2 cells. Histochem. Cell Biol. 1996;106:457–464. doi: 10.1007/BF02473307. PubMed DOI

Metjian A., Roll R.L., Ma A.D., Abrams C.S. Agonists cause nuclear translocation of phosphatidylinositol 3-kinase gamma. A Gbetagamma-dependent pathway that requires the p110gamma amino terminus. J. Biol. Chem. 1999;274:27943–27947. doi: 10.1074/jbc.274.39.27943. PubMed DOI

Bacqueville D., Déléris P., Mendre C., Pieraggi M.T., Chap H., Guillon G., Perret B., Breton-Douillon M. Characterization of a G protein-activated phosphoinositide 3-kinase in vascular smooth muscle cell nuclei. J. Biol. Chem. 2001;276:22170–22176. doi: 10.1074/jbc.M011572200. PubMed DOI

Resnick A.C., Snowman A.M., Kang B.N., Hurt K.J., Snyder S.H., Saiardi A. Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity. Proc. Natl. Acad. Sci. USA. 2005;102:12783–12788. doi: 10.1073/pnas.0506184102. PubMed DOI PMC

Maag D., Maxwell M.J., Hardesty D.A., Boucher K.L., Choudhari N., Hanno A.G., Ma J.F., Snowman A.S., Pietropaoli J.W., Xu R., et al. Inositol polyphosphate multikinase is a physiologic PI3-kinase that activates Akt/PKB. Proc. Natl. Acad. Sci. USA. 2011;108:1391–1396. doi: 10.1073/pnas.1017831108. PubMed DOI PMC

Vanhaesebroeck B., Leevers S.J., Ahmadi K., Timms J., Katso R., Driscoll P.C., Woscholski R., Parker P.J., Waterfield M.D. Synthesis and function of 3-phosphorylated inositol lipids. Annu. Rev. Biochem. 2001;70:535–602. doi: 10.1146/annurev.biochem.70.1.535. PubMed DOI

Lachyankar M.B., Sultana N., Schonhoff C.M., Mitra P., Poluha W., Lambert S., Quesenberry P.J., Litofsky N.S., Recht L.D., Nabi R., et al. A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 2000;20:1404–1413. doi: 10.1523/JNEUROSCI.20-04-01404.2000. PubMed DOI PMC

Gimm O., Perren A., Weng L.P., Marsh D.J., Yeh J.J., Ziebold U., Gil E., Hinze R., Delbridge L., Lees J.A., et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol. 2000;156:1693–1700. doi: 10.1016/S0002-9440(10)65040-7. PubMed DOI PMC

Déléris P., Bacqueville D., Gayral S., Carrez L., Salles J.P., Perret B., Breton-Douillon M. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J. Biol. Chem. 2003;278:38884–38891. doi: 10.1074/jbc.M300816200. PubMed DOI

Lindsay Y., McCoull D., Davidson L., Leslie N.R., Fairservice A., Gray A., Lucocq J., Downes C.P. Localization of agonist-sensitive PtdIns (3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J. Cell Sci. 2006;119:5160–5168. doi: 10.1242/jcs.000133. PubMed DOI

Tran D., Gascard P., Berthon B., Fukami K., Takenawa T., Giraud F., Claret M. Cellular distribution of polyphosphoinositides in rat hepatocytes. Cell Signal. 1993;5:565–581. doi: 10.1016/0898-6568(93)90052-N. PubMed DOI

Kim C.G., Park D., Rhee S.G. The role of carboxyl-terminal basic amino acids in Gqalpha-dependent activation, particulate association, and nuclear localization of phospholipase C-beta1. J. Biol. Chem. 1996;271:21187–21192. doi: 10.1074/jbc.271.35.21187. PubMed DOI

Zini N., Martelli A.M., Cocco L., Manzoli F.A., Maraldi N.M. Phosphoinositidase C isoforms are specifically localized in the nuclear matrix and cytoskeleton of Swiss 3T3 cells. Exp. Cell Res. 1993;208:257–269. doi: 10.1006/excr.1993.1245. PubMed DOI

Tabellini G., Bortul R., Santi S., Riccio M., Baldini G., Cappellini A., Billi A.M., Berezney R., Ruggeri A., Cocco L., et al. Diacylglycerol kinase-theta is localized in the speckle domains of the nucleus. Exp. Cell Res. 2003;287:143–154. doi: 10.1016/S0014-4827(03)00115-0. PubMed DOI

Bertagnolo V., Mazzoni M., Ricci D., Carini C., Neri L.M., Previati M., Capitani S. Identification of PI-PLC beta 1, gamma 1, and delta 1 in rat liver: Subcellular distribution and relationship to inositol lipid nuclear signalling. Cell Signal. 1995;7:669–678. doi: 10.1016/0898-6568(95)00036-O. PubMed DOI

Liu N., Fukami K., Yu H., Takenawa T. A new phospholipase C delta 4 is induced at S-phase of the cell cycle and appears in the nucleus. J. Biol. Chem. 1996;271:355–360. doi: 10.1074/jbc.271.1.355. PubMed DOI

Bertagnolo V., Marchisio M., Capitani S., Neri L.M. Intranuclear translocation of phospholipase C beta2 during HL-60 myeloid differentiation. Biochem. Biophys. Res. Commun. 1997;235:831–837. doi: 10.1006/bbrc.1997.6893. PubMed DOI

Yamaga M., Fujii M., Kamata H., Hirata H., Yagisawa H. Phospholipase C-delta1 contains a functional nuclear export signal sequence. J. Biol. Chem. 1999;274:28537–28541. doi: 10.1074/jbc.274.40.28537. PubMed DOI

Ye K., Aghdasi B., Luo H.R., Moriarity J.L., Wu F.Y., Hong J.J., Hurt K.J., Bae S.S., Suh P.G., Snyder S.H. Phospholipase C gamma 1 is a physiological guanine nucleotide exchange factor for the nuclear GTPase PIKE. Nature. 2002;415:541–544. doi: 10.1038/415541a. PubMed DOI

Yoda A., Oda S., Shikano T., Kouchi Z., Awaji T., Shirakawa H., Kinoshita K., Miyazaki S. Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev. Biol. 2004;268:245–257. doi: 10.1016/j.ydbio.2003.12.028. PubMed DOI

Larman M.G., Saunders C.M., Carroll J., Lai F.A., Swann K. Cell cycle-dependent Ca2+ oscillations in mouse embryos are regulated by nuclear targeting of PLCzeta. J. Cell Sci. 2004;117:2513–2521. doi: 10.1242/jcs.01109. PubMed DOI

Klein B.M., Andrews J.B., Bannan B.A., Nazario-Toole A.E., Jenkins T.C., Christensen K.D., Oprisan S.A., Meyer-Bernstein E.L. Phospholipase C beta 4 in mouse hepatocytes: Rhythmic expression and cellular distribution. Comp. Hepatol. 2008;7:8. doi: 10.1186/1476-5926-7-8. PubMed DOI PMC

Cooney M.A., Malcuit C., Cheon B., Holland M.K., Fissore R.A., D’Cruz N.T. Species-specific differences in the activity and nuclear localization of murine and bovine phospholipase C zeta 1. Biol. Reprod. 2010;83:92–101. doi: 10.1095/biolreprod.109.079814. PubMed DOI PMC

Fiume R., Keune W.J., Faenza I., Bultsma Y., Ramazzotti G., Jones D.R., Martelli A.M., Somner L., Follo M.Y., Divecha N., et al. Nuclear phosphoinositides: Location, regulation and function. Subcell. Biochem. 2012;59:335–361. PubMed

Kalasova I., Fáberová V., Kalendová A., Yildirim S., Uličná L., Venit T., Hozák P. Tools for visualization of phosphoinositides in the cell nucleus. Histochem. Cell Biol. 2016;145:485–496. doi: 10.1007/s00418-016-1409-8. PubMed DOI

Tsuji T., Takatori S., Fujimoto T. Definition of phosphoinositide distribution in the nanoscale. Curr. Opin. Cell Biol. 2019;57:33–39. doi: 10.1016/j.ceb.2018.10.008. PubMed DOI

Gillooly D.J., Morrow I.C., Lindsay M., Gould R., Bryant N.J., Gaullier J.M., Parton R.G., Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 2000;19:4577–4588. doi: 10.1093/emboj/19.17.4577. PubMed DOI PMC

Yokogawa T., Nagata S., Nishio Y., Tsutsumi T., Ihara S., Shirai R., Morita K., Umeda M., Shirai Y., Saitoh N., et al. Evidence that 3’-phosphorylated polyphosphoinositides are generated at the nuclear surface: Use of immunostaining technique with monoclonal antibodies specific for PI 3,4-P (2) FEBS Lett. 2000;473:222–226. doi: 10.1016/S0014-5793(00)01535-0. PubMed DOI

Mazzotti G., Zini N., Rizzi E., Rizzoli R., Galanzi A., Ognibene A., Santi S., Matteucci A., Martelli A.M., Maraldi N.M. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem. Cytochem. 1995;43:181–191. doi: 10.1177/43.2.7822774. PubMed DOI

Kular G., Fleming I.N., Downes C.P., Lucocq J.M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem. J. 2002;363:657–666. PubMed PMC

Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI

Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozák P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI

Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI

Maraldi N.M., Zini N., Santi S., Manzoli F.A. Topology of inositol lipid signal transduction in the nucleus. J. Cell. Physiol. 1999;181:203–217. doi: 10.1002/(SICI)1097-4652(199911)181:2<203::AID-JCP3>3.0.CO;2-O. PubMed DOI

Sztacho M., Sobol M., Balaban C., Lopes S.E.E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI

Toska E., Campbell H.A., Shandilya J., Goodfellow S.J., Shore P., Medler K.F., Roberts S.G. Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Rep. 2012;2:462–469. doi: 10.1016/j.celrep.2012.08.005. PubMed DOI PMC

Blind R.D., Suzawa M., Ingraham H.A. Direct modification and activation of a nuclear receptor-PIP(2) complex by the inositol lipid kinase IPMK. Sci. Signal. 2012;5:ra44. doi: 10.1126/scisignal.2003111. PubMed DOI PMC

Lewis A.E., Sommer L., Arntzen M.Ø., Strahm Y., Morrice N.A., Divecha N., D’Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell Proteomics. 2011;10:M110-003376. doi: 10.1074/mcp.M110.003376. PubMed DOI PMC

Gelato K.A., Tauber M., Ong M.S., Winter S., Hiragami-Hamada K., Sindlinger J., Lemak A., Bultsma Y., Houliston S., Schwarzer D., et al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol. Cell. 2014;54:905–919. doi: 10.1016/j.molcel.2014.04.004. PubMed DOI

Gozani O., Karuman P., Jones D.R., Ivanov D., Cha J., Lugovskoy A.A., Baird C.L., Zhu H., Field S.J., Lessnick S.L., et al. The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell. 2003;114:99–111. doi: 10.1016/S0092-8674(03)00480-X. PubMed DOI

Ndamukong I., Jones D.R., Lapko H., Divecha N., Avramova Z. Phosphatidylinositol 5-phosphate links dehydration stress to the activity of ARABIDOPSIS TRITHORAX-LIKE factor ATX1. PLoS ONE. 2010;5:e13396. doi: 10.1371/journal.pone.0013396. PubMed DOI PMC

Jungmichel S., Sylvestersen K.B., Choudhary C., Nguyen S., Mann M., Nielsen M.L. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep. 2014;6:578–591. doi: 10.1016/j.celrep.2013.12.038. PubMed DOI

Bertagnolo V., Neri L.M., Marchisio M., Mischiati C., Capitani S. Phosphoinositide 3-kinase activity is essential for all-trans-retinoic acid-induced granulocytic differentiation of HL-60 cells. Cancer Res. 1999;59:542–546. PubMed

Ahn J.Y., Rong R., Liu X., Ye K. PIKE/nuclear PI 3-kinase signaling mediates the antiapoptotic actions of NGF in the nucleus. EMBO J. 2004;23:3995–4006. doi: 10.1038/sj.emboj.7600392. PubMed DOI PMC

Ahn J.Y., Liu X., Cheng D., Peng J., Chan P.K., Wade P.A., Ye K. Nucleophosmin/B23, a nuclear PI(3,4,5)P(3) receptor, mediates the antiapoptotic actions of NGF by inhibiting CAD. Mol. Cell. 2005;18:435–445. doi: 10.1016/j.molcel.2005.04.010. PubMed DOI

Borgatti P., Martelli A.M., Tabellini G., Bellacosa A., Capitani S., Neri L.M. Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells under nerve growth factor stimulation and associates with the nuclear matrix protein nucleolin. J. Cell Physiol. 2003;196:79–88. doi: 10.1002/jcp.10279. PubMed DOI

Nguyen T.L.X., Choi J.W., Lee S.B., Ye K., Woo S.D., Lee K.H., Ahn J.Y. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells. Biochem. Biophys. Res. Commun. 2006;349:789–798. doi: 10.1016/j.bbrc.2006.08.120. PubMed DOI

Lee S.B., Nguyen T.L.X., Choi J.W., Lee K.H., Cho S.W., Liu Z., Ye K., Bae S.S., Ahn J.Y. Nuclear akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc. Natl. Acad. Sci. USA. 2008;105:16584–165689. doi: 10.1073/pnas.0807668105. PubMed DOI PMC

Lin A., Hu Q., Li C., Xing Z., Ma G., Wang C., Li J., Ye Y., Yao J., Liang K., et al. The LINK-A lncRNA interacts with PtdIns (3,4,5) P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol. 2017;19:238–251. doi: 10.1038/ncb3473. PubMed DOI PMC

Karlsson T., Altankhuyag A., Dobrovolska O., Turcu D.C., Lewis A.E. polybasic motif in ErbB3-binding protein 1 (EBP1) has key functions in nucleolar localization and polyphosphoinositide interaction. Biochem. J. 2016;473:2033–2047. doi: 10.1042/BCJ20160274. PubMed DOI PMC

Bunce M.W., Boronenkov I.V., Anderson R.A. Coordinated activation of the nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J. Biol. Chem. 2008;283:8678–8686. doi: 10.1074/jbc.M710222200. PubMed DOI

Yu H., Fukami K., Watanabe Y., Ozaki C., Takenawa T. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 1998;251:281–287. doi: 10.1046/j.1432-1327.1998.2510281.x. PubMed DOI

Croston G.E., Kerrigan L.A., Lira L.M., Marshak D.R., Kadonaga J.T. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science. 1991;251:643–649. doi: 10.1126/science.1899487. PubMed DOI

Johnson C.A., Goddard J.P., Adams R.L. The effect of histone H1 and DNA methylation on transcription. Biochem. J. 1995;305:791–798. doi: 10.1042/bj3050791. PubMed DOI PMC

Levine A., Yeivin A., Ben-Asher E., Aloni Y., Razin A. Histone H1-mediated inhibition of transcription initiation of methylated templates in vitro. J. Biol. Chem. 1993;268:21754–21759. PubMed

Rando O.J., Zhao K., Janmey P., Crabtree G.R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA. 2002;99:2824–2829. doi: 10.1073/pnas.032662899. PubMed DOI PMC

Zhao K., Wang W., Rando O.J., Xue Y., Swiderek K., Kuo A., Crabtree G.R. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell. 1998;95:625–636. doi: 10.1016/S0092-8674(00)81633-5. PubMed DOI

Viiri K.M., Jänis J., Siggers T., Heinonen T.Y., Valjakka J., Bulyk M.L., Mäki M., Lohi O. DNA-binding and -bending activities of SAP30L and SAP30 are mediated by a zinc-dependent module and monophosphoinositides. Mol. Cell Biol. 2009;29:342–356. doi: 10.1128/MCB.01213-08. PubMed DOI PMC

Garcia-Ramirez M., Rocchini C., Ausio J. Modulation of chromatin folding by histone acetylation. J. Biol. Chem. 1995;270:17923–17928. doi: 10.1074/jbc.270.30.17923. PubMed DOI

Lee D.Y., Hayes J.J., Pruss D., Wolffe A.P. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72:73–84. doi: 10.1016/0092-8674(93)90051-Q. PubMed DOI

Nagashima M., Shiseki M., Miura K., Hagiwara K., Linke S.P., Pedeux R., Wang X.W., Yokota J., Riabowol K., Harris C.C. DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc. Natl. Acad. Sci. USA. 2001;98:9671–9676. doi: 10.1073/pnas.161151798. PubMed DOI PMC

Choi S., Chen M., Cryns V.L., Anderson R.A. A nuclear phosphoinositide kinase complex regulates p53. Nature. 2019;21:462–475. doi: 10.1038/s41556-019-0297-2. PubMed DOI PMC

Alvarez-Venegas R., Sadder M., Hlavacka A., Baluška F., Xia Y., Lu G., Firsov A., Sarath G., Moriyama H., Dubrovsky J.G., et al. The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes. Proc. Natl. Acad. Sci. USA. 2006;103:6049–6054. doi: 10.1073/pnas.0600944103. PubMed DOI PMC

Stijf-Bultsma Y., Sommer L., Tauber M., Baalbaki M., Giardoglou P., Jones D.R., Gelato K.A., van Pelt J., Shah Z., Rahnamoun H., et al. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol. Cell. 2015;58:453–467. doi: 10.1016/j.molcel.2015.03.009. PubMed DOI PMC

Tanaka K., Horiguchi K., Yoshida T., Takeda M., Fujisawa H., Takeuchi K., Umeda M., Kato S., Ihara S., Nagata S., et al. Evidence that a phosphatidylinositol 3,4,5-trisphosphate-binding protein can function in nucleus. J. Biol. Chem. 1999;274:3919–3922. doi: 10.1074/jbc.274.7.3919. PubMed DOI

Blind R.D., Sablin E.P., Kuchenbecker K.M., Chiu H.J., Deacon A.M., Das D., Fletterick R.J., Ingraham H.A. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Proc. Natl. Acad. Sci. USA. 2014;111:15054–15059. doi: 10.1073/pnas.1416740111. PubMed DOI PMC

Lalli E., Doghman M., de Late P.L., El Wakil A., Mus-Veteau I. Beyond steroidogenesis: Novel target genes for SF-1 discovered by genomics. Mol. Cell Endocrinol. 2013;371:154–159. doi: 10.1016/j.mce.2012.11.005. PubMed DOI

Ulicna L., Rohozkova J., Hozak P. Multiple aspects of PIP2 involvement in C. elegans gametogenesis. Int. J. Mol. Sci. 2018;19:2679. doi: 10.3390/ijms19092679. PubMed DOI PMC

Nojima T., Hirose T., Kimura H., Hagiwara M. The interaction between cap-binding complex and RNA export factor is required for intronless mRNA export. J. Biol. Chem. 2007;282:15645–15651. doi: 10.1074/jbc.M700629200. PubMed DOI

Fuke H., Ohno M. Role of poly (A) tail as an identity element for mRNA nuclear export. Nucl. Acids Res. 2008;36:1037–1049. doi: 10.1093/nar/gkm1120. PubMed DOI PMC

Okada M., Jang S.W., Ye K. Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc. Natl. Acad. Sci. USA. 2008;105:8649–8654. doi: 10.1073/pnas.0802533105. PubMed DOI PMC

Wickramasinghe V.O., Savill J.M., Chavali S., Jonsdottir A.B., Rajendra E., Grüner T., Laskey R.A., Babu M.M., Venkitaraman A.R. Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity. Mol. Cell. 2013;51:737–750. doi: 10.1016/j.molcel.2013.08.031. PubMed DOI

Grummt I. Wisely chosen paths—Regulation of rRNA synthesis. FEBS J. 2010;277:4626–4639. doi: 10.1111/j.1742-4658.2010.07892.x. PubMed DOI

Hozák P., Cook P.R., Schofer C., Mosgoller W., Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J. Cell Sci. 1994;107:639–648. PubMed

Bell S.P., Learned R.M., Jantzen H.M., Tjian R. Functional cooperativity between transcription factor-Ubf1 and factor-Sl1 mediates human ribosomal-Rna synthesis. Science. 1988;241:1192–1197. doi: 10.1126/science.3413483. PubMed DOI

Leblanc B., Read C., Moss T. Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. EMBO J. 1993;12:513–525. doi: 10.1002/j.1460-2075.1993.tb05683.x. PubMed DOI PMC

Mais C., Wright J.E., Prieto J.L., Raggett S.L., McStay B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 2005;19:50–64. doi: 10.1101/gad.310705. PubMed DOI PMC

Mougey E.B., Pape L.K., Sollner-Webb B. Virtually the entire Xenopus laevis rDNA multikilobase intergenic spacer serves to stimulate polymerase I transcription. J. Biol. Chem. 1996;271:27138–27145. doi: 10.1074/jbc.271.43.27138. PubMed DOI

O’Sullivan A.C., Sullivan G.J., McStay B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell Biol. 2002;22:657–668. doi: 10.1128/MCB.22.2.657-668.2002. PubMed DOI PMC

Pikaard C.S., McStay B., Schultz M.C., Bell S.P., Reeder R.H. The Xenopus ribosomal gene enhancers bind an essential polymerase I transcription factor, xUBF. Genes Dev. 1989;3:1779–1788. doi: 10.1101/gad.3.11.1779. PubMed DOI

Putnam C.D., Pikaard C.S. Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers. Mol. Cell Biol. 1992;12:4970–4980. doi: 10.1128/MCB.12.11.4970. PubMed DOI PMC

Loza-Muller L., Rodríguez-Corona U., Sobol M., Rodríguez-Zapata L.C., Hozak P., Castano E. Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea. Front. Plant Sci. 2015;6:976. doi: 10.3389/fpls.2015.00976. PubMed DOI PMC

Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E.C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell. 1993;72:443–457. doi: 10.1016/0092-8674(93)90120-F. PubMed DOI

Newton K., Petfalski E., Tollervey D., Cáceres J.F. Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Mol. Cell Biol. 2003;23:8519–8527. doi: 10.1128/MCB.23.23.8519-8527.2003. PubMed DOI PMC

Uličná L., Paprčková D., Fáberová V., Hozák P. Phospholipids and inositol phosphates linked to the epigenome. Histochem. Cell Biol. 2018;150:245–253. doi: 10.1007/s00418-018-1690-9. PubMed DOI

Tribble E.K., Ivanova P.T., Grabon A., Alb J.G., Faenza I., Cocco L., Brown H.A., Bankaitis V.A. Quantitative profiling of the endonuclear glycerophospholipidome of murine embryonic fibroblasts. J. Lipid Res. 2016;57:1492–1506. doi: 10.1194/jlr.M068734. PubMed DOI PMC

Ferrero G.O., Renner M.L., Gil G.A., Rodríguez-Berdini L., Caputto B.L. c-Fos-activated synthesis of nuclear phosphatidylinositol 4,5-bisphosphate PtdIns (4,5)P(2) promotes global transcriptional changes. Biochem. J. 2014;461:521–530. doi: 10.1042/BJ20131376. PubMed DOI

Chakrabarti R., Sanyal S., Ghosh A., Bhar K., Das C., Siddhanta A. Phosphatidylinositol-4-phosphate 5-kinase 1alpha modulates ribosomal RNA gene silencing through its interaction with histone H3 lysine 9 trimethylation and heterochromatin protein HP1-alpha. J. Biol. Chem. 2015;290:20893–20903. doi: 10.1074/jbc.M114.633727. PubMed DOI PMC

Bua D.J., Martin G.M., Binda O., Gozani O. Nuclear phosphatidylinositol-5-phosphate regulates ING2 stability at discrete chromatin targets in response to DNA damage. Sci. Rep. 2013;3:2137. doi: 10.1038/srep02137. PubMed DOI PMC

Li W., Laishram R.S., Ji Z., Barlow C.A., Tian B., Anderson R.A. Star-PAP control of BIK expression and apoptosis is regulated by nuclear PIPKIalpha and PKCdelta signaling. Mol. Cell. 2012;45:25–37. doi: 10.1016/j.molcel.2011.11.017. PubMed DOI PMC

Brangwynne C.P., Mitchison T.J., Hyman A.A. Hyman, Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA. 2011;108:4334–4339. doi: 10.1073/pnas.1017150108. PubMed DOI PMC

Feric M., Vaidya N., Harmon T.S., Mitrea D.M., Zhu L., Richardson T.M., Kriwacki R.W., Pappu R.V., Brangwynne C.P. Coexisting liquid phases underlie nucleolar subcompartments. Cell. 2016;165:1686–1697. doi: 10.1016/j.cell.2016.04.047. PubMed DOI PMC

Jost D., Carrivain P., Cavalli G., Vaillant C. Modeling epigenome folding: Formation and dynamics of topologically associated chromatin domains. Nucl. Acids Res. 2014;42:9553–9561. doi: 10.1093/nar/gku698. PubMed DOI PMC

Strom A.R., Emelyanov A.V., Mir M., Fyodorov D.V., Darzacq X., Karpen G.H. Phase separation drives heterochromatin domain formation. Nature. 2017;547:241–245. doi: 10.1038/nature22989. PubMed DOI PMC

Boehning M., Dugast-Darzacq C., Rankovic M., Hansen A.S., Yu T., Marie-Nelly H., McSwiggen D.T., Kokic G., Dailey G.M., Cramer P., et al. RNA polymerase II clustering through carboxyterminal domain phase separation. Nat. Struct. Mol. Biol. 2018;25:833–840. doi: 10.1038/s41594-018-0112-y. PubMed DOI

Yamazaki T., Souquere S., Chujo T., Kobelke S., Chong Y.S., Fox A.H., Bond C.S., Nakagawa S., Pierron G., Hirose T. Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell. 2018;70:1038–1053. doi: 10.1016/j.molcel.2018.05.019. PubMed DOI

Kim J., Han K.Y., Khanna N., Ha T., Belmont A.S. Nuclear speckle fusion via long-range directional motion regulates the number and size of speckles. J. Cell Sci. 2019;132:1–14. doi: 10.1242/jcs.226563. PubMed DOI PMC

Keenen M.M., Larson A.G., Narlikar G.J. Visualization and quantitation of phase-separated droplet Formation By Human HP1alpha. Methods Enzymol. 2018;611:51–66. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer

. 2025 Feb 06 ; 24 (1) : 39. [epub] 20250206

The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization

. 2024 Dec ; 20 (12) : e1011462. [epub] 20241202

Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts

. 2023 ; 11 () : 1217637. [epub] 20230707

PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription

. 2023 Feb 24 ; 13 (3) : . [epub] 20230224

How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription

. 2021 Jun 22 ; 22 (13) : . [epub] 20210622

The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus

. 2021 Apr 08 ; 10 (4) : . [epub] 20210408

Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome

. 2021 Jan 04 ; 10 (1) : . [epub] 20210104

Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome

. 2020 May 11 ; 9 (5) : . [epub] 20200511

Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids

. 2020 May 06 ; 9 (5) : . [epub] 20200506

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...