PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36979361
PubMed Central
PMC10046169
DOI
10.3390/biom13030426
PII: biom13030426
Knihovny.cz E-zdroje
- Klíčová slova
- MPRIP, PIP2, RNA polymerase II, phase separation, transcription,
- MeSH
- aktiny * metabolismus MeSH
- fosfatasa lehkého řetězce myosinu genetika metabolismus MeSH
- fosforylace MeSH
- genetická transkripce MeSH
- lidé MeSH
- proteinfosfatasy genetika MeSH
- RNA-polymerasa II * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny * MeSH
- fosfatasa lehkého řetězce myosinu MeSH
- MPRIP protein, human MeSH Prohlížeč
- proteinfosfatasy MeSH
- RNA-polymerasa II * MeSH
The specific post-translational modifications of the C-terminal domain (CTD) of the Rpb1 subunit of RNA polymerase II (RNAPII) correlate with different stages of transcription. The phosphorylation of the Ser5 residues of this domain associates with the initiation condensates, which are formed through liquid-liquid phase separation (LLPS). The subsequent Tyr1 phosphorylation of the CTD peaks at the promoter-proximal region and is involved in the pause-release of RNAPII. By implementing super-resolution microscopy techniques, we previously reported that the nuclear Phosphatidylinositol 4,5-bisphosphate (PIP2) associates with the Ser5-phosphorylated-RNAPII complex and facilitates the RNAPII transcription. In this study, we identified Myosin Phosphatase Rho-Interacting Protein (MPRIP) as a novel regulator of the RNAPII transcription that recruits Tyr1-phosphorylated CTD (Tyr1P-CTD) to nuclear PIP2-containing structures. The depletion of MPRIP increases the number of the initiation condensates, indicating a defect in the transcription. We hypothesize that MPRIP regulates the condensation and transcription through affecting the association of the RNAPII complex with nuclear PIP2-rich structures. The identification of Tyr1P-CTD as an interactor of PIP2 and MPRIP further points to a regulatory role in RNAPII pause-release, where the susceptibility of the transcriptional complex to leave the initiation condensate depends on its association with nuclear PIP2-rich structures. Moreover, the N-terminal domain of MPRIP, which is responsible for the interaction with the Tyr1P-CTD, contains an F-actin binding region that offers an explanation of how nuclear F-actin formations can affect the RNAPII transcription and condensation. Overall, our findings shed light on the role of PIP2 in RNAPII transcription through identifying the F-actin binding protein MPRIP as a transcription regulator and a determinant of the condensation of RNAPII.
Zobrazit více v PubMed
Eick D., Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013;113:8456–8490. doi: 10.1021/cr400071f. PubMed DOI
Harlen K.M., Churchman L.S. The code and beyond: Transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat. Rev. Mol. Cell Biol. 2017;18:263–273. doi: 10.1038/nrm.2017.10. PubMed DOI
Bartman C.R., Hamagami N., Keller C.A., Giardine B., Hardison R.C., Blobel G.A., Raj A. Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation. Mol. Cell. 2019;73:519–532. doi: 10.1016/j.molcel.2018.11.004. PubMed DOI PMC
Chen X., Qi Y., Wu Z., Wang X., Li J., Zhao D., Hou H., Li Y., Yu Z., Liu W., et al. Structural insights into preinitiation complex assembly on core promoters. Science. 2021;372:eaba8490. doi: 10.1126/science.aba8490. PubMed DOI
Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 2004;6:1094–1101. doi: 10.1038/ncb1182. PubMed DOI
Lu H., Yu D., Hansen A.S., Ganguly S., Liu R., Heckert A., Darzacq X., Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature. 2018;558:318–323. doi: 10.1038/s41586-018-0174-3. PubMed DOI PMC
Czudnochowski N., Bösken C.A., Geyer M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 2012;3:842. doi: 10.1038/ncomms1846. PubMed DOI
Gibbs E.B., Laremore T.N., Usher G.A., Portz B., Cook E.C., Showalter S.A. Substrate Specificity of the Kinase P-TEFb towards the RNA Polymerase II C-Terminal Domain. Biophys. J. 2017;113:1909–1911. doi: 10.1016/j.bpj.2017.09.011. PubMed DOI PMC
Mayfield J.E., Irani S., Escobar E.E., Zhang Z., Burkholder N.T., Robinson M.R., Mehaffey M.R., Sipe S.N., Yang W., Prescott N.A., et al. Tyr1 phosphorylation promotes phosphorylation of Ser2 on the C-terminal domain of eukaryotic RNA polymerase II by P-TEFb. eLife. 2019;8:e48725. doi: 10.7554/eLife.48725. PubMed DOI PMC
Core L., Adelman K. Promoter-proximal pausing of RNA polymerase II: A nexus of gene regulation. Genes Dev. 2019;33:960–982. doi: 10.1101/gad.325142.119. PubMed DOI PMC
Adelman K., Lis J.T. Promoter-proximal pausing of RNA polymerase II: Emerging roles in metazoans. Nat. Rev. Genet. 2012;13:720–731. doi: 10.1038/nrg3293. PubMed DOI PMC
Pancholi A., Klingberg T., Zhang W., Prizak R., Mamontova I., Noa A., Sobucki M., Kobitski A.Y., Nienhaus G.U., Zaburdaev V., et al. RNA polymerase II clusters form in line with surface condensation on regulatory chromatin. Mol. Syst. Biol. 2021;17:e10272. doi: 10.15252/msb.202110272. PubMed DOI PMC
Guo Y.E., Manteiga J.C., Henninger J.E., Sabari B.R., Dall’Agnese A., Hannett N.M., Spille J.-H., Afeyan L.K., Zamudio A.V., Shrinivas K., et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature. 2019;572:543–548. doi: 10.1038/s41586-019-1464-0. PubMed DOI PMC
Collin P., Jeronimo C., Poitras C., Robert F. RNA Polymerase II CTD Tyrosine 1 Is Required for Efficient Termination by the Nrd1-Nab3-Sen1 Pathway. Mol. Cell. 2019;73:655–669.e7. doi: 10.1016/j.molcel.2018.12.002. PubMed DOI
Shah N., Maqbool M.A., Yahia Y., El Aabidine A.Z., Esnault C., Forné I., Decker T.-M., Martin D., Schüller R., Krebs S., et al. Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol. Cell. 2018;69:48–61.e6. doi: 10.1016/j.molcel.2017.12.009. PubMed DOI
Herzel L., Ottoz D.S.M., Alpert T., Neugebauer K.M. Splicing and transcription touch base: Co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 2017;18:637–650. doi: 10.1038/nrm.2017.63. PubMed DOI PMC
Castano E., Yildirim S., Fáberová V., Krausová A., Uličná L., Paprčková D., Sztacho M., Hozák P. Nuclear Phosphoinositides—Versatile Regulators of Genome Functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC
Hoboth P., Šebesta O., Hozák P. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. Int. J. Mol. Sci. 2021;22:6694. doi: 10.3390/ijms22136694. PubMed DOI PMC
Hoboth P., Šebesta O., Sztacho M., Castano E., Hozák P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX. 2021;8:101372. doi: 10.1016/j.mex.2021.101372. PubMed DOI PMC
Hoboth P., Sztacho M., Šebesta O., Schätz M., Castano E., Hozák P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2021;1866:158890. doi: 10.1016/j.bbalip.2021.158890. PubMed DOI
Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI
Sobol M., Yildirim S., Philimonenko V.V., Marášek P., Castaño E., Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Tabellini G., Bortul R., Santi S., Riccio M., Baldini G., Cappellini A., Billi A.M., Berezney R., Ruggeri A., Cocco L., et al. Diacylglycerol kinase-θ is localized in the speckle domains of the nucleus. Exp. Cell Res. 2003;287:143–154. doi: 10.1016/S0014-4827(03)00115-0. PubMed DOI
Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. Pt 13J. Cell Sci. 2001;114:2501–2511. doi: 10.1242/jcs.114.13.2501. PubMed DOI
Guillen-Chable F., Bayona A., Rodríguez-Zapata L.C., Castano E. Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int. J. Mol. Sci. 2021;22:13095. doi: 10.3390/ijms222313095. PubMed DOI PMC
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. Pt 12J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Sztacho M., Šalovská B., Červenka J., Balaban C., Hoboth P., Hozák P. Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome. Cells. 2021;10:E68. doi: 10.3390/cells10010068. PubMed DOI PMC
Balaban C., Sztacho M., Blažíková M., Hozák P. The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus. Cells. 2021;10:848. doi: 10.3390/cells10040848. PubMed DOI PMC
Hu P., Wu S., Hernandez N. A role for β-actin in RNA polymerase III transcription. Genes Dev. 2004;18:3010–3015. doi: 10.1101/gad.1250804. PubMed DOI PMC
Kukalev A., Nord Y., Palmberg C., Bergman T., Percipalle P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 2005;12:238–244. doi: 10.1038/nsmb904. PubMed DOI
Obrdlik A., Kukalev A., Louvet E., Farrants A.K., Caputo L., Percipalle P. The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol. Cell Biol. 2008;28:6342–6357. doi: 10.1128/MCB.00766-08. PubMed DOI PMC
Percipalle P., Fomproix N., Kylberg K., Miralles F., Bjorkroth B., Daneholt B., Visa N. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA. 2003;100:6475–6480. doi: 10.1073/pnas.1131933100. PubMed DOI PMC
Percipalle P., Jonsson A., Nashchekin D., Karlsson C., Bergman T., Guialis A., Daneholt B. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res. 2002;30:1725–1734. doi: 10.1093/nar/30.8.1725. PubMed DOI PMC
Percipalle P., Zhao J., Pope B., Weeds A., Lindberg U., Daneholt B. Actin Bound to the Heterogeneous Nuclear Ribonucleoprotein Hrp36 Is Associated with Balbiani Ring mRNA from the Gene to Polysomes. J. Cell Biol. 2001;153:229–236. doi: 10.1083/jcb.153.1.229. PubMed DOI PMC
Viita T., Kyheröinen S., Prajapati B., Virtanen J., Frilander M.J., Varjosalo M., Vartiainen M.K. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J. Cell Sci. 2019;132:jcs226852. doi: 10.1242/jcs.226852. PubMed DOI PMC
Serebryannyy L.A., Parilla M., Annibale P., Cruz C.M., Laster K., Gratton E., Kudryashov D., Kosak S.T., Gottardi C.J., de Lanerolle P. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J. Cell Sci. 2016;129:3412–3425. doi: 10.1242/jcs.195867. PubMed DOI PMC
Cho W.-K., Jayanth N., English B.P., Inoue T., Andrews J.O., Conway W., Grimm J.B., Spille J.-H., Lavis L.D., Lionnet T., et al. RNA Polymerase II cluster dynamics predict mRNA output in living cells. eLife. 2016;5:e13617. doi: 10.7554/eLife.13617. PubMed DOI PMC
Plessner M., Melak M., Chinchilla P., Baarlink C., Grosse R. Nuclear F-actin Formation and Reorganization upon Cell Spreading*♦. J. Biol. Chem. 2015;290:11209–11216. doi: 10.1074/jbc.M114.627166. PubMed DOI PMC
Wei M., Fan X., Ding M., Li R., Shao S., Hou Y., Meng S., Tang F., Li C., Sun Y. Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering. Sci. Adv. 2020;6:eaay6515. doi: 10.1126/sciadv.aay6515. PubMed DOI PMC
Ulferts S., Prajapati B., Grosse R., Vartiainen M.K. Emerging Properties and Functions of Actin and Actin Filaments Inside the Nucleus. Cold Spring Harb. Perspect. Biol. 2021;13:a040121. doi: 10.1101/cshperspect.a040121. PubMed DOI PMC
Dunn K.W., Kamocka M.M., McDonald J.H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011;300:C723–C742. doi: 10.1152/ajpcell.00462.2010. PubMed DOI PMC
Descostes N., Heidemann M., Spinelli L., Schüller R., Maqbool M.A., Fenouil R., Koch F., Innocenti C., Gut M., Gut I., et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. eLife. 2014;3:e02105. doi: 10.7554/eLife.02105. PubMed DOI PMC
Gressel S., Schwalb B., Decker T.M., Qin W., Leonhardt H., Eick D., Cramer P. CDK9-dependent RNA polymerase II pausing controls transcription initiation. eLife. 2017;6:e29736. doi: 10.7554/eLife.29736. PubMed DOI PMC
Jao C.Y., Salic A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. USA. 2008;105:15779–15784. doi: 10.1073/pnas.0808480105. PubMed DOI PMC
van’t Sant L.J., White J.J., Hoeijmakers J.H.J., Vermeij W.P., Jaarsma D. In vivo 5-ethynyluridine (EU) labelling detects reduced transcription in Purkinje cell degeneration mouse mutants, but can itself induce neurodegeneration. Acta Neuropathol. Commun. 2021;9:94. doi: 10.1186/s40478-021-01200-y. PubMed DOI PMC
Galganski L., Urbanek M.O., Krzyzosiak W.J. Nuclear speckles: Molecular organization, biological function and role in disease. Nucleic Acids Res. 2017;45:10350–10368. doi: 10.1093/nar/gkx759. PubMed DOI PMC
Hilbert L., Sato Y., Kuznetsova K., Bianucci T., Kimura H., Jülicher F., Honigmann A., Zaburdaev V., Vastenhouw N.L. Transcription organizes euchromatin via microphase separation. Nat. Commun. 2021;12:1360. doi: 10.1038/s41467-021-21589-3. PubMed DOI PMC
Gressel S., Schwalb B., Cramer P. The pause-initiation limit restricts transcription activation in human cells. Nat. Commun. 2019;10:3603. doi: 10.1038/s41467-019-11536-8. PubMed DOI PMC
Shao W., Zeitlinger J. Paused RNA polymerase II inhibits new transcriptional initiation. Nat. Genet. 2017;49:1045–1051. doi: 10.1038/ng.3867. PubMed DOI
Steurer B., Janssens R.C., Geverts B., Geijer M.E., Wienholz F., Theil A.F., Chang J., Dealy S., Pothof J., van Cappellen W.A., et al. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc. Natl. Acad. Sci. USA. 2018;115:E4368–E4376. doi: 10.1073/pnas.1717920115. PubMed DOI PMC
Dopie J., Skarp K.-P., Rajakylä E.K., Tanhuanpää K., Vartiainen M.K. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl. Acad. Sci. USA. 2012;109:E544–E552. doi: 10.1073/pnas.1118880109. PubMed DOI PMC
Hyrskyluoto A., Vartiainen M.K. Regulation of nuclear actin dynamics in development and disease. Curr. Opin. Cell Biol. 2020;64:18–24. doi: 10.1016/j.ceb.2020.01.012. PubMed DOI
Boehning M., Dugast-Darzacq C., Rankovic M., Hansen A.S., Yu T., Marie-Nelly H., Mcswiggen D.T., Kokic G., Dailey G.M., Cramer P., et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 2018;25:833–840. doi: 10.1038/s41594-018-0112-y. PubMed DOI
Kim J., Venkata N.C., Hernandez Gonzalez G.A., Khanna N., Belmont A.S. Gene expression amplification by nuclear speckle association. J. Cell Biol. 2020;219:e201904046. doi: 10.1083/jcb.201904046. PubMed DOI PMC
Ilik I.A., Aktas T. Nuclear speckles: Dynamic hubs of gene expression regulation. FEBS J. 2022;289:7234–7245. doi: 10.1111/febs.16117. PubMed DOI
Zhang L., Zhang Y., Chen Y., Gholamalamdari O., Wang Y., Ma J., Belmont A.S. TSA-seq reveals a largely conserved genome organization relative to nuclear speckles with small position changes tightly correlated with gene expression changes. Genome Res. 2020;31:251–264. doi: 10.1101/gr.266239.120. PubMed DOI PMC
Forero-Quintero L.S., Raymond W., Handa T., Saxton M.N., Morisaki T., Kimura H., Bertrand E., Munsky B., Stasevich T.J. Live-cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Nat. Commun. 2021;12:3158. doi: 10.1038/s41467-021-23417-0. PubMed DOI PMC
Lu X., Zhu X., Li Y., Liu M., Yu B., Wang Y., Rao M., Yang H., Zhou K., Wang Y., et al. Multiple P-TEFbs cooperatively regulate the release of promoter-proximally paused RNA polymerase II. Nucleic Acids Res. 2016;44:6853–6867. doi: 10.1093/nar/gkw571. PubMed DOI PMC
Rawat P., Boehning M., Hummel B., Aprile-Garcia F., Pandit A.S., Eisenhardt N., Khavaran A., Niskanen E., Vos S.M., Palvimo J.J., et al. Stress-induced nuclear condensation of NELF drives transcriptional downregulation. Mol. Cell. 2021;81:1013–1026. doi: 10.1016/j.molcel.2021.01.016. PubMed DOI PMC
Vos S.M., Farnung L., Boehning M., Wigge C., Linden A., Urlaub H., Cramer P. Structure of activated transcription complex Pol II–DSIF–PAF–SPT6. Nature. 2018;560:607–612. doi: 10.1038/s41586-018-0440-4. PubMed DOI
Yu M., Yang W., Ni T., Tang Z., Nakadai T., Zhu J., Roeder R.G. RNA Polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA Polymerase II. Science. 2015;350:1383–1386. doi: 10.1126/science.aad2338. PubMed DOI PMC
Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin I isoform in the nucleus. Science. 2000;290:337–341. doi: 10.1126/science.290.5490.337. PubMed DOI
Sarshad A.A., Percipalle P. New insight into role of myosin motors for activation of RNA polymerases. Int. Rev. Cell Mol. Biol. 2014;311:183–230. doi: 10.1016/B978-0-12-800179-0.00004-0. PubMed DOI
Singh N., Reyes-Ordoñez A., Compagnone M.A., Moreno J.F., Leslie B.J., Ha T., Chen J. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nat. Commun. 2021;12:4339. doi: 10.1038/s41467-021-24639-y. PubMed DOI PMC
Surks H.K., Richards C.T., Mendelsohn M.E. Myosin phosphatase-Rho interacting protein. A new member of the myosin phosphatase complex that directly binds RhoA. J. Biol. Chem. 2003;278:51484–51493. doi: 10.1074/jbc.M305622200. PubMed DOI
Huet G., Skarp K.-P., Vartiainen M.K. Nuclear actin levels as an important transcriptional switch. Transcription. 2012;3:226–230. doi: 10.4161/trns.21062. PubMed DOI PMC
Baarlink C., Wang H., Grosse R. Nuclear Actin Network Assembly by Formins Regulates the SRF Coactivator MAL. Science. 2013;340:864–867. doi: 10.1126/science.1235038. PubMed DOI
Plessner M., Grosse R. Dynamizing nuclear actin filaments. Curr. Opin. Cell Biol. 2019;56:1–6. doi: 10.1016/j.ceb.2018.08.005. PubMed DOI
Yamazaki S., Gerhold C., Yamamoto K., Ueno Y., Grosse R., Miyamoto K., Harata M. The Actin-Family Protein Arp4 Is a Novel Suppressor for the Formation and Functions of Nuclear F-Actin. Cells. 2020;9:758. doi: 10.3390/cells9030758. PubMed DOI PMC
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer
LIPRNAseq: a method to discover lipid interacting RNAs by sequencing