The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
39621780
PubMed Central
PMC11668513
DOI
10.1371/journal.pgen.1011462
PII: PGENETICS-D-24-00391
Knihovny.cz E-resources
- MeSH
- Cell Nucleus * metabolism genetics MeSH
- Phosphatidylinositol 4,5-Diphosphate * metabolism MeSH
- Phosphorylation MeSH
- Nuclear Proteins * metabolism genetics MeSH
- Humans MeSH
- Cell Cycle Proteins metabolism genetics MeSH
- Bromodomain Containing Proteins MeSH
- RNA metabolism genetics MeSH
- Transcription Factors * metabolism genetics MeSH
- Protein Binding MeSH
- Intrinsically Disordered Proteins * metabolism genetics chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- BRD4 protein, human MeSH Browser
- Phosphatidylinositol 4,5-Diphosphate * MeSH
- Nuclear Proteins * MeSH
- Cell Cycle Proteins MeSH
- Bromodomain Containing Proteins MeSH
- RNA MeSH
- Transcription Factors * MeSH
- Intrinsically Disordered Proteins * MeSH
The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.
See more in PubMed
Jungmichel S, Sylvestersen KB, Choudhary C, Nguyen S, Mann M, Nielsen ML. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep, (2014) 6, 578–591. doi: 10.1016/j.celrep.2013.12.038 PubMed DOI
Lewis AE, Sommer L, Arntzen MO, Strahm Y, Morrice NA, Divecha N, D’Santos CS. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol Cell Proteomics, (2011) 10, M110 003376. doi: 10.1074/mcp.M110.003376 PubMed DOI PMC
Castano E, Yildirim S, Faberova V, Krausova A, Ulicna L, Paprckova D, Sztacho M, Hozak P. Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells, (2019) 8. doi: 10.3390/cells8070649 PubMed DOI PMC
Mazloumi Gavgani F, Slinning MS, Morovicz AP, Arnesen VS, Turcu DC, Ninzima S, D’Santos CS, Lewis AE. Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics, (2021) 20, 100102. doi: 10.1016/j.mcpro.2021.100102 PubMed DOI PMC
Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature, (2006) 443, 651–657. doi: 10.1038/nature05185 PubMed DOI
Palamiuc L, Ravi A, Emerling BM. Phosphoinositides in autophagy: current roles and future insights. FEBS J, (2020) 287, 222–238. doi: 10.1111/febs.15127 PubMed DOI PMC
Rose HG, Frenster JH. Composition and metabolism of lipids within repressed and active chromatin of interphase lymphocytes. Biochim Biophys Acta, (1965) 106, 577–591. doi: 10.1016/0005-2760(65)90073-1 PubMed DOI
Manzoli FA, Maraldi NM, Cocco L, Capitani S, Facchini A. Chromatin phospholipids in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res, (1977) 37, 843–849. PubMed
Mazzotti G, Zini N, Rizzi E, Rizzoli R, Galanzi A, Ognibene A, Santi S, Matteucci A., Martelli AM, Maraldi NM. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J Histochem Cytochem, (1995) 43, 181–191. doi: 10.1177/43.2.7822774 PubMed DOI
Cocco L, Maraldi NM, Manzoli FA, Gilmour RS., Lang A. Phospholipid interactions in rat liver nuclear matrix. Biochem Biophys Res Commun, (1980) 96, 890–898. PubMed
Sobol M, Krausova A, Yildirim S, Kalasova I, Faberova V, Vrkoslav V, Philimonenko V, Marasek P, Pastorek L, Capek M. et al.. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci, (2018) 131. doi: 10.1242/jcs.211094 PubMed DOI
Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, Hozak P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci, (2013) 126, 2730–2739. doi: 10.1242/jcs.123661 PubMed DOI
Stijf-Bultsma Y, Sommer L, Tauber M, Baalbaki M, Giardoglou P, Jones DR, Gelato KA, van Pelt J, Shah Z, Rahnamoun H. et al.. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell, (2015) 58, 453–467. doi: 10.1016/j.molcel.2015.03.009 PubMed DOI PMC
Balaban C, Sztacho M, Antiga L, Miladinovic A, Harata M, Hozak P. PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription. Biomolecules, (2023) 13. doi: 10.3390/biom13030426 PubMed DOI PMC
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol, (2022) 14. doi: 10.1101/cshperspect.a041268 PubMed DOI PMC
Ilik IA, Malszycki M, Lubke AK, Schade C, Meierhofer D, Aktas T. SON and SRRM2 are essential for nuclear speckle formation. Elife, (2020) 9. doi: 10.7554/eLife.60579 PubMed DOI PMC
Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP. Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell, (2016) 165, 1686–1697. doi: 10.1016/j.cell.2016.04.047 PubMed DOI PMC
Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P. et al.. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol, (2018) 25, 833–840. doi: 10.1038/s41594-018-0112-y PubMed DOI
Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, Cisse II. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science, (2018) 361, 412–415. doi: 10.1126/science.aar4199 PubMed DOI PMC
Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A Phase Separation Model for Transcriptional Control. Cell, (2017) 169, 13–23. doi: 10.1016/j.cell.2017.02.007 PubMed DOI PMC
Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE, Hozak P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv Biol Regul, (2019) 71, 111–117. doi: 10.1016/j.jbior.2018.09.009 PubMed DOI
Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. Nucleated transcriptional condensates amplify gene expression. Nat Cell Biol, (2020) 22, 1187–1196. doi: 10.1038/s41556-020-00578-6 PubMed DOI
Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol, (2021) 22, 165–182. doi: 10.1038/s41580-020-0272-6 PubMed DOI
Riback JA, Zhu L, Ferrolino MC, Tolbert M, Mitrea DM, Sanders DW, Wei MT, Kriwacki RW, Brangwynne CP. Composition-dependent thermodynamics of intracellular phase separation. Nature, (2020) 581, 209–214. doi: 10.1038/s41586-020-2256-2 PubMed DOI PMC
Strom AR., Brangwynne CP. The liquid nucleome—phase transitions in the nucleus at a glance. J Cell Sci, (2019) 132. doi: 10.1242/jcs.235093 PubMed DOI PMC
Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, (2017) 18, 285–298. doi: 10.1038/nrm.2017.7 PubMed DOI PMC
Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, Holehouse AS, Reyer M, Sun Q, Freier SM. et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci, (2017) 130, 4180–4192. doi: 10.1242/jcs.206854 PubMed DOI PMC
Kaiser TE, Intine RV, Dundr M. De novo formation of a subnuclear body. Science, (2008) 322, 1713–1717. doi: 10.1126/science.1165216 PubMed DOI
Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res, (2021) 49, 636–645. doi: 10.1093/nar/gkaa1209 PubMed DOI PMC
Choi JM, Dar F, Pappu RV. LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol, (2019) 15, e1007028. doi: 10.1371/journal.pcbi.1007028 PubMed DOI PMC
Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol, (2021) 67, 41–50. doi: 10.1016/j.sbi.2020.09.004 PubMed DOI PMC
Posey AE, Holehouse AS, Pappu RV. Phase Separation of Intrinsically Disordered Proteins. Methods Enzymol, (2018) 611, 1–30. doi: 10.1016/bs.mie.2018.09.035 PubMed DOI
Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE, Pappu RV, Jedd G. Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. Mol Cell, (2020) 77, 1237–1250 e1234. doi: 10.1016/j.molcel.2020.01.025 PubMed DOI PMC
Mensah MA, Niskanen H, Magalhaes AP, Basu S, Kircher M, Sczakiel HL, Reiter AMV, Elsner J, Meinecke P, Biskup S. et al.. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature, (2023) 614, 564–571. doi: 10.1038/s41586-022-05682-1 PubMed DOI PMC
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell, (2023) 186, 327–345 e328. doi: 10.1016/j.cell.2022.12.013 PubMed DOI PMC
Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell, (2015) 57, 936–947. doi: 10.1016/j.molcel.2015.01.013 PubMed DOI PMC
Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, Yunus AA, Liu DR, Pappu RV, Rosen MK. Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol Cell, (2016) 63, 72–85. doi: 10.1016/j.molcel.2016.05.042 PubMed DOI PMC
Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP. RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A, (2015) 112, E5237–5245. doi: 10.1073/pnas.1509317112 PubMed DOI PMC
Lin Y, Protter DS, Rosen MK, Parker R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell, (2015) 60, 208–219. doi: 10.1016/j.molcel.2015.08.018 PubMed DOI PMC
Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM. et al. RNA-Mediated Feedback Control of Transcriptional Condensates. Cell, (2021) 184, 207–225 e224. doi: 10.1016/j.cell.2020.11.030 PubMed DOI PMC
Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A, Poser I, Bickle M, Rizk S, Guillen-Boixet J, Franzmann TM. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science, (2018) 360, 918–921. doi: 10.1126/science.aar7366 PubMed DOI PMC
Kaur T, Raju M, Alshareedah I, Davis RB, Potoyan DA, Banerjee PR. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat Commun, (2021) 12, 872. doi: 10.1038/s41467-021-21089-4 PubMed DOI PMC
Shao W, Bi X, Pan Y, Gao B, Wu J, Yin Y, Liu Z, Peng M, Zhang W, Jiang X. et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol, (2022) 18, 70–80. doi: 10.1038/s41589-021-00904-5 PubMed DOI
Jain A, Vale RD. RNA phase transitions in repeat expansion disorders. Nature, (2017) 546, 243–247. doi: 10.1038/nature22386 PubMed DOI PMC
Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, (2018) 558, 318–323. PubMed PMC
Doudna JA, Doherty EA. Emerging themes in RNA folding. Fold Des, (1997) 2, R65–70. doi: 10.1016/S1359-0278(97)00035-7 PubMed DOI
Vlassov A, Khvorova A, Yarus M. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc Natl Acad Sci U S A, (2001) 98, 7706–7711. doi: 10.1073/pnas.141041098 PubMed DOI PMC
Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, Li J, Ye Y, Yao J, Liang K. et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P(3) to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol, (2017) 19, 238–251. PubMed PMC
Bayona-Hernandez A, Guerra S, Jimenez-Ramirez IA, Sztacho M, Hozak P, Rodriguez-Zapata LC, Pereira-Santana A, Castano E. LIPRNAseq: a method to discover lipid interacting RNAs by sequencing. Mol Biol Rep, (2023) 50, 6619–6626. doi: 10.1007/s11033-023-08548-5 PubMed DOI
Donia T, Jyoti B, Suizu F, Hirata N, Tanaka T, Ishigaki S, F PTJ, Nio-Kobayashi J, Iwanaga T, Chiorini JA, Noguchi M. Identification of RNA aptamer which specifically interacts with PtdIns(3)P. Biochem Biophys Res Commun, (2019) 517, 146–154. doi: 10.1016/j.bbrc.2019.07.034 PubMed DOI
Khvorova A, Kwak YG, Tamkun M, Majerfeld I, Yarus M. RNAs that bind and change the permeability of phospholipid membranes. Proc Natl Acad Sci U S A, (1999) 96, 10649–10654. doi: 10.1073/pnas.96.19.10649 PubMed DOI PMC
Czerniak T, Saenz JP. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc Natl Acad Sci U S A, (2022) 119. doi: 10.1073/pnas.2119235119 PubMed DOI PMC
Shevtsov SP, Dundr M. Nucleation of nuclear bodies by RNA. Nat Cell Biol, (2011) 13, 167–173. doi: 10.1038/ncb2157 PubMed DOI
Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell, (2012) 45, 147–157. doi: 10.1016/j.molcel.2011.12.012 PubMed DOI
Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, (2009) 33, 717–726. doi: 10.1016/j.molcel.2009.01.026 PubMed DOI PMC
Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG. The Drosophila melanogaster Cajal body. J Cell Biol, (2006) 172, 875–884. doi: 10.1083/jcb.200511038 PubMed DOI PMC
Souquere S, Beauclair G, Harper F, Fox A, Pierron G. Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, (2010) 21, 4020–4027. doi: 10.1091/mbc.E10-08-0690 PubMed DOI PMC
Kakisaka M, Yamada K, Yamaji-Hasegawa A, Kobayashi T, Aida Y. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2. Virology, (2016) 496, 116–126. doi: 10.1016/j.virol.2016.05.018 PubMed DOI
Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS, Jaffrey SR. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol, (2024) 20, 302–313. doi: 10.1038/s41589-023-01474-4 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods, (2012) 9, 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol, (2011) 300, C723–742. doi: 10.1152/ajpcell.00462.2010 PubMed DOI PMC
Kalasova I, Faberova V, Kalendova A, Yildirim S, Ulicna L, Venit T, Hozak P. Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol, (2016) 145, 485–496. doi: 10.1007/s00418-016-1409-8 PubMed DOI
Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res, (2008) 7, 731–740. doi: 10.1021/pr700658q PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, (2007) 2, 1896–1906. doi: 10.1038/nprot.2007.261 PubMed DOI
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin E, Westphall MS, Coon JJ. The one hour yeast proteome. Mol Cell Proteomics, (2014) 13, 339–347. doi: 10.1074/mcp.M113.034769 PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, (2008) 26, 1367–1372. doi: 10.1038/nbt.1511 PubMed DOI
Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res, (2011) 10, 1794–1805. doi: 10.1021/pr101065j PubMed DOI
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics, (2014) 13, 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods, (2016) 13, 731–740. doi: 10.1038/nmeth.3901 PubMed DOI
R: R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, V., Austria. URL https://www.R-project.org/.
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, (2019) 10, 1523. doi: 10.1038/s41467-019-09234-6 PubMed DOI PMC
UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, (2021) 49, D480–D489. doi: 10.1093/nar/gkaa1100 PubMed DOI PMC
Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics, (2021) 18, 483–502. doi: 10.1080/14789450.2021.1962302 PubMed DOI
Sipeki S, Koprivanacz K, Takacs T, Kurilla A, Laszlo L, Vas V, Buday L. Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells, (2021) 10. doi: 10.3390/cells10051191 PubMed DOI PMC
Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW, Guy GR. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol, (2002) 22, 7953–7966. doi: 10.1128/MCB.22.22.7953-7966.2002 PubMed DOI PMC
Takeuchi H, Matsuda M, Yamamoto T, Kanematsu T, Kikkawa U, Yagisawa H, Watanabe Y, Hirata M. PTB domain of insulin receptor substrate-1 binds inositol compounds. Biochem J, (1998) 334 (Pt 1), 211–218. doi: 10.1042/bj3340211 PubMed DOI PMC
Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios, I. New and continuing developments at PROSITE. Nucleic Acids Res, (2013) 41, D344–347. PubMed PMC
Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res, (2021) 49, D344–D354. doi: 10.1093/nar/gkaa977 PubMed DOI PMC
Lang B, Armaos A, Tartaglia GG. RNAct: Protein-RNA interaction predictions for model organisms with supporting experimental data. Nucleic Acids Res, (2019) 47, D601–D606. doi: 10.1093/nar/gky967 PubMed DOI PMC
You K, Huang Q, Yu C, Shen B, Sevilla C, Shi M, Hermjakob H, Chen Y, Li T. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res, (2020) 48, D354–D359. doi: 10.1093/nar/gkz847 PubMed DOI PMC
Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics, (2012) 28, 503–509. doi: 10.1093/bioinformatics/btr682 PubMed DOI
Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z., Kurgan L. et al. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res, (2013) 41, D508–516. PubMed PMC
Sztacho M, Salovska B, Cervenka J, Balaban C, Hoboth P, Hozak P. Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome. Cells, (2021) 10. doi: 10.3390/cells10010068 PubMed DOI PMC
de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res, (2006) 34, W362–365. doi: 10.1093/nar/gkl124 PubMed DOI PMC
Krystkowiak I, Davey NE. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res, (2017) 45, W464–W469. doi: 10.1093/nar/gkx238 PubMed DOI PMC
Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res, (2015) 43, D512–520. doi: 10.1093/nar/gku1267 PubMed DOI PMC
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
Choi JM, Holehouse AS, Pappu RV. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu Rev Biophys, (2020) 49, 107–133. doi: 10.1146/annurev-biophys-121219-081629 PubMed DOI PMC
Ma W, Zhen G, Xie W, Mayr C. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. Elife, (2021) 10. doi: 10.7554/eLife.64252 PubMed DOI PMC
Roden C., Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol, (2021) 22, 183–195. doi: 10.1038/s41580-020-0264-6 PubMed DOI PMC
Chujo T, Yamazaki T, Hirose T. Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta, (2016) 1859, 139–146. doi: 10.1016/j.bbagrm.2015.05.007 PubMed DOI
Chujo T, Hirose T. Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function. Mol Cells, (2017) 40, 889–896. doi: 10.14348/molcells.2017.0263 PubMed DOI PMC
Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res, (2018) 46, 10530–10531. doi: 10.1093/nar/gky816 PubMed DOI PMC
Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet, (2013) 47, 405–431. doi: 10.1146/annurev-genet-110711-155618 PubMed DOI PMC
Hoboth P, Sebesta O, Sztacho M, Castano E, Hozak P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX, (2021) 8, 101372. doi: 10.1016/j.mex.2021.101372 PubMed DOI PMC
Hoboth P, Sztacho M, Sebesta O, Schatz M, Castano E, Hozak P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim Biophys Acta Mol Cell Biol Lipids, (2021) 1866, 158890. doi: 10.1016/j.bbalip.2021.158890 PubMed DOI
Hoboth P, Sztacho M, Quaas A, Akgul B, Hozak P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol, (2023) 11, 1217637. doi: 10.3389/fcell.2023.1217637 PubMed DOI PMC
Hoboth P, Sztacho M, Hozak P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J. (2024) PubMed
Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S, Pierron G, Hirose T. Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation. Mol Cell, (2018) 70, 1038–1053 e1037. doi: 10.1016/j.molcel.2018.05.019 PubMed DOI
Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, (2007) 8, 39. doi: 10.1186/1471-2164-8-39 PubMed DOI PMC
Hou C, Wang X, Xie H, Chen T, Zhu P, Xu X, You K, Li T. PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Res, (2023) 51, D460–D465. doi: 10.1093/nar/gkac783 PubMed DOI PMC
Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol, (2004) 337, 635–645. doi: 10.1016/j.jmb.2004.02.002 PubMed DOI
Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription factors. Biochemistry, (2006) 45, 6873–6888. doi: 10.1021/bi0602718 PubMed DOI PMC
Minezaki Y, Homma K, Kinjo AR, Nishikawa K. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol, (2006) 359, 1137–1149. doi: 10.1016/j.jmb.2006.04.016 PubMed DOI
Harmon TS, Holehouse AS, Rosen MK, Pappu RV. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife, (2017) 6. doi: 10.7554/eLife.30294 PubMed DOI PMC
Bianchi G, Longhi S, Grandori R, Brocca S. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci, (2020) 21. doi: 10.3390/ijms21176208 PubMed DOI PMC
Ozawa Y, Anbo H, Ota M, Fukuchi S. Classification of proteins inducing liquid-liquid phase separation: sequential, structural and functional characterization. J Biochem, (2023) 173, 255–264. doi: 10.1093/jb/mvac106 PubMed DOI PMC
Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol, (1999) 293, 321–331. doi: 10.1006/jmbi.1999.3110 PubMed DOI
Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res, (2007) 35, W460–464. doi: 10.1093/nar/gkm363 PubMed DOI PMC
Glover K, Mei Y, Sinha SC. Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions. Biochim Biophys Acta, (2016) 1864, 1455–1463. doi: 10.1016/j.bbapap.2016.05.005 PubMed DOI PMC
Milin AN, Deniz AA. Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles. Biochemistry, (2018) 57, 2470–2477. doi: 10.1021/acs.biochem.8b00001 PubMed DOI PMC
Aumiller WM Jr., Keating CD. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat Chem, (2016) 8, 129–137. doi: 10.1038/nchem.2414 PubMed DOI
Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed, (2022) 3, 13. doi: 10.1186/s43556-022-00075-2 PubMed DOI PMC
Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, (2019) 572, 543–548. PubMed PMC
Baeza J, Lawton AJ, Fan J, Smallegan MJ, Lienert I, Gandhi T, Bernhardt OM, Reiter L, Denu JM. Revealing Dynamic Protein Acetylation across Subcellular Compartments. J Proteome Res, (2020) 19, 2404–2418. doi: 10.1021/acs.jproteome.0c00088 PubMed DOI PMC
Clarke SG. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci, (2013) 38, 243–252. doi: 10.1016/j.tibs.2013.02.004 PubMed DOI PMC
Wasik U, Filipek A. Non-nuclear function of sumoylated proteins. Biochim Biophys Acta, (2014) 1843, 2878–2885. doi: 10.1016/j.bbamcr.2014.07.018 PubMed DOI
Morgan MAJ, Shilatifard A. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet, (2020) 52, 1271–1281. doi: 10.1038/s41588-020-00736-4 PubMed DOI
Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, Choudhary C, Matthias P. Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol, (2019) 15, 51–61. doi: 10.1038/s41589-018-0180-7 PubMed DOI
Wang Q, Li Z, Zhang S, Li Y, Wang Y, Fang Z, Ma Y, Liu Z, Zhang W, Li D. et al. Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method. Proc Natl Acad Sci U S A, (2022) 119, e2205255119. doi: 10.1073/pnas.2205255119 PubMed DOI PMC
Balaban C, Sztacho M, Blazikova M, Hozak P. The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus. Cells, (2021) 10. doi: 10.3390/cells10040848 PubMed DOI PMC
Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ. Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res, (2010) 38, 7388–7399. doi: 10.1093/nar/gkq653 PubMed DOI PMC
Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science, (2018) 361. doi: 10.1126/science.aar3958 PubMed DOI PMC
Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csillery E, Sridhar A, Toprakcioglu Z, Gudiskyte G, Czekalska MA. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun, (2021) 12, 1085. doi: 10.1038/s41467-021-21181-9 PubMed DOI PMC
Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, (2019) 176, 419–434. doi: 10.1016/j.cell.2018.12.035 PubMed DOI PMC
Ulianov SV, Velichko AK, Magnitov MD, Luzhin AV, Golov AK, Ovsyannikova N, Kireev II, Gavrikov AS, Mishin AS, Garaev AK. et al. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Res, (2021) 49, 10524–10541. doi: 10.1093/nar/gkab249 PubMed DOI PMC
Duster R, Kaltheuner IH, Schmitz M, Geyer M. 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. J Biol Chem, (2021) 296, 100260. doi: 10.1016/j.jbc.2021.100260 PubMed DOI PMC
Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T, Brugger B, Akgul B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget, (2018) 9, 34142–34158. doi: 10.18632/oncotarget.26140 PubMed DOI PMC
Hilbert L, Sato Y, Kuznetsova K, Bianucci T, Kimura H, Julicher F, Honigmann A, Zaburdaev V, Vastenhouw NL. Transcription organizes euchromatin via microphase separation. Nat Commun, (2021) 12, 1360. doi: 10.1038/s41467-021-21589-3 PubMed DOI PMC
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer