• This record comes from PubMed

The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization

. 2024 Dec ; 20 (12) : e1011462. [epub] 20241202

Language English Country United States Media electronic-ecollection

Document type Journal Article

Links

PubMed 39621780
PubMed Central PMC11668513
DOI 10.1371/journal.pgen.1011462
PII: PGENETICS-D-24-00391
Knihovny.cz E-resources

The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.

See more in PubMed

Jungmichel S, Sylvestersen KB, Choudhary C, Nguyen S, Mann M, Nielsen ML. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep, (2014) 6, 578–591. doi: 10.1016/j.celrep.2013.12.038 PubMed DOI

Lewis AE, Sommer L, Arntzen MO, Strahm Y, Morrice NA, Divecha N, D’Santos CS. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol Cell Proteomics, (2011) 10, M110 003376. doi: 10.1074/mcp.M110.003376 PubMed DOI PMC

Castano E, Yildirim S, Faberova V, Krausova A, Ulicna L, Paprckova D, Sztacho M, Hozak P. Nuclear Phosphoinositides-Versatile Regulators of Genome Functions. Cells, (2019) 8. doi: 10.3390/cells8070649 PubMed DOI PMC

Mazloumi Gavgani F, Slinning MS, Morovicz AP, Arnesen VS, Turcu DC, Ninzima S, D’Santos CS, Lewis AE. Nuclear Phosphatidylinositol 3,4,5-Trisphosphate Interactome Uncovers an Enrichment in Nucleolar Proteins. Mol Cell Proteomics, (2021) 20, 100102. doi: 10.1016/j.mcpro.2021.100102 PubMed DOI PMC

Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature, (2006) 443, 651–657. doi: 10.1038/nature05185 PubMed DOI

Palamiuc L, Ravi A, Emerling BM. Phosphoinositides in autophagy: current roles and future insights. FEBS J, (2020) 287, 222–238. doi: 10.1111/febs.15127 PubMed DOI PMC

Rose HG, Frenster JH. Composition and metabolism of lipids within repressed and active chromatin of interphase lymphocytes. Biochim Biophys Acta, (1965) 106, 577–591. doi: 10.1016/0005-2760(65)90073-1 PubMed DOI

Manzoli FA, Maraldi NM, Cocco L, Capitani S, Facchini A. Chromatin phospholipids in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res, (1977) 37, 843–849. PubMed

Mazzotti G, Zini N, Rizzi E, Rizzoli R, Galanzi A, Ognibene A, Santi S, Matteucci A., Martelli AM, Maraldi NM. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J Histochem Cytochem, (1995) 43, 181–191. doi: 10.1177/43.2.7822774 PubMed DOI

Cocco L, Maraldi NM, Manzoli FA, Gilmour RS., Lang A. Phospholipid interactions in rat liver nuclear matrix. Biochem Biophys Res Commun, (1980) 96, 890–898. PubMed

Sobol M, Krausova A, Yildirim S, Kalasova I, Faberova V, Vrkoslav V, Philimonenko V, Marasek P, Pastorek L, Capek M. et al.. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci, (2018) 131. doi: 10.1242/jcs.211094 PubMed DOI

Yildirim S, Castano E, Sobol M, Philimonenko VV, Dzijak R, Venit T, Hozak P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci, (2013) 126, 2730–2739. doi: 10.1242/jcs.123661 PubMed DOI

Stijf-Bultsma Y, Sommer L, Tauber M, Baalbaki M, Giardoglou P, Jones DR, Gelato KA, van Pelt J, Shah Z, Rahnamoun H. et al.. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol Cell, (2015) 58, 453–467. doi: 10.1016/j.molcel.2015.03.009 PubMed DOI PMC

Balaban C, Sztacho M, Antiga L, Miladinovic A, Harata M, Hozak P. PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription. Biomolecules, (2023) 13. doi: 10.3390/biom13030426 PubMed DOI PMC

Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol, (2022) 14. doi: 10.1101/cshperspect.a041268 PubMed DOI PMC

Ilik IA, Malszycki M, Lubke AK, Schade C, Meierhofer D, Aktas T. SON and SRRM2 are essential for nuclear speckle formation. Elife, (2020) 9. doi: 10.7554/eLife.60579 PubMed DOI PMC

Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP. Coexisting Liquid Phases Underlie Nucleolar Subcompartments. Cell, (2016) 165, 1686–1697. doi: 10.1016/j.cell.2016.04.047 PubMed DOI PMC

Boehning M, Dugast-Darzacq C, Rankovic M, Hansen AS, Yu T, Marie-Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P. et al.. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol, (2018) 25, 833–840. doi: 10.1038/s41594-018-0112-y PubMed DOI

Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V, Cisse II. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science, (2018) 361, 412–415. doi: 10.1126/science.aar4199 PubMed DOI PMC

Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA. A Phase Separation Model for Transcriptional Control. Cell, (2017) 169, 13–23. doi: 10.1016/j.cell.2017.02.007 PubMed DOI PMC

Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE, Hozak P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv Biol Regul, (2019) 71, 111–117. doi: 10.1016/j.jbior.2018.09.009 PubMed DOI

Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. Nucleated transcriptional condensates amplify gene expression. Nat Cell Biol, (2020) 22, 1187–1196. doi: 10.1038/s41556-020-00578-6 PubMed DOI

Lafontaine DLJ, Riback JA, Bascetin R, Brangwynne CP. The nucleolus as a multiphase liquid condensate. Nat Rev Mol Cell Biol, (2021) 22, 165–182. doi: 10.1038/s41580-020-0272-6 PubMed DOI

Riback JA, Zhu L, Ferrolino MC, Tolbert M, Mitrea DM, Sanders DW, Wei MT, Kriwacki RW, Brangwynne CP. Composition-dependent thermodynamics of intracellular phase separation. Nature, (2020) 581, 209–214. doi: 10.1038/s41586-020-2256-2 PubMed DOI PMC

Strom AR., Brangwynne CP. The liquid nucleome—phase transitions in the nucleus at a glance. J Cell Sci, (2019) 132. doi: 10.1242/jcs.235093 PubMed DOI PMC

Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol, (2017) 18, 285–298. doi: 10.1038/nrm.2017.7 PubMed DOI PMC

Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, Holehouse AS, Reyer M, Sun Q, Freier SM. et al. Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci, (2017) 130, 4180–4192. doi: 10.1242/jcs.206854 PubMed DOI PMC

Kaiser TE, Intine RV, Dundr M. De novo formation of a subnuclear body. Science, (2008) 322, 1713–1717. doi: 10.1126/science.1165216 PubMed DOI

Liao SE, Regev O. Splicing at the phase-separated nuclear speckle interface: a model. Nucleic Acids Res, (2021) 49, 636–645. doi: 10.1093/nar/gkaa1209 PubMed DOI PMC

Choi JM, Dar F, Pappu RV. LASSI: A lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol, (2019) 15, e1007028. doi: 10.1371/journal.pcbi.1007028 PubMed DOI PMC

Borcherds W, Bremer A, Borgia MB, Mittag T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol, (2021) 67, 41–50. doi: 10.1016/j.sbi.2020.09.004 PubMed DOI PMC

Posey AE, Holehouse AS, Pappu RV. Phase Separation of Intrinsically Disordered Proteins. Methods Enzymol, (2018) 611, 1–30. doi: 10.1016/bs.mie.2018.09.035 PubMed DOI

Greig JA, Nguyen TA, Lee M, Holehouse AS, Posey AE, Pappu RV, Jedd G. Arginine-Enriched Mixed-Charge Domains Provide Cohesion for Nuclear Speckle Condensation. Mol Cell, (2020) 77, 1237–1250 e1234. doi: 10.1016/j.molcel.2020.01.025 PubMed DOI PMC

Mensah MA, Niskanen H, Magalhaes AP, Basu S, Kircher M, Sczakiel HL, Reiter AMV, Elsner J, Meinecke P, Biskup S. et al.. Aberrant phase separation and nucleolar dysfunction in rare genetic diseases. Nature, (2023) 614, 564–571. doi: 10.1038/s41586-022-05682-1 PubMed DOI PMC

Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell, (2023) 186, 327–345 e328. doi: 10.1016/j.cell.2022.12.013 PubMed DOI PMC

Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell, (2015) 57, 936–947. doi: 10.1016/j.molcel.2015.01.013 PubMed DOI PMC

Pak CW, Kosno M, Holehouse AS, Padrick SB, Mittal A, Ali R, Yunus AA, Liu DR, Pappu RV, Rosen MK. Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein. Mol Cell, (2016) 63, 72–85. doi: 10.1016/j.molcel.2016.05.042 PubMed DOI PMC

Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP. RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A, (2015) 112, E5237–5245. doi: 10.1073/pnas.1509317112 PubMed DOI PMC

Lin Y, Protter DS, Rosen MK, Parker R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol Cell, (2015) 60, 208–219. doi: 10.1016/j.molcel.2015.08.018 PubMed DOI PMC

Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM. et al. RNA-Mediated Feedback Control of Transcriptional Condensates. Cell, (2021) 184, 207–225 e224. doi: 10.1016/j.cell.2020.11.030 PubMed DOI PMC

Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A, Poser I, Bickle M, Rizk S, Guillen-Boixet J, Franzmann TM. et al. RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science, (2018) 360, 918–921. doi: 10.1126/science.aar7366 PubMed DOI PMC

Kaur T, Raju M, Alshareedah I, Davis RB, Potoyan DA, Banerjee PR. Sequence-encoded and composition-dependent protein-RNA interactions control multiphasic condensate morphologies. Nat Commun, (2021) 12, 872. doi: 10.1038/s41467-021-21089-4 PubMed DOI PMC

Shao W, Bi X, Pan Y, Gao B, Wu J, Yin Y, Liu Z, Peng M, Zhang W, Jiang X. et al. Phase separation of RNA-binding protein promotes polymerase binding and transcription. Nat Chem Biol, (2022) 18, 70–80. doi: 10.1038/s41589-021-00904-5 PubMed DOI

Jain A, Vale RD. RNA phase transitions in repeat expansion disorders. Nature, (2017) 546, 243–247. doi: 10.1038/nature22386 PubMed DOI PMC

Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature, (2018) 558, 318–323. PubMed PMC

Doudna JA, Doherty EA. Emerging themes in RNA folding. Fold Des, (1997) 2, R65–70. doi: 10.1016/S1359-0278(97)00035-7 PubMed DOI

Vlassov A, Khvorova A, Yarus M. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Proc Natl Acad Sci U S A, (2001) 98, 7706–7711. doi: 10.1073/pnas.141041098 PubMed DOI PMC

Lin A, Hu Q, Li C, Xing Z, Ma G, Wang C, Li J, Ye Y, Yao J, Liang K. et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P(3) to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol, (2017) 19, 238–251. PubMed PMC

Bayona-Hernandez A, Guerra S, Jimenez-Ramirez IA, Sztacho M, Hozak P, Rodriguez-Zapata LC, Pereira-Santana A, Castano E. LIPRNAseq: a method to discover lipid interacting RNAs by sequencing. Mol Biol Rep, (2023) 50, 6619–6626. doi: 10.1007/s11033-023-08548-5 PubMed DOI

Donia T, Jyoti B, Suizu F, Hirata N, Tanaka T, Ishigaki S, F PTJ, Nio-Kobayashi J, Iwanaga T, Chiorini JA, Noguchi M. Identification of RNA aptamer which specifically interacts with PtdIns(3)P. Biochem Biophys Res Commun, (2019) 517, 146–154. doi: 10.1016/j.bbrc.2019.07.034 PubMed DOI

Khvorova A, Kwak YG, Tamkun M, Majerfeld I, Yarus M. RNAs that bind and change the permeability of phospholipid membranes. Proc Natl Acad Sci U S A, (1999) 96, 10649–10654. doi: 10.1073/pnas.96.19.10649 PubMed DOI PMC

Czerniak T, Saenz JP. Lipid membranes modulate the activity of RNA through sequence-dependent interactions. Proc Natl Acad Sci U S A, (2022) 119. doi: 10.1073/pnas.2119235119 PubMed DOI PMC

Shevtsov SP, Dundr M. Nucleation of nuclear bodies by RNA. Nat Cell Biol, (2011) 13, 167–173. doi: 10.1038/ncb2157 PubMed DOI

Audas TE, Jacob MD, Lee S. Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell, (2012) 45, 147–157. doi: 10.1016/j.molcel.2011.12.012 PubMed DOI

Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, (2009) 33, 717–726. doi: 10.1016/j.molcel.2009.01.026 PubMed DOI PMC

Liu JL, Murphy C, Buszczak M, Clatterbuck S, Goodman R, Gall JG. The Drosophila melanogaster Cajal body. J Cell Biol, (2006) 172, 875–884. doi: 10.1083/jcb.200511038 PubMed DOI PMC

Souquere S, Beauclair G, Harper F, Fox A, Pierron G. Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, (2010) 21, 4020–4027. doi: 10.1091/mbc.E10-08-0690 PubMed DOI PMC

Kakisaka M, Yamada K, Yamaji-Hasegawa A, Kobayashi T, Aida Y. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2. Virology, (2016) 496, 116–126. doi: 10.1016/j.virol.2016.05.018 PubMed DOI

Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS, Jaffrey SR. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol, (2024) 20, 302–313. doi: 10.1038/s41589-023-01474-4 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods, (2012) 9, 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Dunn KW, Kamocka MM, McDonald JH. A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol, (2011) 300, C723–742. doi: 10.1152/ajpcell.00462.2010 PubMed DOI PMC

Kalasova I, Faberova V, Kalendova A, Yildirim S, Ulicna L, Venit T, Hozak P. Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol, (2016) 145, 485–496. doi: 10.1007/s00418-016-1409-8 PubMed DOI

Masuda T, Tomita M, Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res, (2008) 7, 731–740. doi: 10.1021/pr700658q PubMed DOI

Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc, (2007) 2, 1896–1906. doi: 10.1038/nprot.2007.261 PubMed DOI

Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin E, Westphall MS, Coon JJ. The one hour yeast proteome. Mol Cell Proteomics, (2014) 13, 339–347. doi: 10.1074/mcp.M113.034769 PubMed DOI PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, (2008) 26, 1367–1372. doi: 10.1038/nbt.1511 PubMed DOI

Cox J, Neuhauser N, Michalski A, Scheltema RA, Olsen JV, Mann M. Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res, (2011) 10, 1794–1805. doi: 10.1021/pr101065j PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics, (2014) 13, 2513–2526. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, Mann M, Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods, (2016) 13, 731–740. doi: 10.1038/nmeth.3901 PubMed DOI

R: R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, V., Austria. URL https://www.R-project.org/.

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun, (2019) 10, 1523. doi: 10.1038/s41467-019-09234-6 PubMed DOI PMC

UniProt C. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res, (2021) 49, D480–D489. doi: 10.1093/nar/gkaa1100 PubMed DOI PMC

Overduin M, Kervin TA. The phosphoinositide code is read by a plethora of protein domains. Expert Rev Proteomics, (2021) 18, 483–502. doi: 10.1080/14789450.2021.1962302 PubMed DOI

Sipeki S, Koprivanacz K, Takacs T, Kurilla A, Laszlo L, Vas V, Buday L. Novel Roles of SH2 and SH3 Domains in Lipid Binding. Cells, (2021) 10. doi: 10.3390/cells10051191 PubMed DOI PMC

Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW, Guy GR. The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol, (2002) 22, 7953–7966. doi: 10.1128/MCB.22.22.7953-7966.2002 PubMed DOI PMC

Takeuchi H, Matsuda M, Yamamoto T, Kanematsu T, Kikkawa U, Yagisawa H, Watanabe Y, Hirata M. PTB domain of insulin receptor substrate-1 binds inositol compounds. Biochem J, (1998) 334 (Pt 1), 211–218. doi: 10.1042/bj3340211 PubMed DOI PMC

Sigrist CJ, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios, I. New and continuing developments at PROSITE. Nucleic Acids Res, (2013) 41, D344–347. PubMed PMC

Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res, (2021) 49, D344–D354. doi: 10.1093/nar/gkaa977 PubMed DOI PMC

Lang B, Armaos A, Tartaglia GG. RNAct: Protein-RNA interaction predictions for model organisms with supporting experimental data. Nucleic Acids Res, (2019) 47, D601–D606. doi: 10.1093/nar/gky967 PubMed DOI PMC

You K, Huang Q, Yu C, Shen B, Sevilla C, Shi M, Hermjakob H, Chen Y, Li T. PhaSepDB: a database of liquid-liquid phase separation related proteins. Nucleic Acids Res, (2020) 48, D354–D359. doi: 10.1093/nar/gkz847 PubMed DOI PMC

Walsh I, Martin AJ, Di Domenico T, Tosatto SC. ESpritz: accurate and fast prediction of protein disorder. Bioinformatics, (2012) 28, 503–509. doi: 10.1093/bioinformatics/btr682 PubMed DOI

Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztanyi Z, Uversky VN, Obradovic Z., Kurgan L. et al. D(2)P(2): database of disordered protein predictions. Nucleic Acids Res, (2013) 41, D508–516. PubMed PMC

Sztacho M, Salovska B, Cervenka J, Balaban C, Hoboth P, Hozak P. Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome. Cells, (2021) 10. doi: 10.3390/cells10010068 PubMed DOI PMC

de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res, (2006) 34, W362–365. doi: 10.1093/nar/gkl124 PubMed DOI PMC

Krystkowiak I, Davey NE. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res, (2017) 45, W464–W469. doi: 10.1093/nar/gkx238 PubMed DOI PMC

Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res, (2015) 43, D512–520. doi: 10.1093/nar/gku1267 PubMed DOI PMC

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.

Choi JM, Holehouse AS, Pappu RV. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions. Annu Rev Biophys, (2020) 49, 107–133. doi: 10.1146/annurev-biophys-121219-081629 PubMed DOI PMC

Ma W, Zhen G, Xie W, Mayr C. In vivo reconstitution finds multivalent RNA-RNA interactions as drivers of mesh-like condensates. Elife, (2021) 10. doi: 10.7554/eLife.64252 PubMed DOI PMC

Roden C., Gladfelter AS. RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol, (2021) 22, 183–195. doi: 10.1038/s41580-020-0264-6 PubMed DOI PMC

Chujo T, Yamazaki T, Hirose T. Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta, (2016) 1859, 139–146. doi: 10.1016/j.bbagrm.2015.05.007 PubMed DOI

Chujo T, Hirose T. Nuclear Bodies Built on Architectural Long Noncoding RNAs: Unifying Principles of Their Construction and Function. Mol Cells, (2017) 40, 889–896. doi: 10.14348/molcells.2017.0263 PubMed DOI PMC

Altuvia Y, Bar A, Reiss N, Karavani E, Argaman L, Margalit H. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli. Nucleic Acids Res, (2018) 46, 10530–10531. doi: 10.1093/nar/gky816 PubMed DOI PMC

Court DL, Gan J, Liang YH, Shaw GX, Tropea JE, Costantino N, Waugh DS, Ji X. RNase III: Genetics and function; structure and mechanism. Annu Rev Genet, (2013) 47, 405–431. doi: 10.1146/annurev-genet-110711-155618 PubMed DOI PMC

Hoboth P, Sebesta O, Sztacho M, Castano E, Hozak P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX, (2021) 8, 101372. doi: 10.1016/j.mex.2021.101372 PubMed DOI PMC

Hoboth P, Sztacho M, Sebesta O, Schatz M, Castano E, Hozak P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim Biophys Acta Mol Cell Biol Lipids, (2021) 1866, 158890. doi: 10.1016/j.bbalip.2021.158890 PubMed DOI

Hoboth P, Sztacho M, Quaas A, Akgul B, Hozak P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol, (2023) 11, 1217637. doi: 10.3389/fcell.2023.1217637 PubMed DOI PMC

Hoboth P, Sztacho M, Hozak P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J. (2024) PubMed

Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S, Pierron G, Hirose T. Functional Domains of NEAT1 Architectural lncRNA Induce Paraspeckle Assembly through Phase Separation. Mol Cell, (2018) 70, 1038–1053 e1037. doi: 10.1016/j.molcel.2018.05.019 PubMed DOI

Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, (2007) 8, 39. doi: 10.1186/1471-2164-8-39 PubMed DOI PMC

Hou C, Wang X, Xie H, Chen T, Zhu P, Xu X, You K, Li T. PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information. Nucleic Acids Res, (2023) 51, D460–D465. doi: 10.1093/nar/gkac783 PubMed DOI PMC

Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol, (2004) 337, 635–645. doi: 10.1016/j.jmb.2004.02.002 PubMed DOI

Liu J, Perumal NB, Oldfield CJ, Su EW, Uversky VN, Dunker AK. Intrinsic disorder in transcription factors. Biochemistry, (2006) 45, 6873–6888. doi: 10.1021/bi0602718 PubMed DOI PMC

Minezaki Y, Homma K, Kinjo AR, Nishikawa K. Human transcription factors contain a high fraction of intrinsically disordered regions essential for transcriptional regulation. J Mol Biol, (2006) 359, 1137–1149. doi: 10.1016/j.jmb.2006.04.016 PubMed DOI

Harmon TS, Holehouse AS, Rosen MK, Pappu RV. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife, (2017) 6. doi: 10.7554/eLife.30294 PubMed DOI PMC

Bianchi G, Longhi S, Grandori R, Brocca S. Relevance of Electrostatic Charges in Compactness, Aggregation, and Phase Separation of Intrinsically Disordered Proteins. Int J Mol Sci, (2020) 21. doi: 10.3390/ijms21176208 PubMed DOI PMC

Ozawa Y, Anbo H, Ota M, Fukuchi S. Classification of proteins inducing liquid-liquid phase separation: sequential, structural and functional characterization. J Biochem, (2023) 173, 255–264. doi: 10.1093/jb/mvac106 PubMed DOI PMC

Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol, (1999) 293, 321–331. doi: 10.1006/jmbi.1999.3110 PubMed DOI

Ishida T, Kinoshita K. PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res, (2007) 35, W460–464. doi: 10.1093/nar/gkm363 PubMed DOI PMC

Glover K, Mei Y, Sinha SC. Identifying intrinsically disordered protein regions likely to undergo binding-induced helical transitions. Biochim Biophys Acta, (2016) 1864, 1455–1463. doi: 10.1016/j.bbapap.2016.05.005 PubMed DOI PMC

Milin AN, Deniz AA. Reentrant Phase Transitions and Non-Equilibrium Dynamics in Membraneless Organelles. Biochemistry, (2018) 57, 2470–2477. doi: 10.1021/acs.biochem.8b00001 PubMed DOI PMC

Aumiller WM Jr., Keating CD. Phosphorylation-mediated RNA/peptide complex coacervation as a model for intracellular liquid organelles. Nat Chem, (2016) 8, 129–137. doi: 10.1038/nchem.2414 PubMed DOI

Li J, Zhang M, Ma W, Yang B, Lu H, Zhou F, Zhang L. Post-translational modifications in liquid-liquid phase separation: a comprehensive review. Mol Biomed, (2022) 3, 13. doi: 10.1186/s43556-022-00075-2 PubMed DOI PMC

Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall’Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature, (2019) 572, 543–548. PubMed PMC

Baeza J, Lawton AJ, Fan J, Smallegan MJ, Lienert I, Gandhi T, Bernhardt OM, Reiter L, Denu JM. Revealing Dynamic Protein Acetylation across Subcellular Compartments. J Proteome Res, (2020) 19, 2404–2418. doi: 10.1021/acs.jproteome.0c00088 PubMed DOI PMC

Clarke SG. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci, (2013) 38, 243–252. doi: 10.1016/j.tibs.2013.02.004 PubMed DOI PMC

Wasik U, Filipek A. Non-nuclear function of sumoylated proteins. Biochim Biophys Acta, (2014) 1843, 2878–2885. doi: 10.1016/j.bbamcr.2014.07.018 PubMed DOI

Morgan MAJ, Shilatifard A. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat Genet, (2020) 52, 1271–1281. doi: 10.1038/s41588-020-00736-4 PubMed DOI

Saito M, Hess D, Eglinger J, Fritsch AW, Kreysing M, Weinert BT, Choudhary C, Matthias P. Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol, (2019) 15, 51–61. doi: 10.1038/s41589-018-0180-7 PubMed DOI

Wang Q, Li Z, Zhang S, Li Y, Wang Y, Fang Z, Ma Y, Liu Z, Zhang W, Li D. et al. Global profiling of arginine dimethylation in regulating protein phase separation by a steric effect-based chemical-enrichment method. Proc Natl Acad Sci U S A, (2022) 119, e2205255119. doi: 10.1073/pnas.2205255119 PubMed DOI PMC

Balaban C, Sztacho M, Blazikova M, Hozak P. The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus. Cells, (2021) 10. doi: 10.3390/cells10040848 PubMed DOI PMC

Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ. Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res, (2010) 38, 7388–7399. doi: 10.1093/nar/gkq653 PubMed DOI PMC

Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science, (2018) 361. doi: 10.1126/science.aar3958 PubMed DOI PMC

Krainer G, Welsh TJ, Joseph JA, Espinosa JR, Wittmann S, de Csillery E, Sridhar A, Toprakcioglu Z, Gudiskyte G, Czekalska MA. et al. Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nat Commun, (2021) 12, 1085. doi: 10.1038/s41467-021-21181-9 PubMed DOI PMC

Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell, (2019) 176, 419–434. doi: 10.1016/j.cell.2018.12.035 PubMed DOI PMC

Ulianov SV, Velichko AK, Magnitov MD, Luzhin AV, Golov AK, Ovsyannikova N, Kireev II, Gavrikov AS, Mishin AS, Garaev AK. et al. Suppression of liquid-liquid phase separation by 1,6-hexanediol partially compromises the 3D genome organization in living cells. Nucleic Acids Res, (2021) 49, 10524–10541. doi: 10.1093/nar/gkab249 PubMed DOI PMC

Duster R, Kaltheuner IH, Schmitz M, Geyer M. 1,6-Hexanediol, commonly used to dissolve liquid-liquid phase separated condensates, directly impairs kinase and phosphatase activities. J Biol Chem, (2021) 296, 100260. doi: 10.1016/j.jbc.2021.100260 PubMed DOI PMC

Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T, Brugger B, Akgul B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget, (2018) 9, 34142–34158. doi: 10.18632/oncotarget.26140 PubMed DOI PMC

Hilbert L, Sato Y, Kuznetsova K, Bianucci T, Kimura H, Julicher F, Honigmann A, Zaburdaev V, Vastenhouw NL. Transcription organizes euchromatin via microphase separation. Nat Commun, (2021) 12, 1360. doi: 10.1038/s41467-021-21589-3 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer

. 2025 Feb 06 ; 24 (1) : 39. [epub] 20250206

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...