• This record comes from PubMed

Focal Adhesion Protein Vinculin Is Required for Proper Meiotic Progression during Mouse Spermatogenesis

. 2022 Jun 23 ; 11 (13) : . [epub] 20220623

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The focal adhesion protein Vinculin (VCL) is ascribed to various cytoplasmic functions; however, its nuclear role has so far been ambiguous. We observed that VCL localizes to the nuclei of mouse primary spermatocytes undergoing first meiotic division. Specifically, VCL localizes along the meiosis-specific structure synaptonemal complex (SC) during prophase I and the centromeric regions, where it remains until metaphase I. To study the role of VCL in meiotic division, we prepared a conditional knock-out mouse (VCLcKO). We found that the VCLcKO male mice were semi-fertile, with a decreased number of offspring compared to wild-type animals. This study of events in late prophase I indicated premature splitting of homologous chromosomes, accompanied by an untimely loss of SCP1. This caused erroneous kinetochore formation, followed by failure of the meiotic spindle assembly and metaphase I arrest. To assess the mechanism of VCL involvement in meiosis, we searched for its possible interacting partners. A mass spectrometry approach identified several putative interactors which belong to the ubiquitin-proteasome pathway (UPS). The depletion of VLC leads to the dysregulation of a key subunit of the proteasome complex in the meiotic nuclei and an altered nuclear SUMOylation level. Taken together, we show for the first time the presence of VCL in the nucleus of spermatocytes and its involvement in proper meiotic progress. It also suggests the direction for future studies regarding the role of VCL in spermatogenesis through regulation of UPS.

See more in PubMed

Kleckner N. Meiosis: How could it work? Proc. Natl. Acad. Sci. USA. 1996;93:8167–8174. PubMed PMC

Nasmyth K. Disseminating the genome: Joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 2001;35:673–745. doi: 10.1146/annurev.genet.35.102401.091334. PubMed DOI

Petronczki M., Siomos M.F., Nasmyth K. Un menage a quatre: The molecular biology of chromosome segregation in meiosis. Cell. 2003;112:423–440. doi: 10.1016/S0092-8674(03)00083-7. PubMed DOI

Gerton J.L., Hawley R.S. Homologous chromosome interactions in meiosis: Diversity amidst conservation. Nat. Rev. Genet. 2005;6:477–487. doi: 10.1038/nrg1614. PubMed DOI

Zickler D. From early homologue recognition to synaptonemal complex formation. Chromosoma. 2006;115:158–174. doi: 10.1007/s00412-006-0048-6. PubMed DOI

Bhalla N., Dernburg A.F. Prelude to a division. Annu. Rev. Cell Dev. Biol. 2008;24:397–424. doi: 10.1146/annurev.cellbio.23.090506.123245. PubMed DOI PMC

Hassold T.J., Jacobs P.A. Trisomy in man. Annu. Rev. Genet. 1984;18:69–97. doi: 10.1146/annurev.ge.18.120184.000441. PubMed DOI

Von Wettstein D., Rasmussen S.W., Holm P.B. The synaptonemal complex in genetic segregation. Annu. Rev. Genet. 1984;18:331–413. doi: 10.1146/annurev.ge.18.120184.001555. PubMed DOI

Page S.L., Hawley R.S. The genetics and molecular biology of the synaptonemal complex. Annu. Rev. Cell Dev. Biol. 2004;20:525–558. doi: 10.1146/annurev.cellbio.19.111301.155141. PubMed DOI

Yang F., Wang P.J. The Mammalian synaptonemal complex: A scaffold and beyond. Genome Dyn. 2009;5:69–80. doi: 10.1159/000166620. PubMed DOI

Stewart M.N., Dawson D.S. Changing partners: Moving from non-homologous to homologous centromere pairing in meiosis. Trends Genet. TIG. 2008;24:564–573. doi: 10.1016/j.tig.2008.08.006. PubMed DOI PMC

Qiao H., Chen J.K., Reynolds A., Hoog C., Paddy M., Hunter N. Interplay between synaptonemal complex, homologous recombination, and centromeres during mammalian meiosis. PLoS Genet. 2012;8:e1002790. doi: 10.1371/journal.pgen.1002790. PubMed DOI PMC

Cleveland D.W., Mao Y., Sullivan K.F. Centromeres and kinetochores: From epigenetics to mitotic checkpoint signaling. Cell. 2003;112:407–421. doi: 10.1016/S0092-8674(03)00115-6. PubMed DOI

Cheeseman I.M., Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat. Rev. Mol. Cell Biol. 2008;9:33–46. doi: 10.1038/nrm2310. PubMed DOI

Edelmaier C., Lamson A.R., Gergely Z.R., Ansari S., Blackwell R., McIntosh J.R., Glaser M.A., Betterton M.D. Mechanisms of chromosome biorientation and bipolar spindle assembly analyzed by computational modeling. Elife. 2020;9:e48787. doi: 10.7554/eLife.48787. PubMed DOI PMC

Sun F., Handel M.A. Regulation of the meiotic prophase I to metaphase I transition in mouse spermatocytes. Chromosoma. 2008;117:471–485. doi: 10.1007/s00412-008-0167-3. PubMed DOI PMC

Rao H.B., Qiao H., Bhatt S.K., Bailey L.R., Tran H.D., Bourne S.L., Qiu W., Deshpande A., Sharma A.N., Beebout C.J., et al. A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science. 2017;355:403–407. doi: 10.1126/science.aaf6407. PubMed DOI PMC

Brown P.W., Hwang K., Schlegel P.N., Morris P.L. Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum. Reprod. 2008;23:2850–2857. doi: 10.1093/humrep/den300. PubMed DOI PMC

Bhagwat N.R., Owens S.N., Ito M., Boinapalli J.V., Poa P., Ditzel A., Kopparapu S., Mahalawat M., Davies O.R., Collins S.R., et al. SUMO is a pervasive regulator of meiosis. Elife. 2021;10:e57720. doi: 10.7554/eLife.57720. PubMed DOI PMC

Savulescu A.F., Glickman M.H. Proteasome activator 200: The heat is on. Mol. Cell. Proteom. 2011;10:R110 006890. doi: 10.1074/mcp.R110.006890. PubMed DOI PMC

Ahuja J.S., Sandhu R., Mainpal R., Lawson C., Henley H., Hunt P.A., Yanowitz J.L., Borner G.V. Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science. 2017;355:408–411. doi: 10.1126/science.aaf4778. PubMed DOI PMC

Huang X., Dixit V.M. Cross talk between ubiquitination and demethylation. Mol. Cell. Biol. 2011;31:3682–3683. doi: 10.1128/MCB.06001-11. PubMed DOI PMC

Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell. Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Hou C.C., Yang W.X. New insights to the ubiquitin-proteasome pathway (UPP) mechanism during spermatogenesis. Mol. Biol. Rep. 2013;40:3213–3230. doi: 10.1007/s11033-012-2397-y. PubMed DOI

Thievessen I., Thompson P.M., Berlemont S., Plevock K.M., Plotnikov S.V., Zemljic-Harpf A., Ross R.S., Davidson M.W., Danuser G., Campbell S.L., et al. Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J. Cell Biol. 2013;202:163–177. doi: 10.1083/jcb.201303129. PubMed DOI PMC

Saunders R.M., Holt M.R., Jennings L., Sutton D.H., Barsukov I.L., Bobkov A., Liddington R.C., Adamson E.A., Dunn G.A., Critchley D.R. Role of vinculin in regulating focal adhesion turnover. Eur. J. Cell Biol. 2006;85:487–500. doi: 10.1016/j.ejcb.2006.01.014. PubMed DOI

Philimonenko V.V., Zhao J., Iben S., Dingova H., Kysela K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozak P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI

Visa N., Percipalle P. Nuclear functions of actin. Cold Spring Harb. Perspect. Biol. 2010;2:a000620. doi: 10.1101/cshperspect.a000620. PubMed DOI PMC

Marasek P., Dzijak R., Studenyak I., Fiserova J., Ulicna L., Novak P., Hozak P. Paxillin-dependent regulation of IGF2 and H19 gene cluster expression. J. Cell Sci. 2015;128:3106–3116. doi: 10.1242/jcs.170985. PubMed DOI PMC

Baarlink C., Plessner M., Sherrard A., Morita K., Misu S., Virant D., Kleinschnitz E.M., Harniman R., Alibhai D., Baumeister S., et al. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat. Cell Biol. 2017;19:1389–1399. doi: 10.1038/ncb3641. PubMed DOI

Oda H., Shirai N., Ura N., Ohsumi K., Iwabuchi M. Chromatin tethering to the nuclear envelope by nuclear actin filaments: A novel role of the actin cytoskeleton in the Xenopus blastula. Genes Cells: Devoted Mol. Cell. Mech. 2017;22:376–391. doi: 10.1111/gtc.12483. PubMed DOI

Virtanen J.A., Vartiainen M.K. Diverse functions for different forms of nuclear actin. Curr. Opin. Cell Biol. 2017;46:33–38. doi: 10.1016/j.ceb.2016.12.004. PubMed DOI

Riveline D., Zamir E., Balaban N.Q., Schwarz U.S., Ishizaki T., Narumiya S., Kam Z., Geiger B., Bershadsky A.D. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 2001;153:1175–1186. doi: 10.1083/jcb.153.6.1175. PubMed DOI PMC

Atherton P., Stutchbury B., Wang D.Y., Jethwa D., Tsang R., Meiler-Rodriguez E., Wang P., Bate N., Zent R., Barsukov I.L., et al. Vinculin controls talin engagement with the actomyosin machinery. Nat. Commun. 2015;6:10038. doi: 10.1038/ncomms10038. PubMed DOI PMC

Thompson P.M., Ramachandran S., Case L.B., Tolbert C.E., Tandon A., Pershad M., Dokholyan N.V., Waterman C.M., Campbell S.L. A Structural Model for Vinculin Insertion into PIP2-Containing Membranes and the Effect of Insertion on Vinculin Activation and Localization. Structure. 2017;25:264–275. doi: 10.1016/j.str.2016.12.002. PubMed DOI PMC

Balaban C., Sztacho M., Blazikova M., Hozak P. The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus. Cells. 2021;10:848. doi: 10.3390/cells10040848. PubMed DOI PMC

Hoboth P., Sztacho M., Sebesta O., Schatz M., Castano E., Hozak P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021;1866:158890. doi: 10.1016/j.bbalip.2021.158890. PubMed DOI

Diez G., Auernheimer V., Fabry B., Goldmann W.H. Head/tail interaction of vinculin influences cell mechanical behavior. Biochem. Biophys. Res. Commun. 2011;406:85–88. doi: 10.1016/j.bbrc.2011.01.115. PubMed DOI

Plotnikov S.V., Sabass B., Schwarz U.S., Waterman C.M. High-resolution traction force microscopy. Methods Cell Biol. 2014;123:367–394. doi: 10.1016/B978-0-12-420138-5.00020-3. PubMed DOI PMC

Dumbauld D.W., Lee T.T., Singh A., Scrimgeour J., Gersbach C.A., Zamir E.A., Fu J., Chen C.S., Curtis J.E., Craig S.W., et al. How vinculin regulates force transmission. Proc. Natl. Acad. Sci. USA. 2013;110:9788–9793. doi: 10.1073/pnas.1216209110. PubMed DOI PMC

Zemljic-Harpf A.E., Miller J.C., Henderson S.A., Wright A.T., Manso A.M., Elsherif L., Dalton N.D., Thor A.K., Perkins G.A., McCulloch A.D., et al. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Mol. Cell. Biol. 2007;27:7522–7537. doi: 10.1128/MCB.00728-07. PubMed DOI PMC

Xu W., Baribault H., Adamson E.D. Vinculin knockout results in heart and brain defects during embryonic development. Development. 1998;125:327–337. doi: 10.1242/dev.125.2.327. PubMed DOI

Revenkova E., Eijpe M., Heyting C., Gross B., Jessberger R. Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell. Biol. 2001;21:6984–6998. doi: 10.1128/MCB.21.20.6984-6998.2001. PubMed DOI PMC

Revenkova E., Eijpe M., Heyting C., Hodges C.A., Hunt P.A., Liebe B., Scherthan H., Jessberger R. Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat. Cell Biol. 2004;6:555–562. doi: 10.1038/ncb1135. PubMed DOI

Anderson L.K., Reeves A., Webb L.M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999;151:1569–1579. doi: 10.1093/genetics/151.4.1569. PubMed DOI PMC

Page J., Suja J.A., Santos J.L., Rufas J.S. Squash procedure for protein immunolocalization in meiotic cells. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 1998;6:639–642. doi: 10.1023/A:1009209628300. PubMed DOI

La Salle S., Sun F., Handel M.A. Isolation and short-term culture of mouse spermatocytes for analysis of meiosis. Methods Mol. Biol. 2009;558:279–297. doi: 10.1007/978-1-60761-103-5_17. PubMed DOI

Bastos H., Lassalle B., Chicheportiche A., Riou L., Testart J., Allemand I., Fouchet P. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytom. A. 2005;65:40–49. doi: 10.1002/cyto.a.20129. PubMed DOI

Gu N.H., Zhao W.L., Wang G.S., Sun F. Comparative analysis of mammalian sperm ultrastructure reveals relationships between sperm morphology, mitochondrial functions and motility. Reprod. Biol. Endocrinol. 2019;17:66. doi: 10.1186/s12958-019-0510-y. PubMed DOI PMC

Reynolds A., Qiao H., Yang Y., Chen J.K., Jackson N., Biswas K., Holloway J.K., Baudat F., de Massy B., Wang J., et al. RNF212 is a dosage-sensitive regulator of crossing-over during mammalian meiosis. Nat. Genet. 2013;45:269–278. doi: 10.1038/ng.2541. PubMed DOI PMC

Vrooman L.A., Nagaoka S.I., Hassold T.J., Hunt P.A. Evidence for paternal age-related alterations in meiotic chromosome dynamics in the mouse. Genetics. 2014;196:385–396. doi: 10.1534/genetics.113.158782. PubMed DOI PMC

Matunis M.J. Isolation and fractionation of rat liver nuclear envelopes and nuclear pore complexes. Methods. 2006;39:277–283. doi: 10.1016/j.ymeth.2006.06.003. PubMed DOI

Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Bartles J.R., Wierda A., Zheng L. Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J. Cell Sci. 1996;109 (Pt 6):1229–1239. doi: 10.1242/jcs.109.6.1229. PubMed DOI

Young J.S., Vogl A.W. Focal adhesion proteins Zyxin and Vinculin are co-distributed at tubulobulbar complexes. Spermatogenesis. 2012;2:63–68. doi: 10.4161/spmg.19391. PubMed DOI PMC

Young J.S., De Asis M., Guttman J., Vogl A.W. Cortactin depletion results in short tubulobulbar complexes and spermiation failure in rat testes. Biol. Open. 2012;1:1069–1077. doi: 10.1242/bio.20122519. PubMed DOI PMC

Lie P.P., Mruk D.D., Lee W.M., Cheng C.Y. Epidermal growth factor receptor pathway substrate 8 (Eps8) is a novel regulator of cell adhesion and the blood-testis barrier integrity in the seminiferous epithelium. FASEB J. 2009;23:2555–2567. doi: 10.1096/fj.06-070573. PubMed DOI PMC

Lie P.P., Chan A.Y., Mruk D.D., Lee W.M., Cheng C.Y. Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc. Natl. Acad. Sci. USA. 2010;107:11411–11416. doi: 10.1073/pnas.1001823107. PubMed DOI PMC

Gaysinskaya V., Soh I.Y., van der Heijden G.W., Bortvin A. Optimized flow cytometry isolation of murine spermatocytes. Cytom. A. 2014;85:556–565. doi: 10.1002/cyto.a.22463. PubMed DOI PMC

Parra M.T., Viera A., Gomez R., Page J., Benavente R., Santos J.L., Rufas J.S., Suja J.A. Involvement of the cohesin Rad21 and SCP3 in monopolar attachment of sister kinetochores during mouse meiosis I. J. Cell Sci. 2004;117:1221–1234. doi: 10.1242/jcs.00947. PubMed DOI

Subramanian V.V., Hochwagen A. The meiotic checkpoint network: Step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 2014;6:a016675. doi: 10.1101/cshperspect.a016675. PubMed DOI PMC

Khawar M.B., Gao H., Li W. Mechanism of Acrosome Biogenesis in Mammals. Front. Cell Dev. Biol. 2019;7:195. doi: 10.3389/fcell.2019.00195. PubMed DOI PMC

Gordon S.G., Kursel L.E., Xu K., Rog O. Synaptonemal Complex dimerization regulates chromosome alignment and crossover patterning in meiosis. PLoS Genet. 2021;17:e1009205. doi: 10.1371/journal.pgen.1009205. PubMed DOI PMC

Bisig C.G., Guiraldelli M.F., Kouznetsova A., Scherthan H., Hoog C., Dawson D.S., Pezza R.J. Synaptonemal complex components persist at centromeres and are required for homologous centromere pairing in mouse spermatocytes. PLoS Genet. 2012;8:e1002701. doi: 10.1371/journal.pgen.1002701. PubMed DOI PMC

De Pol A., Marzona L., Vaccina F., Negro R., Sena P., Forabosco A. Apoptosis in different stages of human oogenesis. Anticancer Res. 1998;18:3457–3461. PubMed

Walter A.O., Seghezzi W., Korver W., Sheung J., Lees E. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene. 2000;19:4906–4916. doi: 10.1038/sj.onc.1203847. PubMed DOI

Lee J.Y., Orr-Weaver T.L. The molecular basis of sister-chromatid cohesion. Annu. Rev. Cell Dev. Biol. 2001;17:753–777. doi: 10.1146/annurev.cellbio.17.1.753. PubMed DOI

Handel M.A., Hunt P.A. Sex-chromosome pairing and activity during mammalian meiosis. Bioessays. 1992;14:817–822. doi: 10.1002/bies.950141205. PubMed DOI

Tsubouchi T., Roeder G.S. A synaptonemal complex protein promotes homology-independent centromere coupling. Science. 2005;308:870–873. doi: 10.1126/science.1108283. PubMed DOI

Chen Y., Dokholyan N.V. Insights into allosteric control of vinculin function from its large scale conformational dynamics. J. Biol. Chem. 2006;281:29148–29154. doi: 10.1074/jbc.M605512200. PubMed DOI

Lee J., Kitajima T.S., Tanno Y., Yoshida K., Morita T., Miyano T., Miyake M., Watanabe Y. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat. Cell Biol. 2008;10:42–52. doi: 10.1038/ncb1667. PubMed DOI

Llano E., Gomez R., Gutierrez-Caballero C., Herran Y., Sanchez-Martin M., Vazquez-Quinones L., Hernandez T., de Alava E., Cuadrado A., Barbero J.L., et al. Shugoshin-2 is essential for the completion of meiosis but not for mitotic cell division in mice. Genes Dev. 2008;22:2400–2413. doi: 10.1101/gad.475308. PubMed DOI PMC

Zierhut C., Funabiki H. Nucleosome functions in spindle assembly and nuclear envelope formation. Bioessays. 2015;37:1074–1085. doi: 10.1002/bies.201500045. PubMed DOI PMC

Jiao X., Chang S., Yang L., An M., Chen W. Vinculin motion modes analysis with elastic network model. Int. J. Mol. Sci. 2012;13:208–220. doi: 10.3390/ijms13010208. PubMed DOI PMC

Stec D.L., Stec B. Complete Model of Vinculin Suggests the Mechanism of Activation by Helical Super-Bundle Unfurling. Protein J. 2022;41:55–70. doi: 10.1007/s10930-022-10040-1. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Envisioning a role for nuclear actin in prophase I spermatocytes

. 2023 ; 11 () : 1295452. [epub] 20231124

AIRE in Male Fertility: A New Hypothesis

. 2022 Oct 09 ; 11 (19) : . [epub] 20221009

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...