AIRE in Male Fertility: A New Hypothesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36231130
PubMed Central
PMC9563308
DOI
10.3390/cells11193168
PII: cells11193168
Knihovny.cz E-zdroje
- Klíčová slova
- Aire 1, Sertoli cells 5, autoimmunity 2, spermatogenesis 6, sterility 3, testis 4,
- MeSH
- autoimunita * MeSH
- buněčné jádro MeSH
- epitelové buňky * metabolismus MeSH
- fertilita MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Male infertility affects approximately 14% of all European men, of which ~44% are characterized as idiopathic. There is an urgency to identify the factors that affect male fertility. One such factor, Autoimmune Regulator (AIRE), a protein found in the thymus, has been studied in the context of central tolerance functioning as a nuclear transcription modulator, responsible for the expression of tissue-restricted antigens in specialized thymic cells that prevent autoimmunity. While its expression in the testes remains enigmatic, we recently observed that sterility in mice correlates with the absence of Aire in the testes, regardless of the deficient expression in medullary thymic epithelial cells or cells of the hematopoietic system. By assessing the Aire transcript levels, we discovered that Sertoli cells are the exclusive source of Aire in the testes, where it most likely plays a non-immune role, suggesting an unknown mechanism by which testicular Aire regulates fertility. Here, we discuss these results in the context of previous reports which have suggested that infertility observed in Aire deficient mice is of an autoimmune aetiology. We present an alternative point of view for the role of Aire in testes in respect to fertility altering the perspective of how Aire's function in the testes is currently perceived.
Zobrazit více v PubMed
Kyewski B., Klein L. A central role for central tolerance. Annu. Rev. Immunol. 2006;24:571–606. doi: 10.1146/annurev.immunol.23.021704.115601. PubMed DOI
Petrusova J., Manning J., Kubovčiak J., Kolář M., Filipp D. Two complementary approaches for efficient isolation of Sertoli cells for transcriptomic analysis. Front. Cell Dev. Biol. 2022;10:972017. doi: 10.3389/fcell.2022.972017. PubMed DOI PMC
Bastos H., Lassalle B., Chicheportiche A., Riou L., Testart J., Allemand I., Fouchet P. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytom. Part A. 2005;65:40–49. doi: 10.1002/cyto.a.20129. PubMed DOI
Gaysinskaya V., Soh I.Y., van der Heijden G.W., Bortvin A. Optimized flow cytometry isolation of murine spermatocytes. Cytom. Part A. 2014;85:556–565. doi: 10.1002/cyto.a.22463. PubMed DOI PMC
Finnish-German A.C. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 1997;17:399–403. doi: 10.1038/ng1297-399. PubMed DOI
Nagamine K., Peterson P., Scott H.S., Kudoh J., Minoshima S., Heino M., Krohn K.J., Lalioti M.D., Mullis P.E., Antonarakis S.E., et al. Positional cloning of the APECED gene. Nat. Genet. 1997;17:393–398. doi: 10.1038/ng1297-393. PubMed DOI
Bjorses P., Aaltonen J., Horelli-Kuitunen N., Yaspo M.L., Peltonen L. Gene defect behind APECED: A new clue to autoimmunity. Hum. Mol. Genet. 1998;7:1547–1553. doi: 10.1093/hmg/7.10.1547. PubMed DOI
Anderson M.S., Venanzi E.S., Klein L., Chen Z., Berzins S.P., Turley S.J., von Boehmer H., Bronson R., Dierich A., Benoist C., et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298:1395–1401. doi: 10.1126/science.1075958. PubMed DOI
Ramsey C., Winqvist O., Puhakka L., Halonen M., Moro A., Kampe O., Eskelin P., Pelto-Huikko M., Peltonen L. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 2002;11:397–409. doi: 10.1093/hmg/11.4.397. PubMed DOI
Mathis D., Benoist C. Aire. Annu. Rev. Immunol. 2009;27:287–312. doi: 10.1146/annurev.immunol.25.022106.141532. PubMed DOI
Klein L., Kyewski B., Allen P.M., Hogquist K.A. Positive and negative selection of the T cell repertoire: What thymocytes see (and don’t see) Nat. Rev. Immunol. 2014;14:377–391. doi: 10.1038/nri3667. PubMed DOI PMC
Abramson J., Husebye E.S. Autoimmune regulator and self-tolerance-molecular and clinical aspects. Immunol. Rev. 2016;271:127–140. doi: 10.1111/imr.12419. PubMed DOI
Bansal K., Yoshida H., Benoist C., Mathis D. The transcriptional regulator Aire binds to and activates super-enhancers. Nat. Immunol. 2017;18:263–273. doi: 10.1038/ni.3675. PubMed DOI PMC
Abramson J., Giraud M., Benoist C., Mathis D. Aire’s partners in the molecular control of immunological tolerance. Cell. 2010;140:123–135. doi: 10.1016/j.cell.2009.12.030. PubMed DOI
Danan-Gotthold M., Guyon C., Giraud M., Levanon E.Y., Abramson J. Extensive RNA editing and splicing increase immune self-representation diversity in medullary thymic epithelial cells. Genome Biol. 2016;17:219. doi: 10.1186/s13059-016-1079-9. PubMed DOI PMC
Sansom S.N., Shikama-Dorn N., Zhanybekova S., Nusspaumer G., Macaulay I.C., Deadman M.E., Heger A., Ponting C.P., Hollander G.A. Population and single-cell genomics reveal the Aire dependency, relief from Polycomb silencing, and distribution of self-antigen expression in thymic epithelia. Genome Res. 2014;24:1918–1931. doi: 10.1101/gr.171645.113. PubMed DOI PMC
Brennecke P., Reyes A., Pinto S., Rattay K., Nguyen M., Kuchler R., Huber W., Kyewski B., Steinmetz L.M. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat. Immunol. 2015;16:933–941. doi: 10.1038/ni.3246. PubMed DOI PMC
Meredith M., Zemmour D., Mathis D., Benoist C. Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat. Immunol. 2015;16:942–949. doi: 10.1038/ni.3247. PubMed DOI PMC
Husebye E.S., Anderson M.S., Kampe O. Autoimmune polyendocrine syndromes. New Engl. J. Med. 2018;378:1132–1141. doi: 10.1056/NEJMra1713301. PubMed DOI PMC
Heino M., Peterson P., Kudoh J., Nagamine K., Lagerstedt A., Ovod V., Ranki A., Rantala I., Nieminen M., Tuukkanen J., et al. Autoimmune regulator is expressed in the cells regulating immune tolerance in thymus medulla. Biochem. Biophys. Res. Commun. 1999;257:821–825. doi: 10.1006/bbrc.1999.0308. PubMed DOI
Halonen M., Pelto-Huikko M., Eskelin P., Peltonen L., Ulmanen I., Kolmer M. Subcellular location and expression pattern of autoimmune regulator (Aire), the mouse orthologue for human gene defective in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) J. Histochem. Cytochem. 2001;49:197–208. doi: 10.1177/002215540104900207. PubMed DOI
Adamson K.A., Pearce S.H., Lamb J.R., Seckl J.R., Howie S.E. A comparative study of mRNA and protein expression of the autoimmune regulator gene (Aire) in embryonic and adult murine tissues. J. Pathol. 2004;202:180–187. doi: 10.1002/path.1493. PubMed DOI
Gardner J.M., Devoss J.J., Friedman R.S., Wong D.J., Tan Y.X., Zhou X., Johannes K.P., Su M.A., Chang H.Y., Krummel M.F., et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 2008;321:843–847. doi: 10.1126/science.1159407. PubMed DOI PMC
Gardner J.M., Metzger T.C., McMahon E.J., Au-Yeung B.B., Krawisz A.K., Lu W., Price J.D., Johannes K.P., Satpathy A.T., Murphy K.M., et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4(+) T cells. Immunity. 2013;39:560–572. doi: 10.1016/j.immuni.2013.08.005. PubMed DOI PMC
Yamano T., Dobes J., Voboril M., Steinert M., Brabec T., Zietara N., Dobesova M., Ohnmacht C., Laan M., Peterson P., et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 2019;216:1027–1037. doi: 10.1084/jem.20181430. PubMed DOI PMC
Dobes J., Ben-Nun O., Binyamin A., Stoler-Barak L., Oftedal B.E., Goldfarb Y., Kadouri N., Gruper Y., Givony T., Zalayat I., et al. Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans. Nat. Immunol. 2022;23:1098–1108. doi: 10.1038/s41590-022-01247-6. PubMed DOI
Schaller C.E., Wang C.L., Beck-Engeser G., Goss L., Scott H.S., Anderson M.S., Wabl M. Expression of Aire and the early wave of apoptosis in spermatogenesis. J. Immunol. 2008;180:1338–1343. doi: 10.4049/jimmunol.180.3.1338. PubMed DOI
Radhakrishnan K., Bhagya K.P., Kumar A.T., Devi A.N., Sengottaiyan J., Kumar P.G. Autoimmune regulator (AIRE) is expressed in spermatogenic cells, and it altered the expression of several nucleic-acid-binding and cytoskeletal proteins in Germ cell 1 spermatogonial (GC1-spg) cells. Mol. Cell Proteomics. 2016;15:2686–2698. doi: 10.1074/mcp.M115.052951. PubMed DOI PMC
Kekalainen E., Pontynen N., Meri S., Arstila T.P., Jarva H. Autoimmunity, not a developmental defect, is the cause for subfertility of Autoimmune regulator (Aire) deficient mice. Scand. J. Immunol. 2015;81:298–304. doi: 10.1111/sji.12280. PubMed DOI
Warren B.D., Ahn S.H., Brittain K.S., Nanjappa M.K., Wang H., Wang J., Blanco G., Sanchez G., Fan Y., Petroff B.K., et al. Multiple lesions contribute to infertility in males lacking autoimmune regulator. Am. J. Pathol. 2021;191:1592–1609. doi: 10.1016/j.ajpath.2021.05.021. PubMed DOI PMC
Hou Y., DeVoss J., Dao V., Kwek S., Simko J.P., McNeel D.G., Anderson M.S., Fong L. An aberrant prostate antigen-specific immune response causes prostatitis in mice and is associated with chronic prostatitis in humans. J. Clin. Invest. 2009;119:2031–2041. doi: 10.1172/JCI38332. PubMed DOI PMC
Motrich R.D., Maccioni M., Molina R., Tissera A., Olmedo J., Riera C.M., Rivero V.E. Reduced semen quality in chronic prostatitis patients that have cellular autoimmune response to prostate antigens. Hum. Reprod. 2005;20:2567–2572. doi: 10.1093/humrep/dei073. PubMed DOI
Zou X., Zhang Y., Wang X., Zhang R., Yang W. The role of AIRE deficiency in infertility and its potential pathogenesis. Front. Immunol. 2021;12:641164. doi: 10.3389/fimmu.2021.641164. PubMed DOI PMC
Gavanescu I., Benoist C., Mathis D. B cells are required for Aire-deficient mice to develop multi-organ autoinflammation: A therapeutic approach for APECED patients. Proc. Natl. Acad. Sci. USA. 2008;105:13009–13014. doi: 10.1073/pnas.0806874105. PubMed DOI PMC
Dobes J., Edenhofer F., Voboril M., Brabec T., Dobesova M., Cepkova A., Klein L., Rajewsky K., Filipp D. A novel conditional Aire allele enables cell-specific ablation of the immune tolerance regulator Aire. Eur. J. Immunol. 2018;48:546–548. doi: 10.1002/eji.201747267. PubMed DOI
Fujiwara Y., Komiya T., Kawabata H., Sato M., Fujimoto H., Furusawa M., Noce T. Isolation of a DEAD-family protein gene that encodes a murine homolog of Drosophila vasa and its specific expression in germ cell lineage. Proc. Natl. Acad. Sci. USA. 1994;91:12258–12262. doi: 10.1073/pnas.91.25.12258. PubMed DOI PMC
Tanaka S.S., Toyooka Y., Akasu R., Katoh-Fukui Y., Nakahara Y., Suzuki R., Yokoyama M., Noce T. The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev. 2000;14:841–853. doi: 10.1101/gad.14.7.841. PubMed DOI PMC
Revenkova E., Eijpe M., Heyting C., Gross B., Jessberger R. Novel meiosis-specific isoform of mammalian SMC1. Mol. Cell Biol. 2001;21:6984–6998. doi: 10.1128/MCB.21.20.6984-6998.2001. PubMed DOI PMC
Petrusova J., Havalda R., Flachs P., Venit T., Darasova A., Hulkova L., Sztacho M., Hozak P. Focal adhesion protein Vinculin is required for proper meiotic progression during mouse spermatogenesis. Cells. 2022;11:2013. doi: 10.3390/cells11132013. PubMed DOI PMC
Baazm M., Abolhassani F., Abbasi M., Habibi Roudkenar M., Amidi F., Beyer C. An improved protocol for isolation and culturing of mouse spermatogonial stem cells. Cell Reprogram. 2013;15:329–336. doi: 10.1089/cell.2013.0008. PubMed DOI
Yuan L., Liu J.G., Zhao J., Brundell E., Daneholt B., Hoog C. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell. 2000;5:73–83. doi: 10.1016/S1097-2765(00)80404-9. PubMed DOI
Mata-Rocha M., Hernandez-Sanchez J., Guarneros G., de la Chesnaye E., Sanchez-Tusie A.A., Trevino C.L., Felix R., Oviedo N. The transcription factors Sox5 and Sox9 regulate Catsper1 gene expression. FEBS Lett. 2014;588:3352–3360. doi: 10.1016/j.febslet.2014.07.024. PubMed DOI
Young S.A., Aitken J., Baker M.A. Phosphorylation of Izumo1 and Its Role in Male Infertility. Asian J. Androl. 2015;17:708–710. doi: 10.4103/1008-682X.156119. PubMed DOI PMC
Chen M., Zhang L., Cui X., Lin X., Li Y., Wang Y., Wang Y., Qin Y., Chen D., Han C., et al. Wt1 directs the lineage specification of sertoli and granulosa cells by repressing Sf1 expression. Development. 2017;144:44–53. doi: 10.1242/dev.144105. PubMed DOI
Grive K.J., Hu Y., Shu E., Grimson A., Elemento O., Grenier J.K., Cohen P.E. Dynamic transcriptome profiles within spermatogonial and spermatocyte populations during postnatal testis maturation revealed by single-cell sequencing. PLoS Genet. 2019;15:e1007810. doi: 10.1371/journal.pgen.1007810. PubMed DOI PMC
Hermann B.P., Cheng K., Singh A., Roa-De La Cruz L., Mutoji K.N., Chen I.C., Gildersleeve H., Lehle J.D., Mayo M., Westernstroer B., et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 2018;25:1650–1667 e1658. doi: 10.1016/j.celrep.2018.10.026. PubMed DOI PMC
Zhang Z., Schwartz S., Wagner L., Miller W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000;7:203–214. doi: 10.1089/10665270050081478. PubMed DOI
Zimmermann C., Stevant I., Borel C., Conne B., Pitetti J.L., Calvel P., Kaessmann H., Jegou B., Chalmel F., Nef S. Research resource: The dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis. Mol. Endocrinol. 2015;29:627–642. doi: 10.1210/me.2014-1356. PubMed DOI PMC
Jégou B., Skinner M.K. Male Reproduction. In: Skinner M.K., editor. Encyclopedia of Reproduction. 2nd ed. Academic Press; Oxford: 2018.
Forsdyke D.R. When few survive to tell the tale: Thymus and gonad as auditioning organs: Historical overview. Theory Biosci. 2020;139:95–104. doi: 10.1007/s12064-019-00306-1. PubMed DOI
Chen H., Mruk D.D., Xia W., Bonanomi M., Silvestrini B., Cheng C.Y. Effective delivery of male contraceptives behind the blood-testis barrier (BTB)-lesson from adjudin. Curr. Med. Chem. 2016;23:701–713. doi: 10.2174/0929867323666160112122724. PubMed DOI PMC
Extrathymic AIRE-Expressing Cells: A Historical Perspective