Envisioning a role for nuclear actin in prophase I spermatocytes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
38078006
PubMed Central
PMC10704462
DOI
10.3389/fcell.2023.1295452
PII: 1295452
Knihovny.cz E-resources
- Keywords
- actin, chromatin remodeling, nucleoskeleton, prophase I, spermatoproteasome,
- Publication type
- Journal Article MeSH
- Review MeSH
Actin is a multi-functional protein that is involved in numerous cellular processes including cytoskeleton regulation, cell migration, and cellular integrity. In these processes, actin's role in respect to its structure, complex mechanical, and protein-binding properties has been studied primarily in the cytoplasmic and cellular membrane compartments. However, its role in somatic cell nuclei has recently become evident where it participates in transcription, chromatin remodeling, and DNA damage repair. What remains enigmatic is the involvement of nuclear actin in physiological processes that lead to the generation of germ cells, in general, and primary spermatocytes, in particular. Here, we will discuss the possible role and nuclear localization of actin during meiotic prophase I and its interaction with chromatin remodeling complexes, the latter being essential for the control of pairing of homologous chromosomes, cross-over formation, and recombination. It is our hope that this perspective article will extend the scope of actin's nuclear function in germ cells undergoing meiotic division.
See more in PubMed
Ahuja J. S., Sandhu R., Mainpal R., Lawson C., Henley H., Hunt P. A., et al. (2017). Control of meiotic pairing and recombination by chromosomally tethered 26S proteasome. Science 355 (6323), 408–411. 10.1126/science.aaf4778 PubMed DOI PMC
Aoyama N., Oka A., Kitayama K., Kurumizaka H., Harata M. (2008). The actin-related protein hArp8 accumulates on the mitotic chromosomes and functions in chromosome alignment. Exp. Cell Res. 314 (4), 859–868. 10.1016/j.yexcr.2007.11.020 PubMed DOI
Arvindekar S., Jackman M. J., Low J. K. K., Landsberg M. J., Mackay J. P., Viswanath S. (2022). Molecular architecture of nucleosome remodeling and deacetylase sub-complexes by integrative structure determination. Protein Sci. 31 (9), e4387. 10.1002/pro.4387 PubMed DOI PMC
Baarlink C., Plessner M., Sherrard A., Morita K., Misu S., Virant D., et al. (2017). A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat. Cell Biol. 19 (12), 1389–1399. 10.1038/ncb3641 PubMed DOI
Baarlink C., Wang H., Grosse R. (2013). Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340 (6134), 864–867. 10.1126/science.1235038 PubMed DOI
Baudat F., Imai Y., de Massy B. (2013). Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14 (11), 794–806. 10.1038/nrg3573 PubMed DOI
Baudat F., Manova K., Yuen J. P., Jasin M., Keeney S. (2000). Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6 (5), 989–998. 10.1016/s1097-2765(00)00098-8 PubMed DOI
Bays J. L., DeMali K. A. (2017). Vinculin in cell-cell and cell-matrix adhesions. Cell Mol. Life Sci. 74 (16), 2999–3009. 10.1007/s00018-017-2511-3 PubMed DOI PMC
Belin B. J., Lee T., Mullins R. D. (2015a). Correction: DNA damage induces nuclear actin filament assembly by Formin-2 and Spire-1/2 that promotes efficient DNA repair. Elife 4, e11935. 10.7554/eLife.11935 PubMed DOI PMC
Belin B. J., Lee T., Mullins R. D. (2015b). DNA damage induces nuclear actin filament assembly by Formin -2 and Spire-½ that promotes efficient DNA repair. [corrected]. Elife 4, e07735. 10.7554/eLife.07735 PubMed DOI PMC
Bhagwat N. R., Owens S. N., Ito M., Boinapalli J. V., Poa P., Ditzel A., et al. (2021). SUMO is a pervasive regulator of meiosis. Elife 10, e57720. 10.7554/eLife.57720 PubMed DOI PMC
Bird A. W., Yu D. Y., Pray-Grant M. G., Qiu Q., Harmon K. E., Megee P. C., et al. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419 (6905), 411–415. 10.1038/nature01035 PubMed DOI
Bode D., Yu L., Tate P., Pardo M., Choudhary J. (2016). Characterization of two distinct nucleosome remodeling and deacetylase (NuRD) complex assemblies in embryonic stem cells. Mol. Cell Proteomics 15 (3), 878–891. 10.1074/mcp.M115.053207 PubMed DOI PMC
Bornelov S., Reynolds N., Xenophontos M., Gharbi S., Johnstone E., Floyd R., et al. (2018). The nucleosome remodeling and deacetylation complex modulates chromatin structure at sites of active transcription to fine-tune gene expression. Mol. Cell 71 (1), 56–72. 10.1016/j.molcel.2018.06.003 PubMed DOI PMC
Brahma S., Ngubo M., Paul S., Udugama M., Bartholomew B. (2018). The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat. Commun. 9 (1), 3309. 10.1038/s41467-018-05710-7 PubMed DOI PMC
Brown P. W., Hwang K., Schlegel P. N., Morris P. L. (2008). Small ubiquitin-related modifier (SUMO)-1, SUMO-2/3 and SUMOylation are involved with centromeric heterochromatin of chromosomes 9 and 1 and proteins of the synaptonemal complex during meiosis in men. Hum. Reprod. 23 (12), 2850–2857. 10.1093/humrep/den300 PubMed DOI PMC
Cai Y., Jin J., Yao T., Gottschalk A. J., Swanson S. K., Wu S., et al. (2007). YY1 functions with INO80 to activate transcription. Nat. Struct. Mol. Biol. 14 (9), 872–874. 10.1038/nsmb1276 PubMed DOI
Cao T., Sun L., Jiang Y., Huang S., Wang J., Chen Z. (2016). Crystal structure of a nuclear actin ternary complex. Proc. Natl. Acad. Sci. U. S. A. 113 (32), 8985–8990. 10.1073/pnas.1602818113 PubMed DOI PMC
Caridi C. P., D'Agostino C., Ryu T., Zapotoczny G., Delabaere L., Li X., et al. (2018). Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559 (7712), 54–60. 10.1038/s41586-018-0242-8 PubMed DOI PMC
Caridi C. P., Plessner M., Grosse R., Chiolo I. (2019). Nuclear actin filaments in DNA repair dynamics. Nat. Cell Biol. 21 (9), 1068–1077. 10.1038/s41556-019-0379-1 PubMed DOI PMC
Chakraborty P., Magnuson T. (2022). INO80 requires a polycomb subunit to regulate the establishment of poised chromatin in murine spermatocytes. Development 149 (1), dev200089. 10.1242/dev.200089 PubMed DOI PMC
Chen L., Cai Y., Jin J., Florens L., Swanson S. K., Washburn M. P., et al. (2011). Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. J. Biol. Chem. 286 (13), 11283–11289. 10.1074/jbc.M111.222505 PubMed DOI PMC
Cheng X., Jobin-Robitaille O., Billon P., Buisson R., Niu H., Lacoste N., et al. (2018). Phospho-dependent recruitment of the yeast NuA4 acetyltransferase complex by MRX at DNA breaks regulates RPA dynamics during resection. Proc. Natl. Acad. Sci. U. S. A. 115 (40), 10028–10033. 10.1073/pnas.1806513115 PubMed DOI PMC
Chikashige Y., Haraguchi T., Hiraoka Y. (2007). Another way to move chromosomes. Chromosoma 116 (6), 497–505. 10.1007/s00412-007-0114-8 PubMed DOI
Chikashige Y., Tsutsumi C., Yamane M., Okamasa K., Haraguchi T., Hiraoka Y. (2006). Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125 (1), 59–69. 10.1016/j.cell.2006.01.048 PubMed DOI
Chuang C. H., Carpenter A. E., Fuchsova B., Johnson T., de Lanerolle P., Belmont A. S. (2006). Long-range directional movement of an interphase chromosome site. Curr. Biol. 16 (8), 825–831. 10.1016/j.cub.2006.03.059 PubMed DOI
Clapier C. R., Cairns B. R. (2009). The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304. 10.1146/annurev.biochem.77.062706.153223 PubMed DOI
Colas I., Shaw P., Prieto P., Wanous M., Spielmeyer W., Mago R., et al. (2008). Effective chromosome pairing requires chromatin remodeling at the onset of meiosis. Proc. Natl. Acad. Sci. U. S. A. 105 (16), 6075–6080. 10.1073/pnas.0801521105 PubMed DOI PMC
de Castro R. O., Carbajal A., Previato de Almeida L., Goitea V., Griffin C. T., Pezza R. J. (2022). Mouse Chd4-NURD is required for neonatal spermatogonia survival and normal gonad development. Epigenetics Chromatin 15 (1), 16. 10.1186/s13072-022-00448-5 PubMed DOI PMC
Downs J. A., Allard S., Jobin-Robitaille O., Javaheri A., Auger A., Bouchard N., et al. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 16 (6), 979–990. 10.1016/j.molcel.2004.12.003 PubMed DOI
Dundr M., Ospina J. K., Sung M. H., John S., Upender M., Ried T., et al. (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo . J. Cell Biol. 179 (6), 1095–1103. 10.1083/jcb.200710058 PubMed DOI PMC
Ebbert R., Birkmann A., Schuller H. J. (1999). The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol. Microbiol. 32 (4), 741–751. 10.1046/j.1365-2958.1999.01390.x PubMed DOI
Fukui Y., Katsumaru H. (1980). Dynamics of nuclear actin bundle induction by dimethyl sulfoxide and factors affecting its development. J. Cell Biol. 84 (1), 131–140. 10.1083/jcb.84.1.131 PubMed DOI PMC
Galarneau L., Nourani A., Boudreault A. A., Zhang Y., Heliot L., Allard S., et al. (2000). Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5 (6), 927–937. 10.1016/s1097-2765(00)80258-0 PubMed DOI
Goldmann W. H. (2016). Role of vinculin in cellular mechanotransduction. Cell Biol. Int. 40 (3), 241–256. 10.1002/cbin.10563 PubMed DOI
Gospodinov A., Vaissiere T., Krastev D. B., Legube G., Anachkova B., Herceg Z. (2011). Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol. Cell Biol. 31 (23), 4735–4745. 10.1128/MCB.06182-11 PubMed DOI PMC
Guo X. (2022). Localized proteasomal degradation: from the nucleus to cell periphery. Biomolecules 12 (2), 229. 10.3390/biom12020229 PubMed DOI PMC
Harata M., Oma Y., Mizuno S., Jiang Y. W., Stillman D. J., Wintersberger U. (1999). The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones. Mol. Biol. Cell 10 (8), 2595–2605. 10.1091/mbc.10.8.2595 PubMed DOI PMC
Henderson C. A., Gomez C. G., Novak S. M., Mi-Mi L., Gregorio C. C. (2017). Overview of the muscle cytoskeleton. Compr. Physiol. 7 (3), 891–944. 10.1002/cphy.c160033 PubMed DOI PMC
Hodges C., Kirkland J. G., Crabtree G. R. (2016). The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. 6 (8), a026930. 10.1101/cshperspect.a026930 PubMed DOI PMC
Hofmann W. A., Stojiljkovic L., Fuchsova B., Vargas G. M., Mavrommatis E., Philimonenko V., et al. (2004). Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6 (11), 1094–1101. 10.1038/ncb1182 PubMed DOI
Humphries J. D., Wang P., Streuli C., Geiger B., Humphries M. J., Ballestrem C. (2007). Vinculin controls focal adhesion formation by direct interactions with talin and actin. J. Cell Biol. 179 (5), 1043–1057. 10.1083/jcb.200703036 PubMed DOI PMC
Hurst V., Shimada K., Gasser S. M. (2019). Nuclear actin and actin-binding proteins in DNA repair. Trends Cell Biol. 29 (6), 462–476. 10.1016/j.tcb.2019.02.010 PubMed DOI
Hyrskyluoto A., Vartiainen M. K. (2020). Regulation of nuclear actin dynamics in development and disease. Curr. Opin. Cell Biol. 64, 18–24. 10.1016/j.ceb.2020.01.012 PubMed DOI
Jannie K. M., Ellerbroek S. M., Zhou D. W., Chen S., Crompton D. J., Garcia A. J., et al. (2015). Vinculin-dependent actin bundling regulates cell migration and traction forces. Biochem. J. 465 (3), 383–393. 10.1042/BJ20140872 PubMed DOI PMC
Janssen M. E., Kim E., Liu H., Fujimoto L. M., Bobkov A., Volkmann N., et al. (2006). Three-dimensional structure of vinculin bound to actin filaments. Mol. Cell 21 (2), 271–281. 10.1016/j.molcel.2005.11.020 PubMed DOI
Kalendova A., Kalasova I., Yamazaki S., Ulicna L., Harata M., Hozak P. (2014). Nuclear actin filaments recruit cofilin and actin-related protein 3, and their formation is connected with a mitotic block. Histochem Cell Biol. 142 (2), 139–152. 10.1007/s00418-014-1243-9 PubMed DOI PMC
Kapoor P., Shen X. (2014). Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 24 (4), 238–246. 10.1016/j.tcb.2013.10.007 PubMed DOI PMC
Keeney S., Kleckner N. (1996). Communication between homologous chromosomes: genetic alterations at a nuclease-hypersensitive site can alter mitotic chromatin structure at that site both in cis and in trans. Genes cells. 1 (5), 475–489. 10.1046/j.1365-2443.1996.d01-257.x PubMed DOI
Kitayama K., Kamo M., Oma Y., Matsuda R., Uchida T., Ikura T., et al. (2009). The human actin-related protein hArp5: nucleo-cytoplasmic shuttling and involvement in DNA repair. Exp. Cell Res. 315 (2), 206–217. 10.1016/j.yexcr.2008.10.028 PubMed DOI
Klages-Mundt N. L., Kumar A., Zhang Y., Kapoor P., Shen X. (2018). The nature of actin-family proteins in chromatin-modifying complexes. Front. Genet. 9, 398. 10.3389/fgene.2018.00398 PubMed DOI PMC
Kleckner N. (1996). Meiosis: how could it work? Proc. Natl. Acad. Sci. U. S. A. 93 (16), 8167–8174. 10.1073/pnas.93.16.8167 PubMed DOI PMC
Kneitz B., Cohen P. E., Avdievich E., Zhu L., Kane M. F., Hou H., Jr., et al. (2000). MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 14 (9), 1085–1097. 10.1101/gad.14.9.1085 PubMed DOI PMC
Knoll K. R., Eustermann S., Niebauer V., Oberbeckmann E., Stoehr G., Schall K., et al. (2018). The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat. Struct. Mol. Biol. 25 (9), 823–832. 10.1038/s41594-018-0115-8 PubMed DOI
Koszul R., Kleckner N. (2009). Dynamic chromosome movements during meiosis: a way to eliminate unwanted connections? Trends Cell Biol. 19 (12), 716–724. 10.1016/j.tcb.2009.09.007 PubMed DOI PMC
Kota S. K., Feil R. (2010). Epigenetic transitions in germ cell development and meiosis. Dev. Cell 19 (5), 675–686. 10.1016/j.devcel.2010.10.009 PubMed DOI
Kristo I., Bajusz I., Bajusz C., Borkuti P., Vilmos P. (2016). Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 145 (4), 373–388. 10.1007/s00418-015-1400-9 PubMed DOI
Lappalainen P. (2016). Actin-binding proteins: the long road to understanding the dynamic landscape of cellular actin networks. Mol. Biol. Cell 27 (16), 2519–2522. 10.1091/mbc.E15-10-0728 PubMed DOI PMC
Le S., Yu M., Bershadsky A., Yan J. (2020). Mechanical regulation of formin-dependent actin polymerization. Semin. Cell Dev. Biol. 102, 73–80. 10.1016/j.semcdb.2019.11.016 PubMed DOI
Lee C. Y., Horn H. F., Stewart C. L., Burke B., Bolcun-Filas E., Schimenti J. C., et al. (2015). Mechanism and regulation of rapid telomere prophase movements in mouse meiotic chromosomes. Cell Rep. 11 (4), 551–563. 10.1016/j.celrep.2015.03.045 PubMed DOI PMC
Lenormand T., Engelstadter J., Johnston S. E., Wijnker E., Haag C. R. (2016). Evolutionary mysteries in meiosis. Philos. Trans. R. Soc. Lond B Biol. Sci. 371, 20160001. 10.1098/rstb.2016.0001(1706) PubMed DOI PMC
Lin Y. Y., Qi Y., Lu J. Y., Pan X., Yuan D. S., Zhao Y., et al. (2008). A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev. 22 (15), 2062–2074. 10.1101/gad.1679508 PubMed DOI PMC
Lindstrom K. C., Vary J. C., Jr., Parthun M. R., Delrow J., Tsukiyama T. (2006). Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression. Mol. Cell Biol. 26 (16), 6117–6129. 10.1128/MCB.00642-06 PubMed DOI PMC
Lu P. Y., Levesque N., Kobor M. S. (2009). NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components. Biochem. Cell Biol. 87 (5), 799–815. 10.1139/O09-062 PubMed DOI
Lusic M., Marini B., Ali H., Lucic B., Luzzati R., Giacca M. (2013). Proximity to PML nuclear bodies regulates HIV-1 latency in CD4+ T cells. Cell Host Microbe 13 (6), 665–677. 10.1016/j.chom.2013.05.006 PubMed DOI
Ma O. X., Chong W. G., Lee J. K. E., Cai S., Siebert C. A., Howe A., et al. (2022). Cryo-ET detects bundled triple helices but not ladders in meiotic budding yeast. PLoS One 17 (4), e0266035. 10.1371/journal.pone.0266035 PubMed DOI PMC
Magana-Acosta M., Valadez-Graham V. (2020). Chromatin remodelers in the 3D nuclear compartment. Front. Genet. 11, 600615. 10.3389/fgene.2020.600615 PubMed DOI PMC
Mahmood S. R., Xie X., Hosny El Said N., Venit T., Gunsalus K. C., Percipalle P. (2021). β-actin dependent chromatin remodeling mediates compartment level changes in 3D genome architecture. Nat. Commun. 12 (1), 5240. 10.1038/s41467-021-25596-2 PubMed DOI PMC
McCann T. S., Tansey W. P. (2014). Functions of the proteasome on chromatin. Biomolecules 4 (4), 1026–1044. 10.3390/biom4041026 PubMed DOI PMC
Menon D. U., Shibata Y., Mu W., Magnuson T. (2019). Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse. Development 146 (19), dev174094. 10.1242/dev.174094 PubMed DOI PMC
Mogessie B. (2019). Conducting chromatin motion: actin dynamizes contents of the oocyte nucleus. Dev. Cell 51 (2), 133–134. 10.1016/j.devcel.2019.09.020 PubMed DOI
Morris S. A., Baek S., Sung M. H., John S., Wiench M., Johnson T. A., et al. (2014). Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat. Struct. Mol. Biol. 21 (1), 73–81. 10.1038/nsmb.2718 PubMed DOI PMC
Ohfuchi E., Kato M., Sasaki M., Sugimoto K., Oma Y., Harata M. (2006). Vertebrate Arp6, a novel nuclear actin-related protein, interacts with heterochromatin protein 1. Eur. J. Cell Biol. 85 (5), 411–421. 10.1016/j.ejcb.2005.12.006 PubMed DOI
Oma Y., Harata M. (2011). Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus 2 (1), 38–46. 10.4161/nucl.2.1.14510 PubMed DOI PMC
Ondrej V., Lukasova E., Krejci J., Matula P., Kozubek S. (2008). Lamin A/C and polymeric actin in genome organization. Mol. Cells 26 (4), 356–361. PubMed
Osakabe A., Takahashi Y., Murakami H., Otawa K., Tachiwana H., Oma Y., et al. (2014). DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. PLoS One 9 (10), e108354. 10.1371/journal.pone.0108354 PubMed DOI PMC
Percipalle P. (2013). Co-transcriptional nuclear actin dynamics. Nucleus 4 (1), 43–52. 10.4161/nucl.22798 PubMed DOI PMC
Peterson C. L., Zhao Y., Chait B. T. (1998). Subunits of the yeast SWI/SNF complex are members of the actin-related protein (ARP) family. J. Biol. Chem. 273 (37), 23641–23644. 10.1074/jbc.273.37.23641 PubMed DOI
Petrusova J., Havalda R., Flachs P., Venit T., Darasova A., Hulkova L., et al. (2022). Focal adhesion protein vinculin is required for proper meiotic progression during mouse spermatogenesis. Cells 11 (13), 2013. 10.3390/cells11132013 PubMed DOI PMC
Philimonenko V. V., Zhao J., Iben S., Dingova H., Kysela K., Kahle M., et al. (2004). Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6 (12), 1165–1172. 10.1038/ncb1190 PubMed DOI
Plessner M., Grosse R. (2015). Extracellular signaling cues for nuclear actin polymerization. Eur. J. Cell Biol. 94 (7-9), 359–362. 10.1016/j.ejcb.2015.05.009 PubMed DOI
Plessner M., Grosse R. (2019). Dynamizing nuclear actin filaments. Curr. Opin. Cell Biol. 56, 1–6. 10.1016/j.ceb.2018.08.005 PubMed DOI
Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. (2015). Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290 (18), 11209–11216. 10.1074/jbc.M114.627166 PubMed DOI PMC
Prieto P., Moore G., Reader S. (2005). Control of conformation changes associated with homologue recognition during meiosis. Theor. Appl. Genet. 111 (3), 505–510. 10.1007/s00122-005-2040-6 PubMed DOI
Qian M. X., Pang Y., Liu C. H., Haratake K., Du B. Y., Ji D. Y., et al. (2013). Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153 (5), 1012–1024. 10.1016/j.cell.2013.04.032 PubMed DOI PMC
Qu K., Chen K., Wang H., Li X., Chen Z. (2022). Structure of the NuA4 acetyltransferase complex bound to the nucleosome. Nature 610 (7932), 569–574. 10.1038/s41586-022-05303-x PubMed DOI
Rajakyla E. K., Vartiainen M. K. (2014). Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression. Small GTPases 5, e27539. 10.4161/sgtp.27539 PubMed DOI PMC
Rao H. B., Qiao H., Bhatt S. K., Bailey L. R., Tran H. D., Bourne S. L., et al. (2017). A SUMO-ubiquitin relay recruits proteasomes to chromosome axes to regulate meiotic recombination. Science 355 (6323), 403–407. 10.1126/science.aaf6407 PubMed DOI PMC
Reyes A. A., Marcum R. D., He Y. (2021). Structure and function of chromatin remodelers. J. Mol. Biol. 433 (14), 166929. 10.1016/j.jmb.2021.166929 PubMed DOI PMC
Saha A., Wittmeyer J., Cairns B. R. (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat. Rev. Mol. Cell Biol. 7 (6), 437–447. 10.1038/nrm1945 PubMed DOI
Schrank B., Gautier J. (2019). Assembling nuclear domains: lessons from DNA repair. J. Cell Biol. 218 (8), 2444–2455. 10.1083/jcb.201904202 PubMed DOI PMC
Schrank B. R., Aparicio T., Li Y., Chang W., Chait B. T., Gundersen G. G., et al. (2018). Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559 (7712), 61–66. 10.1038/s41586-018-0237-5 PubMed DOI PMC
Serber D. W., Runge J. S., Menon D. U., Magnuson T. (2016). The mouse INO80 chromatin-remodeling complex is an essential meiotic factor for spermatogenesis. Biol. Reprod. 94 (1), 8. 10.1095/biolreprod.115.135533 PubMed DOI PMC
Shen K., Tolbert C. E., Guilluy C., Swaminathan V. S., Berginski M. E., Burridge K., et al. (2011). The vinculin C-terminal hairpin mediates F-actin bundle formation, focal adhesion, and cell mechanical properties. J. Biol. Chem. 286 (52), 45103–45115. 10.1074/jbc.M111.244293 PubMed DOI PMC
Snowden T., Shim K. S., Schmutte C., Acharya S., Fishel R. (2008). hMSH4-hMSH5 adenosine nucleotide processing and interactions with homologous recombination machinery. J. Biol. Chem. 283 (1), 145–154. 10.1074/jbc.M704060200 PubMed DOI PMC
Storlazzi A., Xu L., Schwacha A., Kleckner N. (1996). Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. U. S. A. 93 (17), 9043–9048. 10.1073/pnas.93.17.9043 PubMed DOI PMC
Svitkina T. (2018). The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 10 (1), a018267. 10.1101/cshperspect.a018267 PubMed DOI PMC
Szerlong H., Saha A., Cairns B. R. (2003). The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22 (12), 3175–3187. 10.1093/emboj/cdg296 PubMed DOI PMC
Takagi T., Osumi M., Shinohara A. (2021). Ultrastructural analysis in yeast reveals a meiosis-specific actin-containing nuclear bundle. Commun. Biol. 4 (1), 1009. 10.1038/s42003-021-02545-9 PubMed DOI PMC
Takahashi Y., Murakami H., Akiyama Y., Katoh Y., Oma Y., Nishijima H., et al. (2017). Actin family proteins in the human INO80 chromatin remodeling complex exhibit functional roles in the induction of heme oxygenase-1 with hemin. Front. Genet. 8, 17. 10.3389/fgene.2017.00017 PubMed DOI PMC
Torres-Machorro A. L., Aris J. P., Pillus L. (2015). A moonlighting metabolic protein influences repair at DNA double-stranded breaks. Nucleic Acids Res. 43 (3), 1646–1658. 10.1093/nar/gku1405 PubMed DOI PMC
Tosi A., Haas C., Herzog F., Gilmozzi A., Berninghausen O., Ungewickell C., et al. (2013). Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 154 (6), 1207–1219. 10.1016/j.cell.2013.08.016 PubMed DOI
Trelles-Sticken E., Adelfalk C., Loidl J., Scherthan H. (2005). Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J. Cell Biol. 170 (2), 213–223. 10.1083/jcb.200501042 PubMed DOI PMC
Uraji J., Scheffler K., Schuh M. (2018). Functions of actin in mouse oocytes at a glance. J. Cell Sci. 131 (22), jcs218099. 10.1242/jcs.218099 PubMed DOI
Vaughan R. M., Kupai A., Rothbart S. B. (2021). Chromatin regulation through ubiquitin and ubiquitin-like histone modifications. Trends Biochem. Sci. 46 (4), 258–269. 10.1016/j.tibs.2020.11.005 PubMed DOI PMC
Virtanen J. A., Vartiainen M. K. (2017). Diverse functions for different forms of nuclear actin. Curr. Opin. Cell Biol. 46, 33–38. 10.1016/j.ceb.2016.12.004 PubMed DOI
Vogel S. K., Pavin N., Maghelli N., Julicher F., Tolic-Norrelykke I. M. (2009). Self-organization of dynein motors generates meiotic nuclear oscillations. PLoS Biol. 7 (4), e1000087. 10.1371/journal.pbio.1000087 PubMed DOI PMC
Vujin A., Zetka M. (2017). The proteasome enters the meiotic prophase fray. Bioessays 39 (7). 10.1002/bies.201700038 PubMed DOI
Wang J., Gu H., Lin H., Chi T. (2012). Essential roles of the chromatin remodeling factor BRG1 in spermatogenesis in mice. Biol. Reprod. 86 (6), 186. 10.1095/biolreprod.111.097097 PubMed DOI PMC
Wang X., Ahmad S., Zhang Z., Cote J., Cai G. (2018). Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex. Nat. Commun. 9 (1), 1147. 10.1038/s41467-018-03504-5 PubMed DOI PMC
Wang Y., Zhai B., Tan T., Yang X., Zhang J., Song M., et al. (2021). ESA1 regulates meiotic chromosome axis and crossover frequency via acetylating histone H4. Nucleic Acids Res. 49 (16), 9353–9373. 10.1093/nar/gkab722 PubMed DOI PMC
Wanior M., Kramer A., Knapp S., Joerger A. C. (2021). Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene 40 (21), 3637–3654. 10.1038/s41388-021-01781-x PubMed DOI PMC
Wu S., Shi Y., Mulligan P., Gay F., Landry J., Liu H., et al. (2007). A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nat. Struct. Mol. Biol. 14 (12), 1165–1172. 10.1038/nsmb1332 PubMed DOI PMC
Xie X., Almuzzaini B., Drou N., Kremb S., Yousif A., Farrants A. O., et al. (2018). β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 32 (3), 1296–1314. 10.1096/fj.201700753R PubMed DOI
Xu Y., Greenberg R. A., Schonbrunn E., Wang P. J. (2017). Meiosis-specific proteins MEIOB and SPATA22 cooperatively associate with the single-stranded DNA-binding replication protein A complex and DNA double-strand breaks. Biol. Reprod. 96 (5), 1096–1104. 10.1093/biolre/iox040 PubMed DOI PMC
Xue Y., Wong J., Moreno G. T., Young M. K., Cote J., Wang W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol. Cell 2 (6), 851–861. 10.1016/s1097-2765(00)80299-3 PubMed DOI
Yamazaki S., Gerhold C., Yamamoto K., Ueno Y., Grosse R., Miyamoto K., et al. (2020). The actin-family protein Arp4 is a novel suppressor for the formation and functions of nuclear F-actin. Cells 9 (3), 758. 10.3390/cells9030758 PubMed DOI PMC
Yao W., Beckwith S. L., Zheng T., Young T., Dinh V. T., Ranjan A., et al. (2015). Assembly of the Arp5 (Actin-related protein) subunit involved in distinct INO80 chromatin remodeling activities. J. Biol. Chem. 290 (42), 25700–25709. 10.1074/jbc.M115.674887 PubMed DOI PMC
Yao W., King D. A., Beckwith S. L., Gowans G. J., Yen K., Zhou C., et al. (2016). The INO80 complex requires the arp5-ies6 subcomplex for chromatin remodeling and metabolic regulation. Mol. Cell Biol. 36 (6), 979–991. 10.1128/MCB.00801-15 PubMed DOI PMC
Yoshida M., Katsuyama S., Tateho K., Nakamura H., Miyoshi J., Ohba T., et al. (2013). Microtubule-organizing center formation at telomeres induces meiotic telomere clustering. J. Cell Biol. 200 (4), 385–395. 10.1083/jcb.201207168 PubMed DOI PMC
Zhang X., Wang X., Zhang Z., Cai G. (2019). Structure and functional interactions of INO80 actin/Arp module. J. Mol. Cell Biol. 11 (5), 345–355. 10.1093/jmcb/mjy062 PubMed DOI PMC
Zhao K., Wang W., Rando O. J., Xue Y., Swiderek K., Kuo A., et al. (1998). Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95 (5), 625–636. 10.1016/s0092-8674(00)81633-5 PubMed DOI
Zheng B., Han M., Bernier M., Wen J. K. (2009). Nuclear actin and actin-binding proteins in the regulation of transcription and gene expression. FEBS J. 276 (10), 2669–2685. 10.1111/j.1742-4658.2009.06986.x PubMed DOI PMC
Zou C., Mallampalli R. K. (2014). Regulation of histone modifying enzymes by the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843 (4), 694–702. 10.1016/j.bbamcr.2013.12.016 PubMed DOI PMC
Zukin S. A., Marunde M. R., Popova I. K., Soczek K. M., Nogales E., Patel A. B. (2022). Structure and flexibility of the yeast NuA4 histone acetyltransferase complex. Elife 11, e81400. 10.7554/eLife.81400 PubMed DOI PMC