The emerging family of RORγt+ antigen-presenting cells
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
R01 CA274534
NCI NIH HHS - United States
R01 AI162936
NIAID NIH HHS - United States
R01 AI145989
NIAID NIH HHS - United States
R01 AI123368
NIAID NIH HHS - United States
R01 AI143842
NIAID NIH HHS - United States
U01 AI095608
NIAID NIH HHS - United States
R37 AI174468
NIAID NIH HHS - United States
PubMed
37479834
PubMed Central
PMC10844842
DOI
10.1038/s41577-023-00906-5
PII: 10.1038/s41577-023-00906-5
Knihovny.cz E-zdroje
- MeSH
- antigen prezentující buňky metabolismus MeSH
- endoteliální buňky MeSH
- jaderné receptory - podrodina 1, skupina F, člen 3 * metabolismus MeSH
- lidé MeSH
- lymfocyty * MeSH
- přirozená imunita MeSH
- transportní proteiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- jaderné receptory - podrodina 1, skupina F, člen 3 * MeSH
- transportní proteiny MeSH
Antigen-presenting cells (APCs) are master regulators of the immune response by directly interacting with T cells to orchestrate distinct functional outcomes. Several types of professional APC exist, including conventional dendritic cells, B cells and macrophages, and numerous other cell types have non-classical roles in antigen presentation, such as thymic epithelial cells, endothelial cells and granulocytes. Accumulating evidence indicates the presence of a new family of APCs marked by the lineage-specifying transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and demonstrates that these APCs have key roles in shaping immunity, inflammation and tolerance, particularly in the context of host-microorganism interactions. These RORγt+ APCs include subsets of group 3 innate lymphoid cells, extrathymic autoimmune regulator-expressing cells and, potentially, other emerging populations. Here, we summarize the major findings that led to the discovery of these RORγt+ APCs and their associated functions. We discuss discordance in recent reports and identify gaps in our knowledge in this burgeoning field, which has tremendous potential to advance our understanding of fundamental immune concepts.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Department of Immunology and Regenerative Biology Weizmann Institute of Science Rehovot Israel
Department of Microbiology and Immunology Weill Cornell Medicine Cornell University New York NY USA
Zobrazit více v PubMed
Blum JS, Wearsch PA & Cresswell P Pathways of antigen processing. Annu Rev Immunol 31, 443–473 (2013). PubMed PMC
Guermonprez P, Valladeau J, Zitvogel L, Théry C & Amigorena S Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20, 621–667 (2002). PubMed
Rossjohn J et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 33, 169–200 (2015). PubMed
Pishesha N, Harmand TJ & Ploegh HL A guide to antigen processing and presentation. Nat Rev Immunol 22, 751–764 (2022). PubMed
Huppa JB & Davis MM T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3, 973–983 (2003). PubMed
Klein L, Hinterberger M, Wirnsberger G & Kyewski B Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9, 833–844 (2009). PubMed
Murphy TL et al. Transcriptional Control of Dendritic Cell Development. Annu Rev Immunol 34, 93–119 (2016). PubMed PMC
Kambayashi T & Laufer TM Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nat Rev Immunol 14, 719–730 (2014). PubMed
Hirose T, Smith RJ & Jetten AM ROR gamma: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle. Biochem Biophys Res Commun 205, 1976–1983 (1994). PubMed
Medvedev A, Yan ZH, Hirose T, Giguère V & Jetten AM Cloning of a cDNA encoding the murine orphan receptor RZR/ROR gamma and characterization of its response element. Gene 181, 199–206 (1996). PubMed
Eberl G RORγt, a multitask nuclear receptor at mucosal surfaces. Mucosal Immunol 10, 27–34 (2017). PubMed
He YW, Deftos ML, Ojala EW & Bevan MJ RORgamma t, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 9, 797–806 (1998). PubMed PMC
Sun Z et al. Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288, 2369–2373 (2000). PubMed
Kurebayashi S et al. Retinoid-related orphan receptor gamma (RORgamma) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc Natl Acad Sci U S A 97, 10132–10137 (2000). PubMed PMC
Okada S et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015). PubMed PMC
Eberl G et al. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 5, 64–73 (2004). PubMed
Mebius RE, Streeter PR, Michie S, Butcher EC & Weissman IL A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+ CD3- cells to colonize lymph nodes. Proc Natl Acad Sci U S A 93, 11019–11024 (1996). PubMed PMC
Adachi S, Yoshida H, Kataoka H & Nishikawa S Three distinctive steps in Peyer’s patch formation of murine embryo. Int Immunol 9, 507–514 (1997). PubMed
Mebius RE, Rennert P & Weissman IL Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997). PubMed
Eberl G & Littman DR Thymic origin of intestinal alphabeta T cells revealed by fate mapping of RORgammat+ cells. Science 305, 248–251 (2004). PubMed
Bouskra D et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008). PubMed
Ivanov II et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006). PubMed
Lochner M et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med 205, 1381–1393 (2008). PubMed PMC
Ohnmacht C et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015). PubMed
Sefik E et al. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015). PubMed PMC
Martin B, Hirota K, Cua DJ, Stockinger B & Veldhoen M Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009). PubMed
Satoh-Takayama N et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008). PubMed
Luci C et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat Immunol 10, 75–82 (2009). PubMed
Sanos SL et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10, 83–91 (2009). PubMed PMC
Takatori H et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206, 35–41 (2009). PubMed PMC
Cella M et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009). PubMed PMC
Buonocore S et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010). PubMed PMC
Spits H et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat Rev Immunol 13, 145–149 (2013). PubMed
Grigg JB et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 600, 707–712 (2021). PubMed PMC
Hepworth MR et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498, 113–117 (2013). PubMed PMC
Hepworth MR et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015). PubMed PMC
Yamano T et al. Aire-expressing ILC3-like cells in the lymph node display potent APC features. J Exp Med 216, 1027–1037 (2019). PubMed PMC
Brown CC et al. Transcriptional Basis of Mouse and Human Dendritic Cell Heterogeneity. Cell 179, 846–863.e824 (2019). PubMed PMC
Wang J et al. Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Sci Immunol 6, eabl5053 (2021). PubMed PMC
Dobeš J et al. Extrathymic expression of Aire controls the induction of effective T. Nat Immunol 23, 1098–1108 (2022). PubMed
Kedmi R et al. A RORγt+ cell instructs gut microbiota-specific Treg cell differentiation. Nature 610, 737–743 (2022). PubMed PMC
Lyu M et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022). PubMed PMC
Akagbosu B et al. Novel antigen-presenting cell imparts Treg-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022). PubMed PMC
Goto Y et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40, 594–607 (2014). PubMed PMC
Constantinides MG, McDonald BD, Verhoef PA & Bendelac A A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014). PubMed PMC
Klose CS et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013). PubMed
Withers DR et al. Transient inhibition of ROR-γt therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nat Med 22, 319–323 (2016). PubMed PMC
Fiancette R et al. Reciprocal transcription factor networks govern tissue-resident ILC3 subset function and identity. Nat Immunol 22, 1245–1255 (2021). PubMed PMC
Elmentaite R et al. Cells of the human intestinal tract mapped across space and time. Nature 597, 250–255 (2021). PubMed PMC
Fawkner-Corbett D et al. Spatiotemporal analysis of human intestinal development at single-cell resolution. Cell 184, 810–826 e823 (2021). PubMed PMC
Goc J et al. Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184, 5015–5030.e5016 (2021). PubMed PMC
Teng F et al. ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Rep 37, 110051 (2021). PubMed PMC
Huang S et al. Lymph nodes are innervated by a unique population of sensory neurons with immunomodulatory potential. Cell 184, 441–459.e425 (2021). PubMed PMC
Gardner JM et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science 321, 843–847 (2008). PubMed PMC
Consortium F-GA An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17, 399–403 (1997). PubMed
Nagamine K et al. Positional cloning of the APECED gene. Nat Genet 17, 393–398 (1997). PubMed
Anderson MS et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002). PubMed
Gardner JM et al. Extrathymic Aire-expressing cells are a distinct bone marrow-derived population that induce functional inactivation of CD4+ T cells. Immunity 39, 560–572 (2013). PubMed PMC
Lyu M et al. ILC3s select for RORγt+ Tregs and establish tolerance to intestinal microbiota. bioRxiv, 2022.2004.2025.489463 (2022).
Wang X et al. Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol 3, 19 (2012). PubMed PMC
Salvermoser J et al. Mediated Ablation of Conventional Dendritic Cells Suggests a Lymphoid Path to Generating Dendritic Cells. Front Immunol 9, 699 (2018). PubMed PMC
Zhou W et al. ZBTB46 defines and regulates ILC3s that protect the intestine. Nature 609, 159–165 (2022). PubMed PMC
Satpathy AT et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 209, 1135–1152 (2012). PubMed PMC
Meredith MM et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 209, 1153–1165 (2012). PubMed PMC
Schlenner SM et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010). PubMed
Leung GA et al. The lymphoid-associated interleukin 7 receptor (IL7R) regulates tissue-resident macrophage development. Development 146 (2019). PubMed PMC
Ghaedi M et al. Single-cell analysis of RORα tracer mouse lung reveals ILC progenitors and effector ILC2 subsets. J Exp Med 217 (2020). PubMed PMC
Fergusson JR et al. Maturing Human CD127+ CCR7+ PDL1+ Dendritic Cells Express AIRE in the Absence of Tissue Restricted Antigens. Front Immunol 9, 2902 (2018). PubMed PMC
Poliani PL et al. Human peripheral lymphoid tissues contain autoimmune regulator-expressing dendritic cells. Am J Pathol 176, 1104–1112 (2010). PubMed PMC
Melo-Gonzalez F et al. Antigen-presenting ILC3 regulate T cell-dependent IgA responses to colonic mucosal bacteria. J Exp Med 216, 728–742 (2019). PubMed PMC
Wang W et al. The Interaction between Lymphoid Tissue Inducer-Like Cells and T Cells in the Mesenteric Lymph Node Restrains Intestinal Humoral Immunity. Cell Rep 32, 107936 (2020). PubMed
Steinman RM, Hawiger D & Nussenzweig MC Tolerogenic dendritic cells. Annu Rev Immunol 21, 685–711 (2003). PubMed
Liu K et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196, 1091–1097 (2002). PubMed PMC
Kurts C, Kosaka H, Carbone FR, Miller JF & Heath WR Class I-restricted cross-presentation of exogenous self-antigens leads to deletion of autoreactive CD8(+) T cells. J Exp Med 186, 239–245 (1997). PubMed PMC
Probst HC, Lagnel J, Kollias G & van den Broek M Inducible transgenic mice reveal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity 18, 713–720 (2003). PubMed
Hawiger D et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 194, 769–779 (2001). PubMed PMC
Curotto de Lafaille MA & Lafaille JJ Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30, 626–635 (2009). PubMed
Ivanov II et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). PubMed PMC
von Burg N et al. Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc Natl Acad Sci U S A 111, 12835–12840 (2014). PubMed PMC
Lehmann FM et al. Microbiota-induced tissue signals regulate ILC3-mediated antigen presentation. Nat Commun 11, 1794 (2020). PubMed PMC
Castellanos JG et al. Microbiota-Induced TNF-like Ligand 1A Drives Group 3 Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T Cell Activation during Colitis. Immunity 49, 1077–1089.e1075 (2018). PubMed PMC
Rao A et al. Cytokines regulate the antigen-presenting characteristics of human circulating and tissue-resident intestinal ILCs. Nat Commun 11, 2049 (2020). PubMed PMC
Lim AI et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation. Cell 168, 1086–1100 e1010 (2017). PubMed
Huang Y et al. IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol 16, 161–169 (2015). PubMed PMC
Anderson CA et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 43, 246–252 (2011). PubMed PMC
Lill CM et al. MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain 136, 1778–1782 (2013). PubMed PMC
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M & Reis e Sousa C Dendritic Cells Revisited. Annu Rev Immunol 39, 131–166 (2021). PubMed
Liston A, Lesage S, Wilson J, Peltonen L & Goodnow CC Aire regulates negative selection of organ-specific T cells. Nat Immunol 4, 350–354 (2003). PubMed
Aschenbrenner K et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat Immunol 8, 351–358 (2007). PubMed
Malchow S et al. Aire Enforces Immune Tolerance by Directing Autoreactive T Cells into the Regulatory T Cell Lineage. Immunity 44, 1102–1113 (2016). PubMed PMC
Yang S, Fujikado N, Kolodin D, Benoist C & Mathis D Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015). PubMed PMC
Gillis-Buck E et al. Extrathymic Aire-expressing cells support maternal-fetal tolerance. Sci Immunol 6, eabf1968 (2021). PubMed PMC
Anderson MS et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005). PubMed
Kisand K et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med 207, 299–308 (2010). PubMed PMC
Xu M et al. c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554, 373–377 (2018). PubMed PMC
Russler-Germain EV et al. Gut Helicobacter presentation by multiple dendritic cell subsets enables context-specific regulatory T cell generation. Elife 10, e54792 (2021). PubMed PMC
Chai JN et al. species are potent drivers of colonic T cell responses in homeostasis and inflammation. Sci Immunol 2, eaal5068 (2017). PubMed PMC
Mackley EC et al. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat Commun 6, 5862 (2015). PubMed PMC
Bernink JH et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 14, 221–229 (2013). PubMed
Husebye ES, Anderson MS & Kämpe O Autoimmune Polyendocrine Syndromes. N Engl J Med 378, 2543–2544 (2018). PubMed
Husebye ES, Perheentupa J, Rautemaa R & Kämpe O Clinical manifestations and management of patients with autoimmune polyendocrine syndrome type I. J Intern Med 265, 514–529 (2009). PubMed
Abramson J & Husebye ES Autoimmune regulator and self-tolerance - molecular and clinical aspects. Immunol Rev 271, 127–140 (2016). PubMed
Puel A et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med 207, 291–297 (2010). PubMed PMC
Break TJ et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science 371, eaay5731 (2021). PubMed PMC
Bruserud Ø et al. Altered Immune Activation and IL-23 Signaling in Response to. Front Immunol 8, 1074 (2017). PubMed PMC
Mathä L et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol 12, 679509 (2021). PubMed PMC
Oliphant CJ et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014). PubMed PMC
Extrathymic AIRE-Expressing Cells: A Historical Perspective