Lipid-lncRNA Crossroads: An Overview of Interactions Between Lipids and lncRNA
Status In-Process Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
RVO: 68378050
Institute of Molecular Genetics of the Czech Academy of Sciences
project LM2023050 Czech-BioImaging
Microscopy Centre - Light/Electron CF, IMG CAS supported by the MEYS CR
17-09103S
Grant Agency of the Czech Republic
CA19105 EpiLipidNET
Pan-European Network in Lipidomics and EpiLipidomics
NPO EXCELES, ID Project No. LX22NPO5102
The National Institute for Cancer Research
PubMed
40801625
PubMed Central
PMC12346853
DOI
10.3390/cells14151193
PII: cells14151193
Knihovny.cz E-zdroje
- Klíčová slova
- lncRNA, phase separation, phospholipids,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Long non-coding RNAs (lncRNAs) interact with a variety of biomolecules, including DNA, mRNAs, microRNA, and proteins, to regulate various cellular processes. Recently, their interactions with lipids have gained increasing attention as an emerging research area. Both lipids and lncRNAs play central roles in cellular regulation, and growing evidence reveals a complex interplay between these molecules. These interactions contribute to key biological functions, such as cancer progression, lipid droplet transport, autophagy, liquid-liquid phase separation, and the formation of organelles without membranes. Understanding the lipid-lncRNA interface opens new avenues for unraveling cellular regulation and disease mechanisms, holding great potential not only for elucidating the fundamental aspects of cellular biology but also for identifying innovative therapeutic targets for metabolic disorders and cancer. This review highlights the biological relevance of lipid-lncRNA interactions by exploring their roles in cellular organization, regulation, and diseases, including metabolic and cancer-related disorders.
Zobrazit více v PubMed
Bridges M.C., Daulagala A.C., Kourtidis A. LNCcation: lncRNA localization and function. J. Cell Biol. 2021;220:e202009045. doi: 10.1083/jcb.202009045. PubMed DOI PMC
Mattick J.S., Amaral P.P., Carninci P., Carpenter S., Chang H.Y., Chen L.-L., Chen R., Dean C., Dinger M.E., Fitzgerald K.A. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023;24:430–447. doi: 10.1038/s41580-022-00566-8. PubMed DOI PMC
Ramilowski J.A., Yip C.W., Agrawal S., Chang J.-C., Ciani Y., Kulakovskiy I.V., Mendez M., Ooi J.L.C., Ouyang J.F., Parkinson N., et al. Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Res. 2020;30:1060–1072. doi: 10.1101/gr.254219.119. PubMed DOI PMC
Yoon J.-H., Abdelmohsen K., Gorospe M. Posttranscriptional Gene Regulation by Long Noncoding RNA. J. Mol. Biol. 2013;425:3723–3730. doi: 10.1016/j.jmb.2012.11.024. PubMed DOI PMC
Liu H., Yang Y., Ge Y., Liu J., Zhao Y. TERC promotes cellular inflammatory response independent of telomerase. Nucleic Acids Res. 2019;47:8084–8095. doi: 10.1093/nar/gkz584. PubMed DOI PMC
Muret K., Désert C., Lagoutte L., Boutin M., Gondret F., Zerjal T., Lagarrigue S. Long noncoding RNAs in lipid metabolism: Literature review and conservation analysis across species. BMC Genom. 2019;20:1–18. doi: 10.1186/s12864-019-6093-3. PubMed DOI PMC
Ye W.-C., Huang S.-F., Hou L.-J., Long H.-J., Yin K., Hu C.Y., Zhao G.-J. Potential Therapeutic Targeting of lncRNAs in Cholesterol Homeostasis. Front. Cardiovasc. Med. 2021;8:688546. doi: 10.3389/fcvm.2021.688546. PubMed DOI PMC
Huang S.-F., Peng X.-F., Jiang L., Hu C.Y., Ye W.-C. LncRNAs as Therapeutic Targets and Potential Biomarkers for Lipid-Related Diseases. Front. Pharmacol. 2021;12:729745. doi: 10.3389/fphar.2021.729745. PubMed DOI PMC
Santos A.L., Preta G. Lipids in the cell: Organisation regulates function. Cell. Mol. Life Sci. 2018;75:1909–1927. doi: 10.1007/s00018-018-2765-4. PubMed DOI PMC
Van Meer G., Voelker D.R., Feigenson G.W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008;9:112–124. doi: 10.1038/nrm2330. PubMed DOI PMC
Huang J., Wang J., He H., Huang Z., Wu S., Chen C., Liu W., Xie L., Tao Y., Cong L., et al. Close interactions between lncRNAs, lipid metabolism and ferroptosis in cancer. Int. J. Biol. Sci. 2021;17:4493–4513. doi: 10.7150/ijbs.66181. PubMed DOI PMC
Miladinović A., Antiga L., Venit T., Bayona-Hernandez A., Červenka J., Labala R.K., Kolář M., Castaño E., Sztacho M., Hozak P. The Perinucleolar Compartment and the Oncogenic Super-Enhancers Are Part of the Same Phase-Separated Structure Filled with Phosphatidylinositol 4,5 Bisphosphate and Long Noncoding RNA HANR. Adv. Biol. Regul. 2025;95:101069. doi: 10.1016/j.jbior.2024.101069. PubMed DOI
Han L., Huang D., Wu S., Liu S., Wang C., Sheng Y., Lu X., Broxmeyer H.E., Wan J., Yang L. Lipid Droplet-Associated LncRNA LIPTER Preserves Cardiac Lipid Metabolism. Nat. Cell Biol. 2023;25:1033–1046. doi: 10.1038/s41556-023-01162-4. PubMed DOI PMC
Ma Y., Zhang J., Wen L., Lin A. Membrane-lipid associated lncRNA: A new regulator in cancer signaling. Cancer Lett. 2018;419:27–29. doi: 10.1016/j.canlet.2018.01.008. PubMed DOI
Bayona-Hernandez A., Guerra S., Jiménez-Ramirez I.A., Sztacho M., Hozak P., Rodriguez-Zapata L.C., Pereira-Santana A., Castaño E. LIPRNAseq: A method to discover lipid interacting RNAs by sequencing. Mol. Biol. Rep. 2023;50:6619–6626. doi: 10.1007/s11033-023-08548-5. PubMed DOI
Dong Y., Li X., Lin Z., Zou W., Liu Y., Qian H., Jia J. HOXC-AS1-MYC regulatory loop contributes to the growth and metastasis in gastric cancer. J. Exp. Clin. Cancer Res. 2019;38:502. doi: 10.1186/s13046-019-1482-7. PubMed DOI PMC
Tang Z., Zeng X., Li J., Qiu S., Zhao H., Wang Z., Zheng Y. LncRNA HOXC-AS1 promotes nasopharyngeal carcinoma (NPC) progression by sponging miR-4651 and subsequently upregulating FOXO6. J. Pharmacol. Sci. 2021;147:284–293. doi: 10.1016/j.jphs.2021.08.002. PubMed DOI
Huang C., Hu Y.-W., Zhao J.-J., Ma X., Zhang Y., Guo F.-X., Kang C.-M., Lu J.-B., Xiu J.-C., Sha Y.-H., et al. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages. DNA Cell Biol. 2016;35:722–729. doi: 10.1089/dna.2016.3422. PubMed DOI
Gluba-Sagr A., Franczyk B., Rysz-Górzyńska A., Olszewski R., Rysz J. The Role of Selected lncRNAs in Lipid Metabolism and Cardiovascular Disease Risk. Int. J. Mol. Sci. 2024;25:9244. doi: 10.3390/ijms25179244. PubMed DOI PMC
Chen H., Li X., Chen W., Wu T., Liu S. LncRNA HOTAIR Inhibits miR-19a-3p to Alleviate Foam Cell Formation and Inflammatory Response in Atherosclerosis. Int. J. Med Sci. 2024;21:521–529. doi: 10.7150/ijms.90315. PubMed DOI PMC
Tang Q., Hann S.S. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer. Cell. Physiol. Biochem. 2018;47:893–913. doi: 10.1159/000490131. PubMed DOI
Potolitsyna E., Pickering S.H., Germier T., Collas P., Briand N. Long non-coding RNA HOTAIR regulates cytoskeleton remodeling and lipid storage capacity during adipogenesis. Sci. Rep. 2022;12:10157. doi: 10.1038/s41598-022-14296-6. PubMed DOI PMC
Divoux A., Karastergiou K., Xie H., Guo W., Perera R.J., Fried S.K., Smith S.R. Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity. 2014;22:1781–1785. doi: 10.1002/oby.20793. PubMed DOI PMC
Yan C., Chen J., Chen N. Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep. 2016;6:22640. doi: 10.1038/srep22640. PubMed DOI PMC
Storck E.M., Özbalci C., Eggert U.S. Lipid Cell Biology: A Focus on Lipids in Cell Division. Annu. Rev. Biochem. 2018;87:839–869. doi: 10.1146/annurev-biochem-062917-012448. PubMed DOI
Yu Y., Gao L., Wang Y., Xu B., Maswikiti E.P., Li H., Zheng P., Tao P., Xiang L., Gu B., et al. A Forgotten Corner in Cancer Immunotherapy: The Role of Lipids. Front. Oncol. 2021;11:751086. doi: 10.3389/fonc.2021.751086. PubMed DOI PMC
Casalin I., Ceneri E., Ratti S., Manzoli L., Cocco L., Follo M.Y. Nuclear Phospholipids and Signaling: An Update of the Story. Cells. 2024;13:713. doi: 10.3390/cells13080713. PubMed DOI PMC
Olzmann J.A., Carvalho P. Dynamics and Functions of Lipid Droplets. Nat. Rev. Mol. Cell Biol. 2019;20:137–155. doi: 10.1038/s41580-018-0085-z. PubMed DOI PMC
Albi E., Viola Magni M.P. The Role of Intranuclear Lipids. Biol. Cell. 2004;96:657–667. doi: 10.1016/j.biolcel.2004.05.004. PubMed DOI
Vidalle M.C., Sheth B., Fazio A., Marvi M.V., Leto S., Koufi F.-D., Neri I., Casalin I., Ramazzotti G., Follo M.Y., et al. Nuclear Phosphoinositides as Key Determinants of Nuclear Functions. Biomolecules. 2023;13:1049. doi: 10.3390/biom13071049. PubMed DOI PMC
Fiume R., Faenza I., Sheth B., Poli A., Vidalle M., Mazzetti C., Abdul S., Campagnoli F., Fabbrini M., Kimber S., et al. Nuclear Phosphoinositides: Their Regulation and Roles in Nuclear Functions. Int. J. Mol. Sci. 2019;20:2991. doi: 10.3390/ijms20122991. PubMed DOI PMC
De Craene J.-O., Bertazzi D.L., Bär S., Friant S. Phosphoinositides, Major Actors in Membrane Trafficking and Lipid Signaling Pathways. Int. J. Mol. Sci. 2017;18:634. doi: 10.3390/ijms18030634. PubMed DOI PMC
Sztacho M., Červenka J., Šalovská B., Antiga L., Hoboth P., Hozák P., Papenfort K. The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization. PLOS Genet. 2024;20:e1011462. doi: 10.1371/journal.pgen.1011462. PubMed DOI PMC
Castano E., Yildirim S., Fáberová V., Krausová A., Uličná L., Paprčková D., Sztacho M., Hozák P. Nuclear Phosphoinositides—Versatile Regulators of Genome Functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC
Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI
Sztacho M., Sobol M., Balaban C., Lopes S.E.E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI
Hoboth P., Sztacho M., Šebesta O., Schätz M., Castano E., Hozák P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim. Et Biophys. Acta (BBA)-Mol. Cell Biol. Lipids. 2021;1866:158890. doi: 10.1016/j.bbalip.2021.158890. PubMed DOI
Balaban C., Sztacho M., Antiga L., Miladinović A., Harata M., Hozák P. PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription. Biomolecules. 2023;13:426. doi: 10.3390/biom13030426. PubMed DOI PMC
Viaud J., Mansour R., Antkowiak A., Mujalli A., Valet C., Chicanne G., Xuereb J.-M., Terrisse A.-D., Séverin S., Gratacap M.-P., et al. Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–258. doi: 10.1016/j.biochi.2015.09.005. PubMed DOI
Duan J., Huang Z., Nice E.C., Xie N., Chen M., Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J. Adv. Res. 2022;48:105–123. doi: 10.1016/j.jare.2022.08.007. PubMed DOI PMC
Guo Q., Shi X., Wang X. RNA and Liquid-Liquid Phase Separation. Noncoding RNA Res. 2021;6:92–99. doi: 10.1016/j.ncrna.2021.04.003. PubMed DOI PMC
Courchaine E.M., Lu A., Neugebauer K.M. Droplet organelles? EMBO J. 2016;35:1603–1612. doi: 10.15252/embj.201593517. PubMed DOI PMC
Sobol M., Yildirim S., Philimonenko V.V., Marášek P., Castaño E., Hozák P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Maccaroni K., La Torre M., Burla R., Saggio I. Phase Separation in the Nucleus and at the Nuclear Periphery during Post-Mitotic Nuclear Envelope Reformation. Cells. 2022;11:1749. doi: 10.3390/cells11111749. PubMed DOI PMC
Guillen-Chable F., Bayona A., Rodríguez-Zapata L.C., Castano E. Phase Separation of Intrinsically Disordered Nucleolar Proteins Relate to Localization and Function. Int. J. Mol. Sci. 2021;22:13095. doi: 10.3390/ijms222313095. PubMed DOI PMC
Dumelie J.G., Chen Q., Miller D., Attarwala N., Gross S.S., Jaffrey S.R. Biomolecular condensates create phospholipid-enriched microenvironments. Nat. Chem. Biol. 2023;20:302–313. doi: 10.1038/s41589-023-01474-4. PubMed DOI PMC
Lin A., Hu Q., Li C., Xing Z., Ma G., Wang C., Li J., Ye Y., Yao J., Liang K., et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat. Cell Biol. 2017;19:238–251. doi: 10.1038/ncb3473. PubMed DOI PMC
Czerniak T., Saenz J.P. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc. Natl. Acad. Sci. USA. 2022;119:e2119235119. doi: 10.1073/pnas.2119235119. PubMed DOI PMC
Vlassov A., Yarus M. Interaction of RNA with Phospholipid Membranes. Mol. Biol. 2002;36:389–393. doi: 10.1023/A:1016063414162. PubMed DOI
Luo Y.-W., Liu C.-G., Kirby J.A., Chu C., Zang D., Chen J. The Emerging Role of Extracellular Vesicle-Derived lncRNAs and circRNAs in Tumor and Mesenchymal Stem Cells: The Biological Functions and Potential for Clinical Application. Cancers. 2025;17:2186. doi: 10.3390/cancers17132186. PubMed DOI PMC
Mańka R., Sapoń K., Zaziąbło J., Janas T., Czogalla A., Janas T. The role of RNA structural motifs in RNA-lipid raft interaction. Sci. Rep. 2025;15:1–11. doi: 10.1038/s41598-025-91093-x. PubMed DOI PMC
Wu E., Guo X., Teng X., Zhang R., Li F., Cui Y., Zhang D., Liu Q., Luo J., Wang J., et al. Discovery of Plasma Membrane-Associated RNAs through APEX-seq. Cell Biochem. Biophys. 2021;79:905–917. doi: 10.1007/s12013-021-00991-0. PubMed DOI
Jiménez-Ramírez I.A., Uc-Chuc M.A., Zapata L.C.R., Castaño E. Small Nucleolar RNA from S. Cerevisiae Binds to Phosphatidylinositol 4,5-Bisphosphate. Noncoding RNA. 2025;11:55. doi: 10.3390/ncrna11040055. DOI
Zhang H., Qin D., Jiang Z., Zhang J. SNHG9/miR-199a-5p/Wnt2 Axis Regulates Cell Growth and Aerobic Glycolysis in Glioblastoma. J. Neuropathol. Exp. Neurol. 2019;78:939–948. doi: 10.1093/jnen/nlz078. PubMed DOI
Li R.-H., Tian T., Ge Q.-W., He X.-Y., Shi C.-Y., Li J.-H., Zhang Z., Liu F.-Z., Sang L.-J., Yang Z.-Z., et al. A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Res. 2021;31:1088–1105. doi: 10.1038/s41422-021-00530-9. PubMed DOI PMC
Ye S., Ni Y. lncRNA SNHG9 Promotes Cell Proliferation, Migration, and Invasion in Human Hepatocellular Carcinoma Cells by Increasing GSTP1 Methylation, as Revealed by CRISPR-dCas9. Front. Mol. Biosci. 2021;8:649976. doi: 10.3389/fmolb.2021.649976. PubMed DOI PMC
Donia T., Jyoti B., Suizu F., Hirata N., Tanaka T., Ishigaki S., F P.T.J., Nio-Kobayashi J., Iwanaga T., Chiorini J.A., et al. Identification of RNA aptamer which specifically interacts with PtdIns(3)P. Biochem. Biophys. Res. Commun. 2019;517:146–154. doi: 10.1016/j.bbrc.2019.07.034. PubMed DOI
Huang S., Deerinck T.J., Ellisman M.H., Spector D.L. The Perinucleolar Compartment and Transcription. J. Cell Biol. 1998;143:35–47. doi: 10.1083/jcb.143.1.35. PubMed DOI PMC
Kumar A., Rajendran V., Sethumadhavan R., Purohit R., Ferrari D., Robak T., Roccaro A. AKT Kinase Pathway: A Leading Target in Cancer Research. Sci. World J. 2013;2013:756134. doi: 10.1155/2013/756134. PubMed DOI PMC
Xiao J., Lv Y., Jin F., Liu Y., Ma Y., Xiong Y., Liu L., Zhang S., Sun Y., Tipoe G.L., et al. LncRNA HANR Promotes Tumorigenesis and Increase of Chemoresistance in Hepatocellular Carcinoma. Cell. Physiol. Biochem. 2017;43:1926–1938. doi: 10.1159/000484116. PubMed DOI
Shi Y., Yang X., Xue X., Sun D., Cai P., Song Q., Zhang B., Qin L. HANR promotes hepatocellular carcinoma progression via miR-214/EZH2/TGF-β axis. Biochem. Biophys. Res. Commun. 2018;506:189–193. doi: 10.1016/j.bbrc.2018.10.038. PubMed DOI
Li S.J., Wu Y.X., Liang Y.H., Gao Y., Wu A.B., Zheng H.Y., Yang Z.X. LncRNA HANR aggravates the progression of non-small cell lung cancer via mediating miRNA-140-5p. Eur. Rev. Med. Pharmacol. Sci. 2020;24:704–711. doi: 10.26355/eurrev_202001_20049. PubMed DOI
Xu M., Guo X., Wang R.-D., Zhang Z.-H., Jia Y.-M., Sun X. Long non-coding RNA HANR as a biomarker for the diagnosis and prognosis of colorectal cancer. Medicine. 2020;99:e19066. doi: 10.1097/MD.0000000000019066. PubMed DOI PMC
Han G., Bai X., Li F., Huang L., Hao Y., Li W., Bu P., Zhang H., Liu X., Xie J. Long non-coding RNA HANR modulates the glucose metabolism of triple negative breast cancer via stabilizing hexokinase 2. Heliyon. 2023;10:e23827. doi: 10.1016/j.heliyon.2023.e23827. PubMed DOI PMC
Bayona-Hernandez A. Análisis de IncRNAs Con Interacción Con Fosfatidilinositol 4,5-Bisfosfato. Centro de Investigación Científica de Yucatán, A.C.; Merida, Mexico: 2024. [(accessed on 8 July 2025)]. Available online: http://cicy.repositorioinstitucional.mx/jspui/handle/1003/3266.
Senti M.E., Ceccaldi A., Luciani M., Saber N., Schurmann P.J.L., Geerlings M.W., Holig P., de Beer J., Hannus M., Campbell F., et al. NANOSPRESSO: Toward personalized, locally produced nucleic acid nanomedicines. Front. Sci. 2025;3:1458636. doi: 10.3389/fsci.2025.1458636. DOI