Two complementary approaches for efficient isolation of Sertoli cells for transcriptomic analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36158203
PubMed Central
PMC9495933
DOI
10.3389/fcell.2022.972017
PII: 972017
Knihovny.cz E-zdroje
- Klíčová slova
- FSHr, Occludin, Sertoli cell, flow cytometry, spermatogenesis,
- Publikační typ
- časopisecké články MeSH
Sertoli cells (SCs) are the only somatic cells that reside in seminiferous tubules of testis. They directly interact with and support the development of germ cells, thus have an indispensable role in the process of spermatogenesis. SCs first appear in a proliferative state and then, with the initiation of the first wave of spermatogenesis, progress to a mature "nurturing" state which supports lifelong continuous sperm production. During this development, the SC transcriptome must adapt rapidly as obstacles in SC maturation often result in deficiencies in male fertility. Due to its importance in spermatogenesis, a reliable, rapid, and precise method for the isolation of high purity, viable and unadulterated SC has been largely missing. We have developed an improved method for the preparation of a testicular single cell suspension comprised of two alternative protocols to separate SCs from the rest of the testicular cells by FACS. The first sorting scheme is based on their co-expression of surface specific markers, FSHr and Occludin-1, while the second focuses on the co-staining of SCs with FSHr-specific antibody and Hoechst 33342, which discriminates DNA content of testicular cells. The entire procedure can be completed in less than 3 h which permits the analysis of the development-related transcriptional profile of these cells. Notably, our comparative study showed that this method resulted in a SC transcriptome that is largely comparable to SCs which were briskly isolated due to their cell-specific expression of fluorescent protein. Interestingly, we also show that SCs sorted as FSHr+Occludin+ cells contained a tangible portion of transcripts from all types of testicular germ cells. Sorting of SCs according to their 2C DNA content significantly reduced the presence of these transcripts, thus seems to be the most suitable approach for accurate determination of the SC transcriptome. We believe that these novel approaches for the isolation of SCs will assist researchers in the elucidation of their function as well as their role in spermatogenesis and disorders related to male infertility.
Zobrazit více v PubMed
Aldahhan R. A., Stanton P. G., Ludlow H., De Kretser D. M., Hedger M. P. (2019). Acute heat-treatment disrupts inhibin-related protein production and gene expression in the adult rat testis. Mol. Cell. Endocrinol. 498, 110546. 10.1016/j.mce.2019.110546 PubMed DOI
Aldahhan R. A., Stanton P. G., Ludlow H., de Kretser D. M., Hedger M. P. (2021). Experimental cryptorchidism causes chronic inflammation and a progressive decline in sertoli cell and Leydig cell function in the adult rat testis. Reprod. Sci. 28 (10), 2916–2928. 10.1007/s43032-021-00616-0 PubMed DOI
Bailey P. J., Klos J. M., Andersson E., Karlen M., Kallstrom M., Ponjavic J., et al. (2006). A global genomic transcriptional code associated with CNS-expressed genes. Exp. Cell Res. 312 (16), 3108–3119. 10.1016/j.yexcr.2006.06.017 PubMed DOI
Bashamboo A., Ferraz-de-Souza B., Lourenco D., Lin L., Sebire N. J., Montjean D., et al. (2010). Human male infertility associated with mutations in NR5A1 encoding steroidogenic factor 1. Am. J. Hum. Genet. 87 (4), 505–512. 10.1016/j.ajhg.2010.09.009 PubMed DOI PMC
Bastos H., Lassalle B., Chicheportiche A., Riou L., Testart J., Allemand I., et al. (2005). Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytom. A 65 (1), 40–49. 10.1002/cyto.a.20129 PubMed DOI
Bellve A. R., Cavicchia J. C., Millette C. F., O'Brien D. A., Bhatnagar Y. M., Dym M. (1977a). Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J. Cell Biol. 74 (1), 68–85. 10.1083/jcb.74.1.68 PubMed DOI PMC
Bellve A. R., Millette C. F., Bhatnagar Y. M., O'Brien D. A. (1977b). Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J. Histochem. Cytochem. 25 (7), 480–494. 10.1177/25.7.893996 PubMed DOI
Bhushan S., Aslani F., Zhang Z., Sebastian T., Elsasser H. P., Klug J. (2016). Isolation of sertoli cells and peritubular cells from rat testes. J. Vis. Exp. 108, e53389. 10.3791/53389 PubMed DOI PMC
Chang Y. F., Lee-Chang J. S., Panneerdoss S., MacLean J. A., 2nd , Rao M. K. (2011). Isolation of Sertoli, Leydig, and spermatogenic cells from the mouse testis. Biotechniques 51 (5), 341–344. 10.2144/000113764 PubMed DOI PMC
de Rooij D. G. (1998). Stem cells in the testis. Int. J. Exp. Pathol. 79 (2), 67–80. 10.1046/j.1365-2613.1998.00057.x PubMed DOI PMC
Dunleavy J. E. M., O'Bryan M. K., Stanton P. G., O'Donnell L. (2019). The cytoskeleton in spermatogenesis. Reproduction 157 (2), R53–R72. 10.1530/REP-18-0457 PubMed DOI
Edelsztein N. Y., Rey R. A. (2019). Importance of the androgen receptor signaling in gene transactivation and transrepression for pubertal maturation of the testis. Cells 8 (8), 861. 10.3390/cells8080861 PubMed DOI PMC
Ferlin A., Vinanzi C., Garolla A., Selice R., Zuccarello D., Cazzadore C., et al. (2006). Male infertility and androgen receptor gene mutations: Clinical features and identification of seven novel mutations. Clin. Endocrinol. 65 (5), 606–610. 10.1111/j.1365-2265.2006.02635.x PubMed DOI
Fijak M., Meinhardt A. (2006). The testis in immune privilege. Immunol. Rev. 213, 66–81. 10.1111/j.1600-065X.2006.00438.x PubMed DOI
Flanagan J. G., Chan D. C., Leder P. (1991). Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant. Cell 64 (5), 1025–1035. 10.1016/0092-8674(91)90326-t PubMed DOI
Franca L. R., Hess R. A., Dufour J. M., Hofmann M. C., Griswold M. D. (2016). The sertoli cell: One hundred fifty years of beauty and plasticity. Andrology 4 (2), 189–212. 10.1111/andr.12165 PubMed DOI PMC
Gaysinskaya V., Soh I. Y., van der Heijden G. W., Bortvin A. (2014). Optimized flow cytometry isolation of murine spermatocytes. Cytom. A 85 (6), 556–565. 10.1002/cyto.a.22463 PubMed DOI PMC
Geyer C. (2017). “Setting the stage: The first round of spermatogenesis,” in The Biology of mammalian spermatogonia. Editor Oatley JM G. M. ((NY: NY: Springer Nature; )), 39–63.
Griswold M. D. (2018). 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol. Reprod. 99 (1), 87–100. 10.1093/biolre/ioy027 PubMed DOI PMC
Hadziselimovic F., Herzog B. (1993). The development and descent of the epididymis. Eur. J. Pediatr. 152, S6–S9. 10.1007/BF02125424 PubMed DOI
Harley V. R., Clarkson M. J., Argentaro A. (2003). The molecular action and regulation of the testis-determining factors, SRY (sex-determining region on the Y chromosome) and SOX9 [SRY-related high-mobility group (HMG) box 9]. Endocr. Rev. 24 (4), 466–487. 10.1210/er.2002-0025 PubMed DOI
Hiort O., Holterhus P. M., Horter T., Schulze W., Kremke B., Bals-Pratsch M., et al. (2000). Significance of mutations in the androgen receptor gene in males with idiopathic infertility. J. Clin. Endocrinol. Metab. 85 (8), 2810–2815. 10.1210/jcem.85.8.6713 PubMed DOI
Hutson J. M., Balic A., Nation T., Southwell B. (2010). Cryptorchidism. Semin. Pediatr. Surg. 19 (3), 215–224. 10.1053/j.sempedsurg.2010.04.001 PubMed DOI
Jegou B., Risbridger G. P., de Kretser D. M. (1983). Effects of experimental cryptorchidism on testicular function in adult rats. J. Androl. 4 (1), 88–94. 10.1002/j.1939-4640.1983.tb00726.x PubMed DOI
Kaitu'u-Lino T. J., Sluka P., Foo C. F., Stanton P. G. (2007). Claudin-11 expression and localisation is regulated by androgens in rat Sertoli cells in vitro . Reproduction 133 (6), 1169–1179. 10.1530/REP-06-0385 PubMed DOI
Kangasniemi M., Kaipia A., Toppari J., Perheentupa A., Huhtaniemi I., Parvinen M. (1990). Cellular regulation of follicle-stimulating hormone (FSH) binding in rat seminiferous tubules. J. Androl. 11 (4), 336–343. 10.1002/j.1939-4640.1990.tb00153.x PubMed DOI
Kerr J. B., de Kretser D. M. (1974). Proceedings: The role of the Sertoli cell in phagocytosis of the residual bodies of spermatids. J. Reprod. Fertil. 36 (2), 439–440. 10.1530/jrf.0.0360439 PubMed DOI
Kluin P. M., Kramer M. F., de Rooij D. G. (1982). Spermatogenesis in the immature mouse proceeds faster than in the adult. Int. J. Androl. 5 (3), 282–294. 10.1111/j.1365-2605.1982.tb00257.x PubMed DOI
Kostereva N., Hofmann M. C. (2008). Regulation of the spermatogonial stem cell niche. Reprod. Domest. Anim. 43, 386–392. 10.1111/j.1439-0531.2008.01189.x PubMed DOI PMC
Lakpour M. R., Aghajanpour S., Koruji M., Shahverdi A., Sadighi-Gilani M. A., Sabbaghian M., et al. (2017). Isolation, culture and characterization of human sertoli cells by flow cytometry: Development of procedure. J. Reprod. Infertil. 18 (2), 213–217. PubMed PMC
Lassalle B., Bastos H., Louis J. P., Riou L., Testart J., Dutrillaux B., et al. (2004). Side Population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131 (2), 479–487. 10.1242/dev.00918 PubMed DOI
Li Y., Huang Y., Piao Y., Nagaoka K., Watanabe G., Taya K., et al. (2013). Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis. Reprod. Biol. Endocrinol. 11, 23. 10.1186/1477-7827-11-23 PubMed DOI PMC
Lie P. P., Xia W., Wang C. Q., Mruk D. D., Yan H. H., Wong C. H., et al. (2006). Dynamin II interacts with the cadherin- and occludin-based protein complexes at the blood-testis barrier in adult rat testes. J. Endocrinol. 191 (3), 571–586. 10.1677/joe.1.06996 PubMed DOI
Lukas-Croisier C., Lasala C., Nicaud J., Bedecarras P., Kumar T. R., Dutertre M., et al. (2003). Follicle-stimulating hormone increases testicular Anti-Mullerian hormone (AMH) production through sertoli cell proliferation and a nonclassical cyclic adenosine 5'-monophosphate-mediated activation of the AMH Gene. Mol. Endocrinol. 17 (4), 550–561. 10.1210/me.2002-0186 PubMed DOI
McLachlan R. I., O'Donnell L., Meachem S. J., Stanton P. G., de Kretser D. M., Pratis K., et al. (2002). Identification of specific sites of hormonal regulation in spermatogenesis in rats, monkeys, and man. Recent Prog. Horm. Res. 57, 149–179. 10.1210/rp.57.1.149 PubMed DOI
Nel-Themaat L., Vadakkan T. J., Wang Y., Dickinson M. E., Akiyama H., Behringer R. R. (2009). Morphometric analysis of testis cord formation in Sox9-EGFP mice. Dev. Dyn. 238 (5), 1100–1110. 10.1002/dvdy.21954 PubMed DOI PMC
O'Bryan M. K., Hedger M. P. (2008). Inflammatory networks in the control of spermatogenesis : Chronic inflammation in an immunologically privileged tissue? Adv. Exp. Med. Biol. 636, 92–114. 10.1007/978-0-387-09597-4_6 PubMed DOI
Oduwole O. O., Peltoketo H., Huhtaniemi I. T. (2018). Role of follicle-stimulating hormone in spermatogenesis. Front. Endocrinol. 9, 763. 10.3389/fendo.2018.00763 PubMed DOI PMC
Orth J., Christensen A. K. (1977). Localization of 125I-labeled FSH in the testes of hypophy-sectomized rats by autoradiography at the light and electron microscope levels. Endocrinology 101 (1), 262–278. 10.1210/endo-101-1-262 PubMed DOI
Petersen T. W., Ibrahim S. F., Diercks A. H., van den Engh G. (2004). Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342. Cytom. A 60 (2), 173–181. 10.1002/cyto.a.20058 PubMed DOI
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29 (9), e45. 10.1093/nar/29.9.e45 PubMed DOI PMC
Rasband W. S. (1997). ImageJ. Bethesda, Maryland, USA: U. S. National Institutes of Health. 2018. Available at: https://imagej.nih.gov/ij/ .
Rodriguez-Casuriaga R., Geisinger A. (2021). Contributions of flow cytometry to the molecular study of spermatogenesis in mammals. Int. J. Mol. Sci. 22 (3), 1151. 10.3390/ijms22031151 PubMed DOI PMC
Russell L. D., Saxena N. K., Turner T. T. (1989). Cytoskeletal involvement in spermiation and sperm transport. Tissue Cell 21 (3), 361–379. 10.1016/0040-8166(89)90051-7 PubMed DOI
Sakai Y., Yamashina S. (1989). Mechanism for the removal of residual cytoplasm from spermatids during mouse spermiogenesis. Anat. Rec. 223 (1), 43–48. 10.1002/ar.1092230107 PubMed DOI
Seethalakshmi L., Steinberger A. (1983). Effect of cryptorchidism and orchidopexy on inhibin secretion by rat Sertoli cells. J. Androl. 4 (2), 131–135. 10.1002/j.1939-4640.1983.tb00737.x PubMed DOI
Sharpe R. M., McKinnell C., Kivlin C., Fisher J. S. (2003). Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125 (6), 769–784. 10.1530/rep.0.1250769 PubMed DOI
Simoni M., Gromoll J., Nieschlag E. (1997). The follicle-stimulating hormone receptor: Biochemistry, molecular biology, physiology, and pathophysiology. Endocr. Rev. 18 (6), 739–773. 10.1210/edrv.18.6.0320 PubMed DOI
Watson J. V., Nakeff A., Chambers S. H., Smith P. J. (1985). Flow cytometric fluorescence emission spectrum analysis of Hoechst-33342-stained DNA in chicken thymocytes. Cytometry 6 (4), 310–315. 10.1002/cyto.990060406 PubMed DOI
Xi H. M., Ren Y. J., Ren F., Li Y., Feng T. Y., Wang Z., et al. (2022). Recent advances in isolation, identification, and culture of mammalian spermatogonial stem cells. Asian J. Androl. 24 (1), 5–14. 10.4103/aja.aja_41_21 PubMed DOI PMC
Xu H. Y., Zhang H. X., Xiao Z., Qiao J., Li R. (2019). Regulation of anti-Mullerian hormone (AMH) in males and the associations of serum AMH with the disorders of male fertility. Asian J. Androl. 21 (2), 109–114. 10.4103/aja.aja_83_18 PubMed DOI PMC
Yan H. H., Cheng C. Y. (2005). Blood-testis barrier dynamics are regulated by an engagement/disengagement mechanism between tight and adherens junctions via peripheral adaptors. Proc. Natl. Acad. Sci. U. S. A. 102 (33), 11722–11727. 10.1073/pnas.0503855102 PubMed DOI PMC
Zhu Z. J., Yang S., Li Z. (2015). Transcriptome research on spermatogenic molecular drive in mammals. Asian J. Androl. 17 (6), 961–971. 10.4103/1008-682X.159721 PubMed DOI PMC
Zimmermann C., Stevant I., Borel C., Conne B., Pitetti J. L., Calvel P., et al. (2015). Research resource: The dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis. Mol. Endocrinol. 29 (4), 627–642. 10.1210/me.2014-1356 PubMed DOI PMC
Protamine 2 deficiency results in Septin 12 abnormalities