The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19 05608S, 18 19714S
Grantová Agentura České Republiky
JSPS 20 06
Czech Academy of Sciences
RVO: 68378050
Institute of Molecular Genetics of the Czech Academy of Sciences
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund Project
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
LTC19048, LTC20024
Ministry of Education, Youth and Sports of Czech Republic COST Inter excellence internship
CA15214
EuroCellNet COST Action
LM2018129
Ministry of Education, Youth and Sports of Czech Republic - Czech BioImaging
PubMed
33918018
PubMed Central
PMC8068864
DOI
10.3390/cells10040848
PII: cells10040848
Knihovny.cz E-zdroje
- Klíčová slova
- MPRIP, PIP2, actin, nucleus, phase separation,
- MeSH
- adaptorové proteiny signální transdukční chemie metabolismus MeSH
- aktiny metabolismus MeSH
- buněčné jádro účinky léků metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- glykoly farmakologie MeSH
- lidé MeSH
- myosin typu I metabolismus MeSH
- nádorové buněčné linie MeSH
- proteinové domény MeSH
- RNA-polymerasa II metabolismus MeSH
- subcelulární frakce metabolismus MeSH
- vazba proteinů účinky léků MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- aktiny MeSH
- fosfatidylinositol-4,5-difosfát MeSH
- glykoly MeSH
- hexamethylene glycol MeSH Prohlížeč
- MPRIP protein, human MeSH Prohlížeč
- MYO1C protein, human MeSH Prohlížeč
- myosin typu I MeSH
- RNA-polymerasa II MeSH
- zelené fluorescenční proteiny MeSH
Here, we provide evidence for the presence of Myosin phosphatase rho-interacting protein (MPRIP), an F-actin-binding protein, in the cell nucleus. The MPRIP protein binds to Phosphatidylinositol 4,5-bisphosphate (PIP2) and localizes to the nuclear speckles and nuclear lipid islets which are known to be involved in transcription. We identified MPRIP as a component of RNA Polymerase II/Nuclear Myosin 1 complex and showed that MPRIP forms phase-separated condensates which are able to bind nuclear F-actin fibers. Notably, the fibrous MPRIP preserves its liquid-like properties and reforms the spherical shaped condensates when F-actin is disassembled. Moreover, we show that the phase separation of MPRIP is driven by its long intrinsically disordered region at the C-terminus. We propose that the PIP2/MPRIP association might contribute to the regulation of RNAPII transcription via phase separation and nuclear actin polymerization.
Zobrazit více v PubMed
Mulder J., Poland M., Gebbink M.F., Calafat J., Moolenaar W.H., Kranenburg O. p116Rip is a novel filamentous actin-binding protein. J. Biol. Chem. 2003;278:27216–27223. doi: 10.1074/jbc.M302399200. PubMed DOI
Vallenius T., Vaahtomeri K., Kovac B., Osiceanu A.M., Viljanen M., Makela T.P. An association between NUAK2 and MRIP reveals a novel mechanism for regulation of actin stress fibers. Pt 3J. Cell Sci. 2011;124:384–393. doi: 10.1242/jcs.072660. PubMed DOI
Koga Y., Ikebe M. p116Rip Decreases Myosin II Phosphorylation by Activating Myosin Light Chain Phosphatase and by Inactivating RhoA. J. Biol. Chem. 2005;280:4983–4991. doi: 10.1074/jbc.M410909200. PubMed DOI
Sztacho M., Salovska B., Cervenka J., Balaban C., Hoboth P., Hozak P. Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome. Cells. 2021;10:68. doi: 10.3390/cells10010068. PubMed DOI PMC
Mulder J., Ariaens A., van den Boomen D., Moolenaar W.H. p116Rip targets myosin phosphatase to the actin cytoskeleton and is essential for RhoA/ROCK-regulated neuritogenesis. Mol. Biol. Cell. 2004;15:5516–5527. doi: 10.1091/mbc.e04-04-0275. PubMed DOI PMC
Mulder J., Ariaens A., van Horck F.P.G., Moolenaar W.H. Inhibition of RhoA-mediated SRF activation by p116Rip. FEBS Lett. 2005;579:6121–6127. doi: 10.1016/j.febslet.2005.09.083. PubMed DOI
Surks H.K., Riddick N., Ohtani K. M-RIP Targets Myosin Phosphatase to Stress Fibers to Regulate Myosin Light Chain Phosphorylation in Vascular Smooth Muscle Cells. J. Biol. Chem. 2005;280:42543–42551. doi: 10.1074/jbc.M506863200. PubMed DOI
Surks H.K., Richards C.T., Mendelsohn M.E. Myosin Phosphatase-Rho Interacting Protein a New Member of the Myosin Phosphatase Complex that Directly Binds RhoA. J. Biol. Chem. 2003;278:51484–51493. doi: 10.1074/jbc.M305622200. PubMed DOI
Yamamoto E., Kalli A.C., Yasuoka K., Sansom M.S.P. Interactions of Pleckstrin Homology Domains with Membranes: Adding Back the Bilayer via High-Throughput Molecular Dynamics. Structure. 2016;24:1421–1431. doi: 10.1016/j.str.2016.06.002. PubMed DOI PMC
Almuzzaini B., Sarshad A.A., Farrants A.K., Percipalle P. Nuclear myosin 1 contributes to a chromatin landscape compatible with RNA polymerase II transcription activation. BMC Biol. 2015;13:35. doi: 10.1186/s12915-015-0147-z. PubMed DOI PMC
Nevzorov I., Sidorenko E., Wang W., Zhao H., Vartiainen M.K. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization. EMBO Rep. 2018;19:290–304. doi: 10.15252/embr.201744296. PubMed DOI PMC
Sobol M., Krausova A., Yildirim S., Kalasova I., Faberova V., Vrkoslav V., Philimonenko V., Marasek P., Pastorek L., Capek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131 doi: 10.1242/jcs.211094. PubMed DOI
Castano E., Yildirim S., Fáberová V., Krausová A., Uličná L., Paprčková D., Sztacho M., Hozák P. Nuclear Phosphoinositides—Versatile Regulators of Genome Functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC
Sztacho M., Sobol M., Balaban C., Escudeiro Lopes S.E., Hozak P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI
Boehning M., Dugast-Darzacq C., Rankovic M., Hansen A.S., Yu T., Marie-Nelly H., McSwiggen D.T., Kokic G., Dailey G.M., Cramer P., et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 2018;25:833–840. doi: 10.1038/s41594-018-0112-y. PubMed DOI
Cho W.K., Spille J.H., Hecht M., Lee C., Li C., Grube V., Cisse I.I. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science. 2018;361:412–415. doi: 10.1126/science.aar4199. PubMed DOI PMC
Lu H., Yu D., Hansen A.S., Ganguly S., Liu R., Heckert A., Darzacq X., Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558:318–323. doi: 10.1038/s41586-018-0174-3. PubMed DOI PMC
Banani S.F., Rice A.M., Peeples W.B., Lin Y., Jain S., Parker R., Rosen M.K. Compositional Control of Phase-Separated Cellular Bodies. Cell. 2016;166:651–663. doi: 10.1016/j.cell.2016.06.010. PubMed DOI PMC
Feric M., Vaidya N., Harmon T.S., Mitrea D.M., Zhu L., Richardson T.M., Kriwacki R.W., Pappu R.V., Brangwynne C.P. Coexisting liquid phases underlie nucleolar sub-compartments. Cell. 2016;165:1686–1697. doi: 10.1016/j.cell.2016.04.047. PubMed DOI PMC
Sawyer I.A., Bartek J., Dundr M. Phase separated microenvironments inside the cell nucleus are linked to disease and regulate epigenetic state, transcription and RNA processing. Semin. Cell Dev. Biol. 2019;90:94–103. doi: 10.1016/j.semcdb.2018.07.001. PubMed DOI
Strom A.R., Brangwynne C.P. The liquid nucleome–phase transitions in the nucleus at a glance. J. Cell Sci. 2019;132:jcs235093. doi: 10.1242/jcs.235093. PubMed DOI PMC
Alberti S., Gladfelter A., Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 2019;176:419–434. doi: 10.1016/j.cell.2018.12.035. PubMed DOI PMC
Feng Z., Chen X., Wu X., Zhang M. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications. J. Biol. Chem. 2019;294:14823–14835. doi: 10.1074/jbc.REV119.007895. PubMed DOI PMC
Wang J., Choi J.-M., Holehouse A.S., Lee H.O., Zhang X., Jahnel M., Maharana S., Lemaitre R., Pozniakovsky A., Drechsel D., et al. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell. 2018;174:688–699.e16. doi: 10.1016/j.cell.2018.06.006. PubMed DOI PMC
Alberti S. Phase separation in biology. Curr. Biol. 2017;27:R1097–R1102. doi: 10.1016/j.cub.2017.08.069. PubMed DOI
Hyman A.A., Weber C.A., Jülicher F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014;30:39–58. doi: 10.1146/annurev-cellbio-100913-013325. PubMed DOI
Nowak G., Pestic-Dragovich L., Hozak P., Philimonenko A., Simerly C., Schatten G., de Lanerolle P. Evidence for the presence of myosin I in the nucleus. J. Biol. Chem. 1997;272:17176–17181. doi: 10.1074/jbc.272.27.17176. PubMed DOI
Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin I isoform in the nucleus. Science. 2000;290:337–341. doi: 10.1126/science.290.5490.337. PubMed DOI
Dumont R.A., Zhao Y.D., Holt J.R., Bahler M., Gillespie P.G. Myosin-I isozymes in neonatal rodent auditory and vestibular epithelia. J. Assoc. Res. Otolaryngol. 2002;3:375–389. doi: 10.1007/s101620020049. PubMed DOI PMC
Kosugi S., Hasebe M., Tomita M., Yanagawa H. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. USA. 2009;106:10171–10176. doi: 10.1073/pnas.0900604106. PubMed DOI PMC
Madeira F., Park Y.M., Lee J., Buso N., Gur T., Madhusoodanan N., Basutkar P., Tivey A.R.N., Potter S.C., Finn R.D., et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–W641. doi: 10.1093/nar/gkz268. PubMed DOI PMC
Oates M.E., Romero P., Ishida T., Ghalwash M., Mizianty M.J., Xue B., Dosztanyi Z., Uversky V.N., Obradovic Z., Kurgan L., et al. D(2)P(2): Database of disordered protein predictions. Nucleic Acids Res. 2013;41:D508–D516. doi: 10.1093/nar/gks1226. PubMed DOI PMC
Dunn K.W., Kamocka M.M., McDonald J.H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011;300:C723–C742. doi: 10.1152/ajpcell.00462.2010. PubMed DOI PMC
Trinkle-Mulcahy L., Boulon S., Lam Y.W., Urcia R., Boisvert F.M., Vandermoere F., Morrice N.A., Swift S., Rothbauer U., Leonhardt H., et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 2008;183:223–239. doi: 10.1083/jcb.200805092. PubMed DOI PMC
Hein M.Y., Hubner N.C., Poser I., Cox J., Nagaraj N., Toyoda Y., Gak I.A., Weisswange I., Mansfeld J., Buchholz F., et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell. 2015;163:712–723. doi: 10.1016/j.cell.2015.09.053. PubMed DOI
Shah Z.H., Jones D.R., Sommer L., Foulger R., Bultsma Y., D’Santos C., Divecha N. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J. 2013;280:6295–6310. doi: 10.1111/febs.12543. PubMed DOI
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozak P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. Pt 12J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Kroschwald S., Maharana S., Mateju D., Malinovska L., Nüske E., Poser I., Richter D., Alberti S. Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife. 2015;4:e06807. doi: 10.7554/eLife.06807. PubMed DOI PMC
Patel S.S., Belmont B.J., Sante J.M., Rexach M.F. Natively Unfolded Nucleoporins Gate Protein Diffusion across the Nuclear Pore Complex. Cell. 2007;129:83–96. doi: 10.1016/j.cell.2007.01.044. PubMed DOI
Kato M., McKnight S.L. A Solid-State Conceptualization of Information Transfer from Gene to Message to Protein. Annu. Rev. Biochem. 2018;87:351–390. doi: 10.1146/annurev-biochem-061516-044700. PubMed DOI
Nair S.J., Yang L., Meluzzi D., Oh S., Yang F., Friedman M.J., Wang S., Suter T., Alshareedah I., Gamliel A., et al. Phase separation of ligand-activated enhancers licenses cooperative chromosomal enhancer assembly. Nat. Struct. Mol. Biol. 2019;26:193–203. doi: 10.1038/s41594-019-0190-5. PubMed DOI PMC
Lin Y., Mori E., Kato M., Xiang S., Wu L., Kwon I., McKnight S.L. Toxic PR Poly-Dipeptides Encoded by the C9orf72 Repeat Expansion Target LC Domain Polymers. Cell. 2016;167:789–802.e12. doi: 10.1016/j.cell.2016.10.003. PubMed DOI PMC
Brangwynne C.P., Eckmann C.R., Courson D.S., Rybarska A., Hoege C., Gharakhani J., Jülicher F., Hyman A.A. Germline P Granules Are Liquid Droplets that Localize by Controlled Dissolution/Condensation. Science. 2009;324:1729–1732. doi: 10.1126/science.1172046. PubMed DOI
Yamamoto M., Hilgemann D.H., Feng S., Bito H., Ishihara H., Shibasaki Y., Yin H.L. Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J. Cell Biol. 2001;152:867–876. doi: 10.1083/jcb.152.5.867. PubMed DOI PMC
Shibasaki Y., Ishihara H., Kizuki N., Asano T., Oka Y., Yazaki Y. Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J. Biol. Chem. 1997;272:7578–7581. doi: 10.1074/jbc.272.12.7578. PubMed DOI
Chen F., Ma L., Parrini M.C., Mao X., Lopez M., Wu C., Marks P.W., Davidson L., Kwiatkowski D.J., Kirchhausen T., et al. Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr. Biol. 2000;10:758–765. doi: 10.1016/S0960-9822(00)00571-6. PubMed DOI
Tsujita K., Itoh T. Phosphoinositides in the regulation of actin cortex and cell migration. Biochim. Biophys. Acta. 2015;1851:824–831. doi: 10.1016/j.bbalip.2014.10.011. PubMed DOI
Riggi M., Niewola-Staszkowska K., Chiaruttini N., Colom A., Kusmider B., Mercier V., Soleimanpour S., Stahl M., Matile S., Roux A., et al. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nat. Cell Biol. 2018;20:1043–1051. doi: 10.1038/s41556-018-0150-z. PubMed DOI PMC
Sztacho M., Segeletz S., Sanchez-Fernandez M.A., Czupalla C., Niehage C., Hoflack B. BAR Proteins PSTPIP1/2 Regulate Podosome Dynamics and the Resorption Activity of Osteoclasts. PLoS ONE. 2016;11:e0164829. doi: 10.1371/journal.pone.0164829. PubMed DOI PMC
Yamaguchi H., Shiraishi M., Fukami K., Tanabe A., Ikeda-Matsuo Y., Naito Y., Sasaki Y. MARCKS regulates lamellipodia formation induced by IGF-I via association with PIP2 and beta-actin at membrane microdomains. J. Cell. Physiol. 2009;220:748–755. doi: 10.1002/jcp.21822. PubMed DOI
Sobol M., Yildirim S., Philimonenko V.V., Marášek P., Castaño E., Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozák P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI
Bavelloni A., Faenza I., Cioffi G., Piazzi M., Parisi D., Matic I., Maraldi N.M., Cocco L. Proteomic-based analysis of nuclear signaling: PLCbeta1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics. 2006;6:5725–5734. doi: 10.1002/pmic.200600318. PubMed DOI
Faenza I., Ramazzotti G., Bavelloni A., Fiume R., Gaboardi G.C., Follo M.Y., Gilmour R.S., Martelli A.M., Ravid K., Cocco L. Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology. 2007;148:1108–1117. doi: 10.1210/en.2006-1003. PubMed DOI
Lewis A.E., Sommer L., Arntzen M.O., Strahm Y., Morrice N.A., Divecha N., D’Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell Proteomics. 2011;10:M110.003376. doi: 10.1074/mcp.M110.003376. PubMed DOI PMC
Hoboth P., Sztacho M., Sebesta O., Schatz M., Castano E., Hozak P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021:158890. doi: 10.1016/j.bbalip.2021.158890. PubMed DOI
Hokanson D.E., Laakso J.M., Lin T., Sept D., Ostap E.M. Myo1c binds phosphoinositides through a putative pleckstrin homology domain. Mol. Biol. Cell. 2006;17:4856–4865. doi: 10.1091/mbc.e06-05-0449. PubMed DOI PMC
Hokanson D.E., Ostap E.M. Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc. Nat. Acad. Sci. USA. 2006;103:3118–3123. doi: 10.1073/pnas.0505685103. PubMed DOI PMC
Philimonenko V.V., Zhao J., Iben S., Dingova H., Kysela K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozak P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI
Ye J., Zhao J., Hoffmann-Rohrer U., Grummt I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes Dev. 2008;22:322–330. doi: 10.1101/gad.455908. PubMed DOI PMC
Yu Y., Reed R. FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proc. Nat. Acad. Sci. USA. 2015;112:8608–8613. doi: 10.1073/pnas.1506282112. PubMed DOI PMC
Kristo I., Bajusz C., Borsos B.N., Pankotai T., Dopie J., Jankovics F., Vartiainen M.K., Erdelyi M., Vilmos P. The actin binding cytoskeletal protein Moesin is involved in nuclear mRNA export. Biochim. Biophys. Acta Mol. Cell Res. 2017;1864:1589–1604. doi: 10.1016/j.bbamcr.2017.05.020. PubMed DOI
Sokolova M., Moore H.M., Prajapati B., Dopie J., Merilainen L., Honkanen M., Matos R.C., Poukkula M., Hietakangas V., Vartiainen M.K. Nuclear Actin Is Required for Transcription during Drosophila Oogenesis. iScience. 2018;9:63–70. doi: 10.1016/j.isci.2018.10.010. PubMed DOI PMC
Viita T., Kyheroinen S., Prajapati B., Virtanen J., Frilander M.J., Varjosalo M., Vartiainen M.K. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J. Cell Sci. 2019;132 doi: 10.1242/jcs.226852. PubMed DOI PMC
Venit T., Semesta K., Farrukh S., Endara-Coll M., Havalda R., Hozak P., Percipalle P. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Commun. Biol. 2020;3:115. doi: 10.1038/s42003-020-0836-1. PubMed DOI PMC
Caridi C.P., D’Agostino C., Ryu T., Zapotoczny G., Delabaere L., Li X., Khodaverdian V.Y., Amaral N., Lin E., Rau A.R., et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559:54–60. doi: 10.1038/s41586-018-0242-8. PubMed DOI PMC
Hurst V., Shimada K., Gasser S.M. Nuclear Actin and Actin-Binding Proteins in DNA Repair. Trends Cell Biol. 2019;29:462–476. doi: 10.1016/j.tcb.2019.02.010. PubMed DOI
Serebryannyy L.A., Parilla M., Annibale P., Cruz C.M., Laster K., Gratton E., Kudryashov D., Kosak S.T., Gottardi C.J., de Lanerolle P. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J. Cell Sci. 2016;129:3412–3425. doi: 10.1242/jcs.195867. PubMed DOI PMC
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer
PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription