• This record comes from PubMed

Envisioning a role for nuclear actin in prophase I spermatocytes

. 2023 ; 11 () : 1295452. [epub] 20231124

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Actin is a multi-functional protein that is involved in numerous cellular processes including cytoskeleton regulation, cell migration, and cellular integrity. In these processes, actin's role in respect to its structure, complex mechanical, and protein-binding properties has been studied primarily in the cytoplasmic and cellular membrane compartments. However, its role in somatic cell nuclei has recently become evident where it participates in transcription, chromatin remodeling, and DNA damage repair. What remains enigmatic is the involvement of nuclear actin in physiological processes that lead to the generation of germ cells, in general, and primary spermatocytes, in particular. Here, we will discuss the possible role and nuclear localization of actin during meiotic prophase I and its interaction with chromatin remodeling complexes, the latter being essential for the control of pairing of homologous chromosomes, cross-over formation, and recombination. It is our hope that this perspective article will extend the scope of actin's nuclear function in germ cells undergoing meiotic division.

See more in PubMed

Ahuja J. S., Sandhu R., Mainpal R., Lawson C., Henley H., Hunt P. A., et al. (2017). Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355 (6323), 408–411. 10.1126/science.aaf4778 PubMed DOI PMC

Aoyama N., Oka A., Kitayama K., Kurumizaka H., Harata M. (2008). The actin-related protein hArp8 accumulates on the mitotic chromosomes and functions in chromosome alignment. Exp. Cell Res. 314 (4), 859–868. 10.1016/j.yexcr.2007.11.020 PubMed DOI

Arvindekar S., Jackman M. J., Low J. K. K., Landsberg M. J., Mackay J. P., Viswanath S. (2022). Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Sci. 31 (9), e4387. 10.1002/pro.4387 PubMed DOI PMC

Baarlink C., Plessner M., Sherrard A., Morita K., Misu S., Virant D., et al. (2017). A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat. Cell Biol. 19 (12), 1389–1399. 10.1038/ncb3641 PubMed DOI

Baarlink C., Wang H., Grosse R. (2013). Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340 (6134), 864–867. 10.1126/science.1235038 PubMed DOI

Baudat F., Imai Y., de Massy B. (2013). Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14 (11), 794–806. 10.1038/nrg3573 PubMed DOI

Baudat F., Manova K., Yuen J. P., Jasin M., Keeney S. (2000). Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6 (5), 989–998. 10.1016/s1097-2765(00)00098-8 PubMed DOI

Bays J. L., DeMali K. A. (2017). Vinculin in cell-cell and cell-matrix adhesions. Cell Mol. Life Sci. 74 (16), 2999–3009. 10.1007/s00018-017-2511-3 PubMed DOI PMC

Belin B. J., Lee T., Mullins R. D. (2015a). Correction: DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair. Elife 4, e11935. 10.7554/eLife.11935 PubMed DOI PMC

Belin B. J., Lee T., Mullins R. D. (2015b). DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected]. Elife 4, e07735. 10.7554/eLife.07735 PubMed DOI PMC

Bhagwat N. R., Owens S. N., Ito M., Boinapalli J. V., Poa P., Ditzel A., et al. (2021). SUMO is a pervasive regulator of meiosis. Elife 10, e57720. 10.7554/eLife.57720 PubMed DOI PMC

Bird A. W., Yu D. Y., Pray-Grant M. G., Qiu Q., Harmon K. E., Megee P. C., et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419 (6905), 411–415. 10.1038/nature01035 PubMed DOI

Bode D., Yu L., Tate P., Pardo M., Choudhary J. (2016). Characterization of two distinct nucleosome remodeling and deacetylase (NuRD) complex assemblies in embryonic stem cells. Mol. Cell Proteomics 15 (3), 878–891. 10.1074/mcp.M115.053207 PubMed DOI PMC

Bornelov S., Reynolds N., Xenophontos M., Gharbi S., Johnstone E., Floyd R., et al. (2018). The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol. Cell 71 (1), 56–72. 10.1016/j.molcel.2018.06.003 PubMed DOI PMC

Brahma S., Ngubo M., Paul S., Udugama M., Bartholomew B. (2018). The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat. Commun. 9 (1), 3309. 10.1038/s41467-018-05710-7 PubMed DOI PMC

Brown P. W., Hwang K., Schlegel P. N., Morris P. L. (2008). Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum. Reprod. 23 (12), 2850–2857. 10.1093/humrep/den300 PubMed DOI PMC

Cai Y., Jin J., Yao T., Gottschalk A. J., Swanson S. K., Wu S., et al. (2007). YY1 functions with INO80 to activate transcription. Nat. Struct. Mol. Biol. 14 (9), 872–874. 10.1038/nsmb1276 PubMed DOI

Cao T., Sun L., Jiang Y., Huang S., Wang J., Chen Z. (2016). Crystal structure of a nuclear actin ternary complex. Proc. Natl. Acad. Sci. U. S. A. 113 (32), 8985–8990. 10.1073/pnas.1602818113 PubMed DOI PMC

Caridi C. P., D'Agostino C., Ryu T., Zapotoczny G., Delabaere L., Li X., et al. (2018). Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559 (7712), 54–60. 10.1038/s41586-018-0242-8 PubMed DOI PMC

Caridi C. P., Plessner M., Grosse R., Chiolo I. (2019). Nuclear actin filaments in DNA repair dynamics. Nat. Cell Biol. 21 (9), 1068–1077. 10.1038/s41556-019-0379-1 PubMed DOI PMC

Chakraborty P., Magnuson T. (2022). INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development 149 (1), dev200089. 10.1242/dev.200089 PubMed DOI PMC

Chen L., Cai Y., Jin J., Florens L., Swanson S. K., Washburn M. P., et al. (2011). Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. J. Biol. Chem. 286 (13), 11283–11289. 10.1074/jbc.M111.222505 PubMed DOI PMC

Cheng X., Jobin-Robitaille O., Billon P., Buisson R., Niu H., Lacoste N., et al. (2018). Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc. Natl. Acad. Sci. U. S. A. 115 (40), 10028–10033. 10.1073/pnas.1806513115 PubMed DOI PMC

Chikashige Y., Haraguchi T., Hiraoka Y. (2007). Another way to move chromosomes. Chromosoma 116 (6), 497–505. 10.1007/s00412-007-0114-8 PubMed DOI

Chikashige Y., Tsutsumi C., Yamane M., Okamasa K., Haraguchi T., Hiraoka Y. (2006). Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125 (1), 59–69. 10.1016/j.cell.2006.01.048 PubMed DOI

Chuang C. H., Carpenter A. E., Fuchsova B., Johnson T., de Lanerolle P., Belmont A. S. (2006). Long-range directional movement of an interphase chromosome site. Curr. Biol. 16 (8), 825–831. 10.1016/j.cub.2006.03.059 PubMed DOI

Clapier C. R., Cairns B. R. (2009). The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304. 10.1146/annurev.biochem.77.062706.153223 PubMed DOI

Colas I., Shaw P., Prieto P., Wanous M., Spielmeyer W., Mago R., et al. (2008). Effective chromosome pairing requires chromatin remodeling at the onset of meiosis. Proc. Natl. Acad. Sci. U. S. A. 105 (16), 6075–6080. 10.1073/pnas.0801521105 PubMed DOI PMC

de Castro R. O., Carbajal A., Previato de Almeida L., Goitea V., Griffin C. T., Pezza R. J. (2022). Mouse Chd4-NURD is required for neonatal spermatogonia survival and normal gonad development. Epigenetics Chromatin 15 (1), 16. 10.1186/s13072-022-00448-5 PubMed DOI PMC

Downs J. A., Allard S., Jobin-Robitaille O., Javaheri A., Auger A., Bouchard N., et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16 (6), 979–990. 10.1016/j.molcel.2004.12.003 PubMed DOI

Dundr M., Ospina J. K., Sung M. H., John S., Upender M., Ried T., et al. (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo . J. Cell Biol. 179 (6), 1095–1103. 10.1083/jcb.200710058 PubMed DOI PMC

Ebbert R., Birkmann A., Schuller H. J. (1999). The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32 (4), 741–751. 10.1046/j.1365-2958.1999.01390.x PubMed DOI

Fukui Y., Katsumaru H. (1980). Dynamics of nuclear actin bundle induction by dimethyl sulfoxide and factors affecting its development. J. Cell Biol. 84 (1), 131–140. 10.1083/jcb.84.1.131 PubMed DOI PMC

Galarneau L., Nourani A., Boudreault A. A., Zhang Y., Heliot L., Allard S., et al. (2000). Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5 (6), 927–937. 10.1016/s1097-2765(00)80258-0 PubMed DOI

Goldmann W. H. (2016). Role of vinculin in cellular mechanotransduction. Cell Biol. Int. 40 (3), 241–256. 10.1002/cbin.10563 PubMed DOI

Gospodinov A., Vaissiere T., Krastev D. B., Legube G., Anachkova B., Herceg Z. (2011). Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol. Cell Biol. 31 (23), 4735–4745. 10.1128/MCB.06182-11 PubMed DOI PMC

Guo X. (2022). Localized proteasomal degradation: from the nucleus to cell periphery. Biomolecules 12 (2), 229. 10.3390/biom12020229 PubMed DOI PMC

Harata M., Oma Y., Mizuno S., Jiang Y. W., Stillman D. J., Wintersberger U. (1999). The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones. Mol. Biol. Cell 10 (8), 2595–2605. 10.1091/mbc.10.8.2595 PubMed DOI PMC

Henderson C. A., Gomez C. G., Novak S. M., Mi-Mi L., Gregorio C. C. (2017). Overview of the muscle cytoskeleton. Compr. Physiol. 7 (3), 891–944. 10.1002/cphy.c160033 PubMed DOI PMC

Hodges C., Kirkland J. G., Crabtree G. R. (2016). The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6 (8), a026930. 10.1101/cshperspect.a026930 PubMed DOI PMC

Hofmann W. A., Stojiljkovic L., Fuchsova B., Vargas G. M., Mavrommatis E., Philimonenko V., et al. (2004). Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6 (11), 1094–1101. 10.1038/ncb1182 PubMed DOI

Humphries J. D., Wang P., Streuli C., Geiger B., Humphries M. J., Ballestrem C. (2007). Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179 (5), 1043–1057. 10.1083/jcb.200703036 PubMed DOI PMC

Hurst V., Shimada K., Gasser S. M. (2019). Nuclear actin and actin-binding proteins in DNA repair. Trends Cell Biol. 29 (6), 462–476. 10.1016/j.tcb.2019.02.010 PubMed DOI

Hyrskyluoto A., Vartiainen M. K. (2020). Regulation of nuclear actin dynamics in development and disease. Curr. Opin. Cell Biol. 64, 18–24. 10.1016/j.ceb.2020.01.012 PubMed DOI

Jannie K. M., Ellerbroek S. M., Zhou D. W., Chen S., Crompton D. J., Garcia A. J., et al. (2015). Vinculin-dependent actin bundling regulates cell migration and traction forces. Biochem. J. 465 (3), 383–393. 10.1042/BJ20140872 PubMed DOI PMC

Janssen M. E., Kim E., Liu H., Fujimoto L. M., Bobkov A., Volkmann N., et al. (2006). Three-dimensional structure of vinculin bound to actin filaments. Mol. Cell 21 (2), 271–281. 10.1016/j.molcel.2005.11.020 PubMed DOI

Kalendova A., Kalasova I., Yamazaki S., Ulicna L., Harata M., Hozak P. (2014). Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block. Histochem Cell Biol. 142 (2), 139–152. 10.1007/s00418-014-1243-9 PubMed DOI PMC

Kapoor P., Shen X. (2014). Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 24 (4), 238–246. 10.1016/j.tcb.2013.10.007 PubMed DOI PMC

Keeney S., Kleckner N. (1996). Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes cells. 1 (5), 475–489. 10.1046/j.1365-2443.1996.d01-257.x PubMed DOI

Kitayama K., Kamo M., Oma Y., Matsuda R., Uchida T., Ikura T., et al. (2009). The human actin-related protein hArp5: nucleo-cytoplasmic shuttling and involvement in DNA repair. Exp. Cell Res. 315 (2), 206–217. 10.1016/j.yexcr.2008.10.028 PubMed DOI

Klages-Mundt N. L., Kumar A., Zhang Y., Kapoor P., Shen X. (2018). The nature of actin-family proteins in chromatin-modifying complexes. Front. Genet. 9, 398. 10.3389/fgene.2018.00398 PubMed DOI PMC

Kleckner N. (1996). Meiosis: how could it work? Proc. Natl. Acad. Sci. U. S. A. 93 (16), 8167–8174. 10.1073/pnas.93.16.8167 PubMed DOI PMC

Kneitz B., Cohen P. E., Avdievich E., Zhu L., Kane M. F., Hou H., Jr., et al. (2000). MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14 (9), 1085–1097. 10.1101/gad.14.9.1085 PubMed DOI PMC

Knoll K. R., Eustermann S., Niebauer V., Oberbeckmann E., Stoehr G., Schall K., et al. (2018). The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 25 (9), 823–832. 10.1038/s41594-018-0115-8 PubMed DOI

Koszul R., Kleckner N. (2009). Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 19 (12), 716–724. 10.1016/j.tcb.2009.09.007 PubMed DOI PMC

Kota S. K., Feil R. (2010). Epigenetic transitions in germ cell development and meiosis. Dev. Cell 19 (5), 675–686. 10.1016/j.devcel.2010.10.009 PubMed DOI

Kristo I., Bajusz I., Bajusz C., Borkuti P., Vilmos P. (2016). Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 145 (4), 373–388. 10.1007/s00418-015-1400-9 PubMed DOI

Lappalainen P. (2016). Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks. Mol. Biol. Cell 27 (16), 2519–2522. 10.1091/mbc.E15-10-0728 PubMed DOI PMC

Le S., Yu M., Bershadsky A., Yan J. (2020). Mechanical regulation of formin-dependent actin polymerization. Semin. Cell Dev. Biol. 102, 73–80. 10.1016/j.semcdb.2019.11.016 PubMed DOI

Lee C. Y., Horn H. F., Stewart C. L., Burke B., Bolcun-Filas E., Schimenti J. C., et al. (2015). Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep. 11 (4), 551–563. 10.1016/j.celrep.2015.03.045 PubMed DOI PMC

Lenormand T., Engelstadter J., Johnston S. E., Wijnker E., Haag C. R. (2016). Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. Lond B Biol. Sci. 371, 20160001. 10.1098/rstb.2016.0001(1706) PubMed DOI PMC

Lin Y. Y., Qi Y., Lu J. Y., Pan X., Yuan D. S., Zhao Y., et al. (2008). A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev. 22 (15), 2062–2074. 10.1101/gad.1679508 PubMed DOI PMC

Lindstrom K. C., Vary J. C., Jr., Parthun M. R., Delrow J., Tsukiyama T. (2006). Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression. Mol. Cell Biol. 26 (16), 6117–6129. 10.1128/MCB.00642-06 PubMed DOI PMC

Lu P. Y., Levesque N., Kobor M. S. (2009). NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem. Cell Biol. 87 (5), 799–815. 10.1139/O09-062 PubMed DOI

Lusic M., Marini B., Ali H., Lucic B., Luzzati R., Giacca M. (2013). Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13 (6), 665–677. 10.1016/j.chom.2013.05.006 PubMed DOI

Ma O. X., Chong W. G., Lee J. K. E., Cai S., Siebert C. A., Howe A., et al. (2022). Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS One 17 (4), e0266035. 10.1371/journal.pone.0266035 PubMed DOI PMC

Magana-Acosta M., Valadez-Graham V. (2020). Chromatin remodelers in the 3D nuclear compartment. Front. Genet. 11, 600615. 10.3389/fgene.2020.600615 PubMed DOI PMC

Mahmood S. R., Xie X., Hosny El Said N., Venit T., Gunsalus K. C., Percipalle P. (2021). β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat. Commun. 12 (1), 5240. 10.1038/s41467-021-25596-2 PubMed DOI PMC

McCann T. S., Tansey W. P. (2014). Functions of the proteasome on chromatin. Biomolecules 4 (4), 1026–1044. 10.3390/biom4041026 PubMed DOI PMC

Menon D. U., Shibata Y., Mu W., Magnuson T. (2019). Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse. Development 146 (19), dev174094. 10.1242/dev.174094 PubMed DOI PMC

Mogessie B. (2019). Conducting chromatin motion: actin dynamizes contents of the oocyte nucleus. Dev. Cell 51 (2), 133–134. 10.1016/j.devcel.2019.09.020 PubMed DOI

Morris S. A., Baek S., Sung M. H., John S., Wiench M., Johnson T. A., et al. (2014). Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat. Struct. Mol. Biol. 21 (1), 73–81. 10.1038/nsmb.2718 PubMed DOI PMC

Ohfuchi E., Kato M., Sasaki M., Sugimoto K., Oma Y., Harata M. (2006). Vertebrate Arp6, a novel nuclear actin-related protein, interacts with heterochromatin protein 1. Eur. J. Cell Biol. 85 (5), 411–421. 10.1016/j.ejcb.2005.12.006 PubMed DOI

Oma Y., Harata M. (2011). Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2 (1), 38–46. 10.4161/nucl.2.1.14510 PubMed DOI PMC

Ondrej V., Lukasova E., Krejci J., Matula P., Kozubek S. (2008). Lamin A/C and polymeric actin in genome organization. Mol. Cells 26 (4), 356–361. PubMed

Osakabe A., Takahashi Y., Murakami H., Otawa K., Tachiwana H., Oma Y., et al. (2014). DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. PLoS One 9 (10), e108354. 10.1371/journal.pone.0108354 PubMed DOI PMC

Percipalle P. (2013). Co-transcriptional nuclear actin dynamics. Nucleus 4 (1), 43–52. 10.4161/nucl.22798 PubMed DOI PMC

Peterson C. L., Zhao Y., Chait B. T. (1998). Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J. Biol. Chem. 273 (37), 23641–23644. 10.1074/jbc.273.37.23641 PubMed DOI

Petrusova J., Havalda R., Flachs P., Venit T., Darasova A., Hulkova L., et al. (2022). Focal adhesion protein vinculin is required for proper meiotic progression during mouse spermatogenesis. Cells 11 (13), 2013. 10.3390/cells11132013 PubMed DOI PMC

Philimonenko V. V., Zhao J., Iben S., Dingova H., Kysela K., Kahle M., et al. (2004). Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6 (12), 1165–1172. 10.1038/ncb1190 PubMed DOI

Plessner M., Grosse R. (2015). Extracellular signaling cues for nuclear actin polymerization. Eur. J. Cell Biol. 94 (7-9), 359–362. 10.1016/j.ejcb.2015.05.009 PubMed DOI

Plessner M., Grosse R. (2019). Dynamizing nuclear actin filaments. Curr. Opin. Cell Biol. 56, 1–6. 10.1016/j.ceb.2018.08.005 PubMed DOI

Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. (2015). Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290 (18), 11209–11216. 10.1074/jbc.M114.627166 PubMed DOI PMC

Prieto P., Moore G., Reader S. (2005). Control of conformation changes associated with homologue recognition during meiosis. Theor. Appl. Genet. 111 (3), 505–510. 10.1007/s00122-005-2040-6 PubMed DOI

Qian M. X., Pang Y., Liu C. H., Haratake K., Du B. Y., Ji D. Y., et al. (2013). Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153 (5), 1012–1024. 10.1016/j.cell.2013.04.032 PubMed DOI PMC

Qu K., Chen K., Wang H., Li X., Chen Z. (2022). Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 610 (7932), 569–574. 10.1038/s41586-022-05303-x PubMed DOI

Rajakyla E. K., Vartiainen M. K. (2014). Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 5, e27539. 10.4161/sgtp.27539 PubMed DOI PMC

Rao H. B., Qiao H., Bhatt S. K., Bailey L. R., Tran H. D., Bourne S. L., et al. (2017). A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355 (6323), 403–407. 10.1126/science.aaf6407 PubMed DOI PMC

Reyes A. A., Marcum R. D., He Y. (2021). Structure and function of chromatin remodelers. J. Mol. Biol. 433 (14), 166929. 10.1016/j.jmb.2021.166929 PubMed DOI PMC

Saha A., Wittmeyer J., Cairns B. R. (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7 (6), 437–447. 10.1038/nrm1945 PubMed DOI

Schrank B., Gautier J. (2019). Assembling nuclear domains: lessons from DNA repair. J. Cell Biol. 218 (8), 2444–2455. 10.1083/jcb.201904202 PubMed DOI PMC

Schrank B. R., Aparicio T., Li Y., Chang W., Chait B. T., Gundersen G. G., et al. (2018). Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559 (7712), 61–66. 10.1038/s41586-018-0237-5 PubMed DOI PMC

Serber D. W., Runge J. S., Menon D. U., Magnuson T. (2016). The mouse INO80 chromatin-remodeling complex is an essential meiotic factor for spermatogenesis. Biol. Reprod. 94 (1), 8. 10.1095/biolreprod.115.135533 PubMed DOI PMC

Shen K., Tolbert C. E., Guilluy C., Swaminathan V. S., Berginski M. E., Burridge K., et al. (2011). The vinculin C-terminal hairpin mediates F-actin bundle formation, focal adhesion, and cell mechanical properties. J. Biol. Chem. 286 (52), 45103–45115. 10.1074/jbc.M111.244293 PubMed DOI PMC

Snowden T., Shim K. S., Schmutte C., Acharya S., Fishel R. (2008). hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery. J. Biol. Chem. 283 (1), 145–154. 10.1074/jbc.M704060200 PubMed DOI PMC

Storlazzi A., Xu L., Schwacha A., Kleckner N. (1996). Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. U. S. A. 93 (17), 9043–9048. 10.1073/pnas.93.17.9043 PubMed DOI PMC

Svitkina T. (2018). The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 10 (1), a018267. 10.1101/cshperspect.a018267 PubMed DOI PMC

Szerlong H., Saha A., Cairns B. R. (2003). The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22 (12), 3175–3187. 10.1093/emboj/cdg296 PubMed DOI PMC

Takagi T., Osumi M., Shinohara A. (2021). Ultrastructural analysis in yeast reveals a meiosis-specific actin-containing nuclear bundle. Commun. Biol. 4 (1), 1009. 10.1038/s42003-021-02545-9 PubMed DOI PMC

Takahashi Y., Murakami H., Akiyama Y., Katoh Y., Oma Y., Nishijima H., et al. (2017). Actin family proteins in the human INO80 chromatin remodeling complex exhibit functional roles in the induction of heme oxygenase-1 with hemin. Front. Genet. 8, 17. 10.3389/fgene.2017.00017 PubMed DOI PMC

Torres-Machorro A. L., Aris J. P., Pillus L. (2015). A moonlighting metabolic protein influences repair at DNA double-stranded breaks. Nucleic Acids Res. 43 (3), 1646–1658. 10.1093/nar/gku1405 PubMed DOI PMC

Tosi A., Haas C., Herzog F., Gilmozzi A., Berninghausen O., Ungewickell C., et al. (2013). Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154 (6), 1207–1219. 10.1016/j.cell.2013.08.016 PubMed DOI

Trelles-Sticken E., Adelfalk C., Loidl J., Scherthan H. (2005). Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J. Cell Biol. 170 (2), 213–223. 10.1083/jcb.200501042 PubMed DOI PMC

Uraji J., Scheffler K., Schuh M. (2018). Functions of actin in mouse oocytes at a glance. J. Cell Sci. 131 (22), jcs218099. 10.1242/jcs.218099 PubMed DOI

Vaughan R. M., Kupai A., Rothbart S. B. (2021). Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci. 46 (4), 258–269. 10.1016/j.tibs.2020.11.005 PubMed DOI PMC

Virtanen J. A., Vartiainen M. K. (2017). Diverse functions for different forms of nuclear actin. Curr. Opin. Cell Biol. 46, 33–38. 10.1016/j.ceb.2016.12.004 PubMed DOI

Vogel S. K., Pavin N., Maghelli N., Julicher F., Tolic-Norrelykke I. M. (2009). Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 7 (4), e1000087. 10.1371/journal.pbio.1000087 PubMed DOI PMC

Vujin A., Zetka M. (2017). The proteasome enters the meiotic prophase fray. Bioessays 39 (7). 10.1002/bies.201700038 PubMed DOI

Wang J., Gu H., Lin H., Chi T. (2012). Essential roles of the chromatin remodeling factor BRG1 in spermatogenesis in mice. Biol. Reprod. 86 (6), 186. 10.1095/biolreprod.111.097097 PubMed DOI PMC

Wang X., Ahmad S., Zhang Z., Cote J., Cai G. (2018). Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex. Nat. Commun. 9 (1), 1147. 10.1038/s41467-018-03504-5 PubMed DOI PMC

Wang Y., Zhai B., Tan T., Yang X., Zhang J., Song M., et al. (2021). ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res. 49 (16), 9353–9373. 10.1093/nar/gkab722 PubMed DOI PMC

Wanior M., Kramer A., Knapp S., Joerger A. C. (2021). Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 40 (21), 3637–3654. 10.1038/s41388-021-01781-x PubMed DOI PMC

Wu S., Shi Y., Mulligan P., Gay F., Landry J., Liu H., et al. (2007). A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat. Struct. Mol. Biol. 14 (12), 1165–1172. 10.1038/nsmb1332 PubMed DOI PMC

Xie X., Almuzzaini B., Drou N., Kremb S., Yousif A., Farrants A. O., et al. (2018). β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 32 (3), 1296–1314. 10.1096/fj.201700753R PubMed DOI

Xu Y., Greenberg R. A., Schonbrunn E., Wang P. J. (2017). Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaks. Biol. Reprod. 96 (5), 1096–1104. 10.1093/biolre/iox040 PubMed DOI PMC

Xue Y., Wong J., Moreno G. T., Young M. K., Cote J., Wang W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2 (6), 851–861. 10.1016/s1097-2765(00)80299-3 PubMed DOI

Yamazaki S., Gerhold C., Yamamoto K., Ueno Y., Grosse R., Miyamoto K., et al. (2020). The actin-family protein Arp4 is a novel suppressor for the formation and functions of nuclear F-actin. Cells 9 (3), 758. 10.3390/cells9030758 PubMed DOI PMC

Yao W., Beckwith S. L., Zheng T., Young T., Dinh V. T., Ranjan A., et al. (2015). Assembly of the Arp5 (Actin-related protein) subunit involved in distinct INO80 chromatin remodeling activities. J. Biol. Chem. 290 (42), 25700–25709. 10.1074/jbc.M115.674887 PubMed DOI PMC

Yao W., King D. A., Beckwith S. L., Gowans G. J., Yen K., Zhou C., et al. (2016). The INO80 complex requires the arp5-ies6 subcomplex for chromatin remodeling and metabolic regulation. Mol. Cell Biol. 36 (6), 979–991. 10.1128/MCB.00801-15 PubMed DOI PMC

Yoshida M., Katsuyama S., Tateho K., Nakamura H., Miyoshi J., Ohba T., et al. (2013). Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. J. Cell Biol. 200 (4), 385–395. 10.1083/jcb.201207168 PubMed DOI PMC

Zhang X., Wang X., Zhang Z., Cai G. (2019). Structure and functional interactions of INO80 actin/Arp module. J. Mol. Cell Biol. 11 (5), 345–355. 10.1093/jmcb/mjy062 PubMed DOI PMC

Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., et al. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95 (5), 625–636. 10.1016/s0092-8674(00)81633-5 PubMed DOI

Zheng B., Han M., Bernier M., Wen J. K. (2009). Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J. 276 (10), 2669–2685. 10.1111/j.1742-4658.2009.06986.x PubMed DOI PMC

Zou C., Mallampalli R. K. (2014). Regulation of histone modifying enzymes by the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843 (4), 694–702. 10.1016/j.bbamcr.2013.12.016 PubMed DOI PMC

Zukin S. A., Marunde M. R., Popova I. K., Soczek K. M., Nogales E., Patel A. B. (2022). Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. Elife 11, e81400. 10.7554/eLife.81400 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...