Paxillin-dependent regulation of IGF2 and H19 gene cluster expression
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26116569
PubMed Central
PMC4541046
DOI
10.1242/jcs.170985
PII: jcs.170985
Knihovny.cz E-zdroje
- Klíčová slova
- Cohesin, Enhancer, H19, IGF2, Imprinting, Paxillin,
- MeSH
- buňky Hep G2 MeSH
- chromozomální proteiny, nehistonové genetika MeSH
- extracelulární matrix genetika MeSH
- fokální adheze genetika MeSH
- genomový imprinting genetika MeSH
- insulinu podobný růstový faktor II biosyntéza genetika MeSH
- koheziny MeSH
- lidé MeSH
- metylace DNA genetika MeSH
- paxilin aplikace a dávkování MeSH
- proliferace buněk účinky léků genetika MeSH
- promotorové oblasti (genetika) MeSH
- proteiny buněčného cyklu genetika MeSH
- RNA dlouhá nekódující biosyntéza genetika MeSH
- signální transdukce účinky léků MeSH
- vývoj plodu genetika MeSH
- vývojová regulace genové exprese MeSH
- zesilovače transkripce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromozomální proteiny, nehistonové MeSH
- H19 long non-coding RNA MeSH Prohlížeč
- IGF2 protein, human MeSH Prohlížeč
- insulinu podobný růstový faktor II MeSH
- koheziny MeSH
- paxilin MeSH
- proteiny buněčného cyklu MeSH
- RNA dlouhá nekódující MeSH
Paxillin (PXN) is a focal adhesion protein that has been implicated in signal transduction from the extracellular matrix. Recently, it has been shown to shuttle between the cytoplasm and the nucleus. When inside the nucleus, paxillin promotes cell proliferation. Here, we introduce paxillin as a transcriptional regulator of IGF2 and H19 genes. It does not affect the allelic expression of the two genes; rather, it regulates long-range chromosomal interactions between the IGF2 or H19 promoter and a shared distal enhancer on an active allele. Specifically, paxillin stimulates the interaction between the enhancer and the IGF2 promoter, thus activating IGF2 gene transcription, whereas it restrains the interaction between the enhancer and the H19 promoter, downregulating the H19 gene. We found that paxillin interacts with cohesin and the mediator complex, which have been shown to mediate long-range chromosomal looping. We propose that these interactions occur at the IGF2 and H19 gene cluster and are involved in the formation of loops between the IGF2 and H19 promoters and the enhancer, and thus the expression of the corresponding genes. These observations contribute to a mechanistic explanation of the role of paxillin in proliferation and fetal development.
Zobrazit více v PubMed
Arney K. L. (2003). H19 and Igf2 – enhancing the confusion? PubMed DOI
Bartolomei M. S. and Ferguson-Smith A. C. (2011). Mammalian genomic imprinting. PubMed DOI PMC
Bell A. C. and Felsenfeld G. (2000). Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. PubMed DOI
Brannan C. I., Dees E. C., Ingram R. S. and Tilghman S. M. (1990). The product of the H19 gene may function as an RNA. PubMed PMC
Brown M. C. and Turner C. E. (2004). Paxillin: adapting to change. PubMed DOI
Brunkow M. E. and Tilghman S. M. (1991). Ectopic expression of the H19 gene in mice causes prenatal lethality. PubMed DOI
Cai X. and Cullen B. R. (2007). The imprinted H19 noncoding RNA is a primary microRNA precursor. PubMed DOI PMC
Conaway R. C. and Conaway J. W. (2011). Function and regulation of the Mediator complex. PubMed DOI PMC
Constancia M., Dean W., Lopes S., Moore T., Kelsey G. and Reik W. (2000). Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19. PubMed DOI
Cui H., Horon I. L., Ohlsson R., Hamilton S. R. and Feinberg A. P. (1998). Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. PubMed DOI
Davis S. M. (1994). Developmental regulation of genomic imprinting of the IGF2 gene in human liver. PubMed
DeChiara T. M., Robertson E. J. and Efstratiadis A. (1991). Parental imprinting of the mouse insulin-like growth factor II gene. PubMed DOI
Dekker J., Rippe K., Dekker M. and Kleckner N. (2002). Capturing chromosome conformation. PubMed DOI
Delaval K. and Feil R. (2004). Epigenetic regulation of mammalian genomic imprinting. PubMed DOI
Dey B. K., Pfeifer K. and Dutta A. (2014). The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. PubMed DOI PMC
Dong J.-M., Lau L.-S., Ng Y.-W., Lim L. and Manser E. (2009). Paxillin nuclear-cytoplasmic localization is regulated by phosphorylation of the LD4 motif: evidence that nuclear paxillin promotes cell proliferation. PubMed DOI
Dzijak R., Yildirim S., Kahle M., Novák P., Hnilicová J., Venit T. and Hozák P. (2012). Specific nuclear localizing sequence directs two myosin isoforms to the cell nucleus in calmodulin-sensitive manner. PubMed DOI PMC
Gabory A., Jammes H. and Dandolo L. (2010). The H19 locus: role of an imprinted non-coding RNA in growth and development. PubMed DOI
Gruber S., Haering C. H. and Nasmyth K. (2003). Chromosomal cohesin forms a ring. PubMed DOI
Guacci V., Koshland D. and Strunnikov A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. PubMed DOI PMC
Hadjur S., Williams L. M., Ryan N. K., Cobb B. S., Sexton T., Fraser P., Fisher A. G. and Merkenschlager M. (2009). Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. PubMed DOI PMC
Haering C. H., Löwe J., Hochwagen A. and Nasmyth K. (2002). Molecular architecture of SMC proteins and the yeast cohesin complex. PubMed DOI
Hagège H., Klous P., Braem C., Splinter E., Dekker J., Cathala G., de Laat W. and Forné T. (2007). Quantitative analysis of chromosome conformation capture assays (3C-qPCR). PubMed DOI
Hark A. T., Schoenherr C. J., Katz D. J., Ingram R. S., Levorse J. M. and Tilghman S. M. (2000). CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. PubMed DOI
Hayatsu H., Wataya Y., Kai K. and Iida S. (1970). Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. PubMed
Hervy M., Hoffman L. and Beckerle M. C. (2006). From the membrane to the nucleus and back again: bifunctional focal adhesion proteins. PubMed DOI
Hofmann W.-K., Takeuchi S., Frantzen M. A., Hoelzer D. and Koeffler H. P. (2002). Loss of genomic imprinting of insulin-like growth factor 2 is strongly associated with cellular proliferation in normal hematopoietic cells. PubMed DOI
Holthuizen P., van der Lee F. M., Ikejiri K., Yamamoto M. and Sussenbach J. S. (1990). Identification and initial characterization of a fourth leader exon and promoter of the human IGF-II gene. PubMed DOI
Ishida M. and Moore G. E. (2013). The role of imprinted genes in humans. PubMed DOI
Ishihara K., Hatano N., Furuumi H., Kato R., Iwaki T., Miura K., Jinno Y. and Sasaki H. (2000). Comparative genomic sequencing identifies novel tissue-specific enhancers and sequence elements for methylation-sensitive factors implicated in Igf2/H19 imprinting. PubMed DOI PMC
Ishihara K., Oshimura M. and Nakao M. (2006). CTCF-dependent chromatin insulator is linked to epigenetic remodeling. PubMed DOI
Kaffer C. R., Srivastava M., Park K. Y., Ives E., Hsieh S., Batlle J., Grinberg A., Huang S. P. and Pfeifer K. (2000). A transcriptional insulator at the imprinted H19/Igf2 locus. PubMed PMC
Kagey M. H., Newman J. J., Bilodeau S., Zhan Y., Orlando D. A., van Berkum N. L., Ebmeier C. C., Goossens J., Rahl P. B., Levine S. S. et al. (2010). Mediator and cohesin connect gene expression and chromatin architecture. PubMed DOI PMC
Kalscheuer V. M., Mariman E. C., Schepens M. T., Rehder H. and Ropers H. H. (1993). The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. PubMed DOI
Keniry A., Oxley D., Monnier P., Kyba M., Dandolo L., Smits G. and Reik W. (2012). The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. PubMed DOI PMC
Kopf E., Bibi O., Ayesh S., Tykocinski M., Vitner K., Looijenga L. H. J., de Groot N. and Hochberg A. (1998). The effect of retinoic acid on the activation of the human H19 promoter by a 3′ downstream region. PubMed DOI
Kurukuti S., Tiwari V. K., Tavoosidana G., Pugacheva E., Murrell A., Zhao Z., Lobanenkov V., Reik W. and Ohlsson R. (2006). CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. PubMed DOI PMC
Leighton P. A., Saam J. R., Ingram R. S., Stewart C. L. and Tilghman S. M. (1995a). An enhancer deletion affects both H19 and Igf2 expression. PubMed DOI
Leighton P. A., Ingram R. S., Eggenschwiler J., Efstratiadis A. and Tilghman S. M. (1995b). Disruption of imprinting caused by deletion of the H19 gene region in mice. PubMed DOI
Li X., Adam G., Cui H., Sandstedt B., Ohlsson R. and Ekstrom T. J. (1995). Expression, promoter usage and parental imprinting status of insulin-like growth factor II (IGF2) in human hepatoblastoma: uncoupling of IGF2 and H19 imprinting. PubMed
Liu Q., Yang B., Xie X., Wei L., Liu W., Yang W., Ge Y., Zhu Q., Zhang J., Jiang L. et al. (2014). Vigilin interacts with CCCTC-binding factor (CTCF) and is involved in CTCF-dependent regulation of the imprinted genes Igf2 and H19. PubMed DOI
Long L. and Spear B. T. (2004). FoxA proteins regulate H19 endoderm enhancer E1 and exhibit developmental changes in enhancer binding in vivo. PubMed DOI PMC
Losada A., Hirano M. and Hirano T. (1998). Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. PubMed DOI PMC
MacDonald W. A. (2012). Epigenetic mechanisms of genomic imprinting: common themes in the regulation of imprinted regions in mammals, plants, and insects. PubMed DOI PMC
Malik S. and Roeder R. G. (2010). The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. PubMed DOI PMC
Michaelis C., Ciosk R. and Nasmyth K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. PubMed DOI
Milligan L., Forné T., Antoine E., Weber M., Hémonnot B., Dandolo L., Brunel C. and Cathala G. (2002). Turnover of primary transcripts is a major step in the regulation of mouse H19 gene expression. PubMed DOI PMC
Mineno J., Okamoto S., Ando T., Sato M., Chono H., Izu H., Takayama M., Asada K., Mirochnitchenko O., Inouye M. et al. (2006). The expression profile of microRNAs in mouse embryos. PubMed DOI PMC
Murrell A., Heeson S. and Reik W. (2004). Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. PubMed DOI
Nativio R., Wendt K. S., Ito Y., Huddleston J. E., Uribe-Lewis S., Woodfine K., Krueger C., Reik W., Peters J.-M. and Murrell A. (2009). Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PubMed DOI PMC
Naumova N., Smith E. M., Zhan Y. and Dekker J. (2012). Analysis of long-range chromatin interactions using Chromosome Conformation Capture. PubMed DOI PMC
Ohana P., Kopf E., Bibi O., Ayesh S., Schneider T., Laster M., Tykocinski M., de Groot N. and Hochberg A. (1999). The expression of the H19 gene and its function in human bladder carcinoma cell lines. PubMed DOI
Ohlsson R., Hedborg F., Holmgren L., Walsh C. and Ekström T. J. (1994). Overlapping patterns of IGF2 and H19 expression during human development: biallelic IGF2 expression correlates with a lack of H19 expression. PubMed
Pannetier M. and Feil R. (2007). Epigenetic stability of embryonic stem cells and developmental potential. PubMed DOI
Parelho V., Hadjur S., Spivakov M., Leleu M., Sauer S., Gregson H. C., Jarmuz A., Canzonetta C., Webster Z., Nesterova T. et al. (2008). Cohesins functionally associate with CTCF on mammalian chromosome arms. PubMed DOI
Ratajczak M. Z. (2012). Igf2-H19, an imprinted tandem gene, is an important regulator of embryonic development, a guardian of proliferation of adult pluripotent stem cells, a regulator of longevity, and a ‘passkey’ to cancerogenesis. PubMed DOI
Reik W. and Walter J. (2001). Genomic imprinting: parental influence on the genome. PubMed DOI
Sen A., De Castro I., DeFranco D. B., Deng F.-M., Melamed J., Kapur P., Raj G. V., Rossi R. and Hammes S. R. (2012). Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. PubMed DOI PMC
Singer C., Rasmussen A., Smith H. S., Lippman M. E., Lynch H. T. and Cullen K. J. (1995). Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. PubMed
Stodůlková E., Novák P., Deininger S.-O., Man P., Čapková J., Kavan D., Ivašková E. and Flieger M. (2008). LC MALDI-TOF MS/MS and LC ESI FTMS analyses of HLA-B27 associated peptides isolated from peripheral blood cells. PubMed DOI
Sussenbach J. S. (1989). The gene structure of the insulin-like growth factor family. PubMed DOI
Takeda S., Kondo M., Kumada T., Koshikawa T., Ueda R., Nishio M., Osada H., Suzuki H., Nagatake M., Washimi O. et al. (1996). Allelic-expression imbalance of the insulin-like growth factor 2 gene in hepatocellular carcinoma and underlying disease. PubMed
van Dijk M. A., van Schaik F. M. A., Bootsma H. J., Holthuizen P. and Sussenbach J. S. (1991). Initial characterization of the four promoters of the human insulin-like growth factor II gene. PubMed DOI
Varrault A., Gueydan C., Delalbre A., Bellmann A., Houssami S., Aknin C., Severac D., Chotard L., Kahli M., Le Digarcher A. et al. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. PubMed DOI
Wang Q., Carroll J. S. and Brown M. (2005). Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. PubMed DOI
Wendt K. S., Yoshida K., Itoh T., Bando M., Koch B., Schirghuber E., Tsutsumi S., Nagae G., Ishihara K., Mishiro T. et al. (2008). Cohesin mediates transcriptional insulation by CCCTC-binding factor. PubMed DOI
Woods A. J., Roberts M. S., Choudhary J., Barry S. T., Mazaki Y., Sabe H., Morley S. J., Critchley D. R. and Norman J. C. (2002). Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells. PubMed DOI
Yao H., Brick K., Evrard Y., Xiao T., Camerini-Otero R. D. and Felsenfeld G. (2010). Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. PubMed DOI PMC
Yoo-Warren H., Pachnis V., Ingram R. S. and Tilghman S. M. (1988). Two regulatory domains flank the mouse H19 gene. PubMed PMC
Zamir E. and Geiger B. (2001). Molecular complexity and dynamics of cell-matrix adhesions. PubMed
Zhang L., Zhou W., Velculescu V. E., Kern S. E., Hruban R. H., Hamilton S. R., Vogelstein B. and Kinzler K. W. (1997). Gene expression profiles in normal and cancer cells. PubMed DOI