Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34430268
PubMed Central
PMC8374474
DOI
10.1016/j.mex.2021.101372
PII: S2215-0161(21)00165-5
Knihovny.cz E-zdroje
- Klíčová slova
- Cell nucleus, Fibrillarin, ImageJ, Immunofluorescence, Nearest neighbor distance, Nuclear architecture, Nuclear speckles, RNA polymerase II, SON, Super-resolution microscopy, Wide-field microscopy,
- Publikační typ
- časopisecké články MeSH
Single molecule localization microscopy (SMLM) provided an unprecedented insight into the sub-nuclear organization of proteins and nucleic acids but apart from the nuclear envelope the role of the nuclear lipids in the functional organization of the cell nucleus was less studied. Nevertheless, nuclear lipids and specifically phosphatidylinositol phosphates (PIPs) play increasingly evident roles in gene expression. Therefore, here we provide the SMLM-based approach for the quantitative evaluation of the nuclear PIPs distribution while preserving the context of nuclear architecture. Specifically, on the example of phosphatidylinositol 4,5-bisphosphate (PIP2) we have:•Implemented and optimized the dual-color dSTORM imaging of nuclear PIP2.•Customized the Nearest Neighbor Distance analysis using ImageJ2 plug-in ThunderSTORM to quantitatively evaluate the spatial distribution of nuclear PIP2.•Developed an ImageJ2 tool for the visualization of the Nearest Neighbor Distance analysis results in cellulo.Our customization of the dual-color dSTORM imaging and quantitative analysis provide a tool that is independent of but complementary to the biochemical and lipidomic analyses of the nuclear PIPs. Contrary to the biochemical and lipidomic analyses, the advantage of our analysis is that it preserves the spatial context of the nuclear PIP distribution.
Zobrazit více v PubMed
Heilemann M., van de Linde S., Schüttpelz M., Kasper R., Seefeldt B., Mukherjee A., Tinnefeld P., Sauer M. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 2008;47(33):6172–6176. doi: 10.1002/anie.200802376. PMID: 18646237. PubMed DOI
van de Linde S., Löschberger A., Klein T., Heidbreder M., Wolter S., Heilemann M., Sauer M. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 2011;6(7):991–1009. Jun 16doi: 10.1038/nprot.2011.336. PMID: 21720313. PubMed
Ovesný M., Křížek P., Borkovec J., Svindrych Z., Hagen G.M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014;30(16):2389–2390. doi: 10.1093/bioinformatics/btu202. Aug 15Epub 2014 Apr 25. PMID: 24771516; PMCID: PMC4207427. PubMed DOI PMC
Rueden C.T., Schindelin J., Hiner M.C., DeZonia B.E., Walter A.E., Arena E.T., Eliceiri K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinf. 2017;18(1):529. doi: 10.1186/s12859-017-1934-z. Nov 29PMID: 29187165; PMCID: PMC5708080. PubMed DOI PMC
Hoboth P., Sztacho M., Šebesta O., Schätz M., Castano E., Hozák P. Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2021;1866(5) PubMed
Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;114(Pt 13):2501–2511. PubMed
Sobol M., Krausova A., Yildirim S., Kalasova I., Faberova V., Vrkoslav V., Hozak P. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131(8) doi: 10.1242/jcs.211094. PubMed DOI
Guillen-Chable F., Corona U.R., Pereira-Santana A., Bayona A., Rodriguez-Zapata L.C., Aquino C., Castano E. Fibrillarin ribonuclease activity is dependent on the GAR domain and modulated by phospholipids. Cells. 2020;9(5) doi: 10.3390/cells9051143. PubMed DOI PMC
Sztacho M., Šalovská B., Červenka J., Balaban C., Hoboth P., Hozák P. Limited proteolysis-coupled mass spectrometry identifies phosphatidylinositol 4,5-bisphosphate effectors in human nuclear proteome. Cells. 2021;10(1):E68. doi: 10.3390/cells10010068. Jan 4PMID: 33406800. PubMed DOI PMC
Klar T.A., Jakobs S., Dyba M., Egner A., Hell S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. U S A. 2000;97(15):8206–8210. Jul 18. PubMed PMC
Gustafsson M.G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 2000;198(Pt 2):82–87. May. PubMed
Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642–1645. Sep 15. PubMed
Hess S.T., Girirajan T.P., Mason M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 2006;91(11):4258–4272. Dec 1. PubMed PMC
Rust M.J., Bates M., Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods. 2006;3(10):793–795. Oct. PubMed PMC
Nahidiazar L., Agronskaia A.V., Broertjes J., van den Broek B., Jalink K. Optimizing imaging conditions for demanding multi-color super resolution localization microscopy. PLoS One. 2016;11(7) Jul 8. PubMed PMC
Baddeley D., Cannell M.B., Soeller C. Visualization of localization microscopy data. Microsc. Microanal. 2010;16(1):64–72. PubMed
Scott D.W. Averaged shifted histograms: effective nonparametric density estimators in several dimensions. Ann. Stat. 1985;13(3):1024–1040.
Malkusch S., Endesfelder U., Mondry J., Gelleri M., Verveer P.J., Heilemann M. Coordinate-based colocalization analysis of single-molecule localization microscopy data. Histochem. Cell Biol. 2012;137(1):1–10. PubMed
Dunn K.W., Kamocka M.M., McDonald J.H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 2011;300(4):C723–C742. doi: 10.1152/ajpcell.00462.2010. PubMed DOI PMC
Smirnov E., Borkovec J., Kovacik L., Svidenska S., Schrofel A., Skalnikova M., Raska I. Separation of replication and transcription domains in nucleoli. J. Struct. Biol. 2014;188(3):259–266. doi: 10.1016/j.jsb.2014.10.001. PubMed DOI
Levet F., Julien G., Galland R., Butler C., Beghin A., Chazeau A., Sibarita J.B. A tessellation-based colocalization analysis approach for single-molecule localization microscopy. Nat. Commun. 2019;10(1):2379. doi: 10.1038/s41467-019-10007-4. PubMed DOI PMC
Schermelleh L., Ferrand A., Huser T., Eggeling C., Sauer M., Biehlmaier O., Drummen G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019;21(1):72–84. Jan10.1038/s41556-018-0251-8. Epub 2019 Jan 2. PMID: 0602772. PubMed
Jacquemet G., Carisey A.F., Hamidi H., Henriques R., Leterrier C. The cell biologist's guide to super-resolution microscopy. J. Cell Sci. 2020;133(11) doi: 10.1242/jcs.240713. Jun 11PMID: 32527967. PubMed DOI
Keppler A., Gendreizig S., Gronemeyer T., Pick H., Vogel H., Johnsson K. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol. 2003;21(1):86–89. doi: 10.1038/nbt765. PMID: 12469133. PubMed DOI
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer
Lamin A/C and PI(4,5)P2-A Novel Complex in the Cell Nucleus
PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription