Extrathymic expression of Aire controls the induction of effective TH17 cell-mediated immune response to Candida albicans

. 2022 Jul ; 23 (7) : 1098-1108. [epub] 20220627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35761088
Odkazy

PubMed 35761088
DOI 10.1038/s41590-022-01247-6
PII: 10.1038/s41590-022-01247-6
Knihovny.cz E-zdroje

Patients with loss of function in the gene encoding the master regulator of central tolerance AIRE suffer from a devastating disorder called autoimmune polyendocrine syndrome type 1 (APS-1), characterized by a spectrum of autoimmune diseases and severe mucocutaneous candidiasis. Although the key mechanisms underlying the development of autoimmunity in patients with APS-1 are well established, the underlying cause of the increased susceptibility to Candida albicans infection remains less understood. Here, we show that Aire+MHCII+ type 3 innate lymphoid cells (ILC3s) could sense, internalize and present C. albicans and had a critical role in the induction of Candida-specific T helper 17 (TH17) cell clones. Extrathymic Rorc-Cre-mediated deletion of Aire resulted in impaired generation of Candida-specific TH17 cells and subsequent overgrowth of C. albicans in the mucosal tissues. Collectively, our observations identify a previously unrecognized regulatory mechanism for effective defense responses against fungal infections.

Komentář v

PubMed

Zobrazit více v PubMed

Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002). PubMed DOI

Klein, L., Kyewski, B., Allen, P. M. & Hogquist, K. A. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat. Rev. Immunol. 14, 377–391 (2014). PubMed DOI PMC

Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C. C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003). PubMed DOI

Aschenbrenner, K. et al. Selection of Foxp3 PubMed DOI

Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016). PubMed DOI PMC

Abramson, J. & Husebye, E. S. Autoimmune regulator and self-tolerance: molecular and clinical aspects. Immunol. Rev. 271, 127–140 (2016). PubMed DOI

Husebye, E. S., Anderson, M. S. & Kämpe, O. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 378, 2543–2544 (2018). PubMed DOI

Bruserud, Ø. et al. A longitudinal follow-up of autoimmune polyendocrine syndrome type 1. J. Clin. Endocrinol. Metab. 101, 2975–2983 (2016). PubMed DOI PMC

Perheentupa, J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J. Clin. Endocrinol. Metab. 91, 2843–2850 (2006). PubMed DOI

Okada, S. et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015). PubMed DOI PMC

Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011). PubMed DOI PMC

Milner, J. D. et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature 452, 773–776 (2008). PubMed DOI PMC

Ferwerda, B. et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N. Engl. J. Med. 361, 1760–1767 (2009). PubMed DOI PMC

Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med. 361, 1727–1735 (2009). PubMed DOI PMC

Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med. 208, 1635–1648 (2011). PubMed DOI PMC

Conti, H. R. & Gaffen, S. L. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans. J. Immunol. 195, 780–788 (2015). PubMed DOI

Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med. 207, 299–308 (2010). PubMed DOI PMC

Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010). PubMed DOI PMC

Yamano, T. et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J. Exp. Med. 216, 1027–1037 (2019). PubMed DOI PMC

Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b PubMed DOI PMC

Jouault, T. et al. Candida albicans phospholipomannan is sensed through toll-like receptors. J. Infect. Dis. 188, 165–172 (2003). PubMed DOI

Blasi, E. et al. Biological importance of the two Toll-like receptors, TLR2 and TLR4, in macrophage response to infection with Candida albicans. FEMS Immunol. Med. Microbiol. 44, 69–79 (2005). PubMed DOI

Brown, G. D. et al. Dectin-1 mediates the biological effects of beta-glucans. J. Exp. Med. 197, 1119–1124 (2003). PubMed DOI PMC

Gantner, B. N., Simmons, R. M. & Underhill, D. M. Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277–1286 (2005). PubMed DOI PMC

Kohatsu, L., Hsu, D. K., Jegalian, A. G., Liu, F. T. & Baum, L. G. Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J. Immunol. 177, 4718–4726 (2006). PubMed DOI

Jouault, T. et al. Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J. Immunol. 177, 4679–4687 (2006). PubMed DOI

Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006). PubMed DOI

Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector T PubMed DOI

Mangan, P. R. et al. Transforming growth factor-beta induces development of the T PubMed DOI

Dobeš, J. et al. A novel conditional Aire allele enables cell-specific ablation of the immune tolerance regulator Aire. Eur. J. Immunol. 48, 546–548 (2018). PubMed DOI

Eberl, G. & Littman, D. R. Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat PubMed DOI

Jiang, T. T. et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microbe 22, 809–816.e804 (2017). PubMed DOI PMC

Shao, T. Y. et al. Commensal Candida albicans positively calibrates systemic Th17 immunological responses. Cell Host Microbe 25, 404–417.e406 (2019). PubMed DOI PMC

Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4 PubMed DOI

Solis, N. V. & Filler, S. G. Mouse model of oropharyngeal candidiasis. Nat. Protoc. 7, 637–642 (2012). PubMed DOI PMC

Altieri, D. C. Survivin: the inconvenient IAP. Semin. Cell Dev. Biol. 39, 91–96 (2015). PubMed DOI PMC

DiToro, D. et al. Insulin-like growth factors are key regulators of T helper 17 regulatory T cell balance in autoimmunity. Immunity 52, 650–667 (2020). PubMed DOI PMC

Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019). PubMed DOI PMC

Hepworth, M. R. et al. Innate lymphoid cells regulate CD4 PubMed DOI PMC

Hepworth, M. R. et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4 PubMed DOI PMC

Melo-Gonzalez, F. et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J. Exp. Med. 216, 728–742 (2019). PubMed DOI PMC

Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4 PubMed DOI PMC

von Burg, N. et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc. Natl Acad. Sci. U S A 111, 12835–12840 (2014). DOI

Kärner, J. et al. Anti-cytokine autoantibodies suggest pathogenetic links with autoimmune regulator deficiency in humans and mice. Clin. Exp. Immunol. 171, 263–272 (2013). PubMed DOI PMC

Dobeš, J. et al. Gastrointestinal autoimmunity associated with loss of central tolerance to enteric α-defensins. Gastroenterology 149, 139–150 (2015). PubMed DOI

Gavanescu, I., Kessler, B., Ploegh, H., Benoist, C. & Mathis, D. Loss of Aire-dependent thymic expression of a peripheral tissue antigen renders it a target of autoimmunity. Proc. Natl Acad. Sci. U S A 104, 4583–4587 (2007). PubMed DOI PMC

Ma, C. S. et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J. Exp. Med. 205, 1551–1557 (2008). PubMed DOI PMC

Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006). PubMed DOI

Break, T. J. et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021). PubMed DOI PMC

Wang, J. et al. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci. Immunol. 6, eabl5053 (2021). PubMed DOI PMC

Lyu, M. et al. ILC3s select for RORγt

Jiang, W., Anderson, M. S., Bronson, R., Mathis, D. & Benoist, C. Modifier loci condition autoimmunity provoked by Aire deficiency. J. Exp. Med. 202, 805–815 (2005). PubMed DOI PMC

Gardner, J. M. et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008). PubMed DOI PMC

Taylor, P. R. et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat. Immunol. 8, 31–38 (2007). PubMed DOI

Gordon, J. et al. Specific expression of lacZ and cre recombinase in fetal thymic epithelial cells by multiplex gene targeting at the Foxn1 locus. BMC Dev. Biol. 7, 69 (2007). PubMed DOI PMC

Colnot, C., Fowlis, D., Ripoche, M. A., Bouchaert, I. & Poirier, F. Embryonic implantation in galectin 1/galectin 3 double mutant mice. Dev. Dyn. 211, 306–313 (1998). PubMed DOI

Barnden, M. J., Allison, J., Heath, W. R. & Carbone, F. R. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998). PubMed DOI

Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992). PubMed DOI

Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010). PubMed DOI

Fonzi, W. A. & Irwin, M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728 (1993). PubMed DOI PMC

Igyártó, B. Z. et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35, 260–272 (2011). PubMed DOI

Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014). PubMed DOI PMC

Kohen, R. et al. UTAP: user-friendly transcriptome analysis pipeline. BMC Bioinf. 20, 154 (2019). DOI

Moon, J. J. et al. Naive CD4 PubMed DOI PMC

Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Extrathymic AIRE-Expressing Cells: A Historical Perspective

. 2024 ; 1444 () : 33-49.

The emerging family of RORγt+ antigen-presenting cells

. 2024 Jan ; 24 (1) : 64-77. [epub] 20230721

AIRE in Male Fertility: A New Hypothesis

. 2022 Oct 09 ; 11 (19) : . [epub] 20221009

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace