Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer

. 2025 Feb 06 ; 24 (1) : 39. [epub] 20250206

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39915829

Grantová podpora
Fond F Program Charles University
Cooperatio Program: research area "Oncology and Haematology" Charles University
AK 42/10-1 German Research Foundation
NPO EXCELES, ID Project No. LX22NPO5102 National Institute for Cancer Research

Odkazy

PubMed 39915829
PubMed Central PMC11800418
DOI 10.1186/s12944-025-02452-6
PII: 10.1186/s12944-025-02452-6
Knihovny.cz E-zdroje

The development of metastasis is a leading cause of cancer-related death that involves specific changes in the plasma membrane (PM) and nucleus of cancer cells. Elevated levels of membrane lipids, including sphingomyelin, cholesterol, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), in the PM, contribute to changes in membrane rigidity, lipid raft formation, and actin polymerisation dynamics, processes that drive cell invasion. This review discusses the relationship between well-studied cytoplasmic phosphoinositides and their lesser-known nuclear counterparts, highlighting their functional role in metastatic progression. Nuclear phosphoinositides, particularly PI(4,5)P2, are essential for regulating transcription factors and chromatin organisation, thereby shaping gene expression patterns. We also explore the role of PI(4,5)P2 and its metabolism in cancer cell invasiveness and metastasis, proposing a model in which the dysregulation of cytosolic and/or nuclear PI(4,5)P2 pool triggers malignant transformation. Understanding the PI(4,5)P2-related mechanisms underlying metastasis may provide insights into potential therapeutic targets, paving the way for more effective therapies and improved patient outcomes.

Zobrazit více v PubMed

WHO. Cancer. World Health Organization. [Internet]. www.who.int. 2022 [cited WH2024 Oct 16]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer, accessed: 16.05.2024.

Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther. Springer Nature; 2020. PubMed PMC

Greenlee JD, Subramanian T, Liu K, King MR. Rafting Down the Metastatic Cascade: The Role of Lipid Rafts in Cancer Metastasis, Cell Death, and Clinical Outcomes. Cancer Res [Internet]. 2021;81:5–17. Available from: https://aacrjournals.org/cancerres/article/81/1/5/649260/Rafting-Down-the-Metastatic-Cascade-The-Role-of PubMed PMC

Linder S, Cervero P, Eddy R, Condeelis J. Mechanisms and roles of podosomes and invadopodia. Nat Rev Mol Cell Biol [Internet]. 2023;24:86–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/36104625 PubMed

Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol [Internet]. 2020;30:341–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0962892420300313 PubMed PMC

Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol [Internet]. 2017;18:361–74. Available from: https://www.nature.com/articles/nrm.2017.16 PubMed PMC

Li S, Huang F, Xia T, Shi Y, Yue T. Phosphatidylinositol 4,5-Bisphosphate sensing lipid raft via Inter-leaflet Coupling regulated by acyl chain length of Sphingomyelin. Langmuir. 2023;39:5995–6005. PubMed

Myeong J, Park C-G, Suh B-C, Hille B. Compartmentalization of phosphatidylinositol 4,5-bisphosphate metabolism into plasma membrane liquid-ordered/raft domains. Proceedings of the National Academy of Sciences [Internet]. 2021;118. Available from: 10.1073/pnas.2025343118 PubMed PMC

Mandal K. Review of PIP2 in cellular signaling, functions and diseases. Int J Mol Sci MDPI AG; 2020. pp. 1–20. PubMed PMC

Mollinedo F, Gajate C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression and therapy. J Lipid Res [Internet]. 2020;61:611–35. Available from: 10.1194/jlr.TR119000439 PubMed PMC

Singh I, Lele TP. Nuclear Morphological abnormalities in Cancer: a search for unifying mechanisms. Results Probl Cell Differ. Springer Science and Business Media Deutschland GmbH; 2022. pp. 443–67. PubMed PMC

Fischer EG, Karger AG. 2020. pp. 511–9.

Chatterjee A, Rodger EJ, Eccles MR. Epigenetic drivers of tumourigenesis and cancer metastasis. Semin Cancer Biol. Academic Press; 2018. pp. 149–59. PubMed

Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL et al. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol. 2024;16. PubMed PMC

Hammond GRV, Burke JE. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr Opin Cell Biol. Elsevier Ltd; 2020. pp. 57–67. PubMed PMC

Wang YH, Sheetz MP. When PIP2 meets p53: Nuclear Phosphoinositide Signaling in the DNA damage response. Front Cell Dev Biol. Frontiers Media S.A.; 2022. PubMed PMC

Deng S, Leong HC, Datta A, Gopal V, Kumar AP, Yap CT. PI3K/AKT Signaling Tips the Balance of Cytoskeletal forces for Cancer Progression. Cancers (Basel). MDPI; 2022. PubMed PMC

Hamann BL, Blind RD. Nuclear phosphoinositide regulation of chromatin. J Cell Physiol [Internet]. 2018;233:107–23. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jcp.25886 PubMed PMC

Castano E, Yildirim S, Fáberová V, Krausová A, Uličná L, Paprčková D, et al. Nuclear phosphoinositides—versatile regulators of genome functions. Cells. MDPI; 2019. PubMed PMC

Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE, Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv Biol Regul [Internet]. 2019;71:111–7. Available from: 10.1016/j.jbior.2018.09.009 PubMed

Balaban C, Sztacho M, Antiga L, Miladinović A, Harata M, Hozák P. PIP2-Effector protein MPRIP regulates RNA polymerase II condensation and transcription. Biomolecules. 2023;13. PubMed PMC

Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS, Jaffrey SR. Biomolecular condensates create phospholipid-enriched microenvironments. Nat Chem Biol. 2024;20:302–13. PubMed PMC

Coskun Ü, Simons K. Cell Membranes: The Lipid Perspective. Structure [Internet]. 2011 [cited 2023 Jan 28];19:1543–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969212611003649 PubMed

Holthuis JCM, Menon AK. Lipid landscapes and pipelines in membrane homeostasis. Nature. 2014;510:48–57. PubMed

Varshney P, Yadav V, Saini N. Lipid rafts in immune signalling: current progress and future perspective. Immunology. 2016;149:13–24. PubMed PMC

Raghunathan K, Kenworthy AK. Dynamic pattern generation in cell membranes: current insights into membrane organization. Biochim Biophys Acta Biomembr. 2018;1860:2018–31. PubMed PMC

Biernatowska A, Wójtowicz K, Trombik T, Sikorski AF, Czogalla A. MPP1 determines the mobility of Flotillins and controls the confinement of raft-Associated molecules. Cells. 2022;11:1–13. PubMed PMC

Yamaguchi H, Oikawa T. Membrane lipids in invadopodia and podosomes: key structures for cancer invasion and metastasis. Oncotarget [Internet]. 2010;1:320–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21307399 PubMed PMC

Tahir SA, Park S, Thompson TC. Caveolin-1 regulates VEGF-stimulated angiogenic activities in prostate cancer and endothelial cells. Cancer Biol Ther [Internet]. 2009;8:2284–94. Available from: http://www.tandfonline.com/doi/abs/10.4161/cbt.8.23.10138 PubMed PMC

Li Q, Peng J, Li X, Leng A, Liu T. miR-449a targets Flot2 and inhibits gastric cancer invasion by inhibiting TGF-β-mediated EMT. Diagn Pathol. 2015;10. PubMed PMC

Wang X, Zhang Y, Zhao Y, Liang Y, Xiang C, Zhou H et al. CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signaling pathway in colorectal cancer. Oncotarget [Internet]. 2016;7:55663–76. Available from: https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.10971 PubMed PMC

Dickson EJ, Hille B. Understanding phosphoinositides: rare, dynamic, and essential membrane phospholipids. Biochemical Journal. Portland Press Ltd; 2019. pp. 1–23. PubMed PMC

Singh N, Reyes-Ordoñez A, Compagnone MA, Moreno JF, Leslie BJ, Ha T et al. Redefining the specificity of phosphoinositide-binding by human PH domain-containing proteins. Nat Commun. 2021;12. PubMed PMC

Pemberton JG, Balla T. Polyphosphoinositide-Binding Domains: Insights from Peripheral Membrane and Lipid-Transfer Proteins. Adv Exp Med Biol. Springer; 2019. pp. 77–137. PubMed PMC

Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. Elsevier B.V.; 2016. pp. 250–8. PubMed

Janmey PA, Bucki R, Radhakrishnan R. Regulation of actin assembly by PI(4,5)P2 and other inositol phospholipids: An update on possible mechanisms. Biochem Biophys Res Commun. Elsevier B.V.; 2018. pp. 307–14. PubMed PMC

Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochemical Journal. Portland Press Ltd; 2022. pp. 2311–25. PubMed PMC

Mansat M, Kpotor AO, Chicanne G, Picot M, Mazars A, Flores-Flores R et al. MTM1-mediated production of phosphatidylinositol 5-phosphate fuels the formation of podosome-like protrusions regulating myoblast fusion. Proc Natl Acad Sci U S A. 2024;121. PubMed PMC

Obeng EO, Rusciano I, Marvi MV, Fazio A, Ratti S, Follo MY et al. Phosphoinositide-dependent signaling in cancer: a focus on phospholipase C isozymes. Int J Mol Sci. 2020;21. PubMed PMC

Posor Y, Jang W, Haucke V. Phosphoinositides as membrane organizers. Nat Rev Mol Cell Biol Nat Res; 2022. pp. 797–816. PubMed PMC

González-García A, Garrido A, Carrera AC. Targeting PTEN Regulation by Post translational modifications. Cancers (Basel). MDPI; 2022. PubMed PMC

Bryant JM, Blind RD. Signaling through non-membrane nuclear phosphoinositide binding proteins in human health and disease. J Lipid Res. American Society for Biochemistry and Molecular Biology Inc.; 2019. pp. 299–311. PubMed PMC

Luongo F, Colonna F, Calapà F, Vitale S, Fiori ME, De Maria R, Cancers. (Basel). MDPI AG; 2019. PubMed PMC

Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501. PubMed PMC

Luo J, Field SJ, Lee JY, Engelman JA, Cantley LC. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J Cell Biol. 2005;170:455–64. PubMed PMC

Cuevas BD, Lu Y, Mao M, Zhang J, LaPushin R, Siminovitch K, et al. Tyrosine phosphorylation of p85 relieves its inhibitory activity on Phosphatidylinositol 3-Kinase. J Biol Chem. 2001;276:27455–61. PubMed

Lu Y, Yu Q, Liu JH, Zhang J, Wang H, Koul D, et al. Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem. 2003;278:40057–66. PubMed

Pelaz SG, Tabernero A. Src: coordinating metabolism in cancer. Oncogene. Springer Nature; 2022. pp. 4917–28. PubMed PMC

Koudelková L, Pelantová M, Brůhová Z, Sztacho M, Pavlík V, Pánek D et al. Phosphorylation of tyrosine 90 in SH3 domain is a new regulatory switch controlling src kinase. Elife. 2023;12. PubMed PMC

Irby RB, Yeatman TJ. Role of Src expression and activation in human cancer. Oncogene [Internet]. 2000;19:5636–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11114744 PubMed

Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. BioMed Central Ltd; 2023. PubMed PMC

Klussmann JP, Mooren JJ, Lehnen M, Claessen SMH, Stenner M, Huebbers CU, et al. Genetic signatures of HPV-related and unrelated oropharyngeal carcinoma and their prognostic implications. Clin Cancer Res. 2009;15:1779–86. PubMed

Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer Nat Publishing Group; 2018. pp. 269–82. PubMed

Lawrence MS, Sougnez C, Lichtenstein L, Cibulskis K, Lander E, Gabriel SB, et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82. PubMed PMC

Cochicho D, Esteves S, Rito M, Silva F, Martins L, Montalvão P et al. PIK3CA gene mutations in HNSCC: systematic review and correlations with HPV Status and Patient Survival. Cancers (Basel). 2022;14. PubMed PMC

Davis WJ, Lehmann PZ, Li W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol. Frontiers Media S.A.; 2015. PubMed PMC

Xu J, Huang Y, Zhao J, Wu L, Qi Q, Liu Y, et al. Cofilin: a promising protein implicated in Cancer Metastasis and apoptosis. Front Cell Dev Biol. Frontiers Media S.A.; 2021. PubMed PMC

Augoff K, Hryniewicz-Jankowska A, Tabola R. Invadopodia: clearing the way for cancer cell invasion. Ann Transl Med. 2020;8:902–902. PubMed PMC

Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K. Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res. 2009;69:8594–602. PubMed

Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L et al. Mechanosensitive caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast cancer motility, invadopodia formation and metastasis in vivo [Internet]. Oncotarget. 2016. Available from: www.impactjournals.com/oncotarget/ PubMed PMC

Huang Y, Zhang S, Park JI. Nuclear actin dynamics in Gene expression, DNA repair, and Cancer. Results Probl Cell Differ. Springer Science and Business Media Deutschland GmbH; 2022. pp. 625–63. PubMed PMC

Plessner M, Melak M, Chinchilla P, Baarlink C, Grosse R. Nuclear F-actin formation and reorganization upon cell spreading. J Biol Chem. 2015;290:11209–16. PubMed PMC

Ulferts S, Prajapati B, Grosse R, Vartiainen MK. Emerging properties and functions of actin and actin filaments inside the nucleus. Cold Spring Harb Perspect Biol. 2021;13:1–16. PubMed PMC

Serebryannyy LA, Parilla M, Annibale P, Cruz CM, Laster K, Gratton E, et al. Persistent nuclear actin filaments inhibit transcription by RNA polymerase II. J Cell Sci. 2016;129:3412–25. PubMed PMC

Rando OJ, Zhao K, Janmey P, Crabtree GR. Phosphatidylinositol-dependent actin filament binding by the SWISNF-like BAF chromatin remodeling complex [Internet]. 2001. Available from: https://www.pnas.org PubMed PMC

Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenetics Chromatin [Internet]. 2019;12:19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30898143 PubMed PMC

Philimonenko VV, Zhao J, Iben S, Dingová H, Kyselá K, Kahle M et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat Cell Biol [Internet]. 2004;6:1165–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15558034 PubMed

Hofmann WA, Stojiljkovic L, Fuchsova B, Vargas GM, Mavrommatis E, Philimonenko V, et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat Cell Biol. 2004;6:1094–101. PubMed

Hu P, Wu S, Hernandez N. A role for β-actin in RNA polymerase III transcription. Genes Dev. 2004;18:3010–5. PubMed PMC

Qi T, Tang W, Wang L, Zhai L, Guo L, Zeng X. G-actin participates in RNA polymerase II-dependent transcription elongation by recruiting positive transcription elongation factor b (P-TEFb). J Biol Chem. 2011;286:15171–81. PubMed PMC

Wei M, Fan X, Ding M, Li R, Shao S, Hou Y et al. Nuclear actin regulates inducible transcription by enhancing RNA polymerase II clustering. Sci Adv [Internet]. 2020;6:6515. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32494599 PubMed PMC

Schramp M, Hedman A, Li W, Tan X, Anderson R. PIP kinases from the cell membrane to the nucleus. Subcell Biochem. 2015;58:25–59. PubMed

Jungmichel S, Sylvestersen KB, Choudhary C, Nguyen S, Mann M, Nielsen ML. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative Mass Spectrometry. Cell Rep. 2014;6:578–91. PubMed

Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE, Hozák P. Nuclear phosphoinositides and phase separation: important players in nuclear compartmentalization. Adv Biol Regul. Elsevier Ltd; 2019. pp. 111–7. PubMed

Vidalle MC, Sheth B, Fazio A, Marvi MV, Leto S, Koufi FD, et al. Nuclear Phosphoinositides as Key determinants of Nuclear functions. Biomolecules. Multidisciplinary Digital Publishing Institute (MDPI); 2023. PubMed PMC

Sztacho M, Šalovská B, Červenka J, Balaban C, Hoboth P, Hozák P. Limited proteolysis-coupled mass spectrometry identifies phosphatidylinositol 4,5-bisphosphate effectors in human nuclear proteome. Cells. 2021;10:1–16. PubMed PMC

Cocco L, Martelli AM, Barnabei O, Manzoli FA. Nuclear inositol lipid signaling. Adv Enzyme Regul [Internet]. 2001;41:361–84. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0065257100000170 PubMed

Irvine RF. Nuclear lipid signalling. Nat Rev Mol Cell Biol. 2003;4:349–60. PubMed

Ratti S, Ramazzotti G, Faenza I, Fiume R, Mongiorgi S, Billi AM et al. Nuclear inositide signaling and cell cycle. Adv Biol Regul [Internet]. 2018;67:1–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212492617301732 PubMed

Casalin I, Ceneri E, Ratti S, Manzoli L, Cocco L, Follo MY. Nuclear Phospholipids and Signaling: An Update of the Story. Cells [Internet]. 2024;13:713. Available from: https://www.mdpi.com/2073-4409/13/8/713 PubMed PMC

Fiume R, Stijf-Bultsma Y, Shah ZH, Keune WJ, Jones DR, Jude JG, et al. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim Biophys Acta Mol Cell Biol Lipids. Elsevier B.V.; 2015. pp. 898–910. PubMed

Shah ZH, Jones DR, Sommer L, Foulger R, Bultsma Y, D’Santos C et al. Nuclear phosphoinositides and their impact on nuclear functions. FEBS J. 2013. pp. 6295–310. PubMed

Hoboth P, Sztacho M, Hozák P. Nuclear patterns of phosphatidylinositol 4,5- and 3,4‐bisphosphate revealed by super‐resolution microscopy differ between the consecutive stages of RNA polymerase II transcription. FEBS J [Internet]. 2024; Available from: https://febs.onlinelibrary.wiley.com/doi/10.1111/febs.17136 PubMed

Sabari BR, Dall’Agnese A, Young RA. Biomolecular Condensates in the Nucleus. Trends Biochem Sci [Internet]. 2020;45:961–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0968000420301675 PubMed PMC

Povarova OI, Antifeeva IA, Fonin AV, Turoverov KK, Kuznetsova IM. The role of liquid–liquid phase separation in actin polymerization. Int J Mol Sci MDPI; 2023. PubMed PMC

Weirich KL, Banerjee S, Dasbiswas K, Witten TA, Vaikuntanathan S, Gardel ML. Liquid behavior of cross-linked actin bundles. Proc Natl Acad Sci U S A. 2017;114:2131–6. PubMed PMC

Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J, Hyman AA. A user’s guide for phase separation assays with purified proteins. J Mol Biol. 2018;430:4806–20. PubMed PMC

Sztacho M, Červenka J, Šalovská B, Antiga L, Hoboth P, Hozák P. The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization. Papenfort K, editor. PLoS Genet [Internet]. 2024;20:e1011462. Available from: 10.1371/journal.pgen.1011462 PubMed PMC

Balaban C, Sztacho M, Blažíková M, Hozák P. The F-Actin-binding MPRIP forms phase-separated condensates and associates with PI(4,5)P2 and active RNA polymerase II in the cell nucleus. Cells. 2021;10. PubMed PMC

Sabari BR, Dall’Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science (1979). 2018;361. PubMed PMC

Qian H, Zhu M, Tan X, Zhang Y, Liu X, Yang L. Super-enhancers and the super-enhancer reader BRD4: tumorigenic factors and therapeutic targets. Cell Death Discov. 2023;9. PubMed PMC

Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T et al. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis [Internet]. Oncotarget. 2018. Available from: www.oncotarget.com PubMed PMC

Akgül B, Karle P, Adam M, Fuchs PG, Pfister HJ. Dual role of tumor suppressor p53 in regulation of DNA replication and oncogene E6-promoter activity of Epidermodysplasia Verruciformis-associated human papillomavirus type 8. Virology. 2003;308:279–90. PubMed

Lazić D, Hufbauer M, Zigrino P, Buchholz S, Kazem S, Feltkamp MCW, et al. Human papillomavirus type 8 E6 oncoprotein inhibits transcription of the PDZ protein Syntenin-2. J Virol. 2012;86:7943–52. PubMed PMC

Hoboth P, Sztacho M, Quaas A, Akgül B, Hozák P. Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol. 2023;11. PubMed PMC

Hoboth P, Šebesta O, Sztacho M, Castano E, Hozák P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX. 2021;8. PubMed PMC

Li H, Wen X, Ren Y, Fan Z, Zhang J, He G, et al. Targeting PI3K family with small-molecule inhibitors in cancer therapy: current clinical status and future directions. Mol Cancer. BioMed Central Ltd; 2024. PubMed PMC

Miladinović A, Antiga L, Venit T, Bayona-Hernandez A, Červenka J, Labala RK et al. The perinucleolar compartment and the oncogenic super-enhancers are part of the same phase-separated structure filled with phosphatidylinositol 4,5bisphosphate and long noncoding RNA HANR. Adv Biol Regul. 2024. PubMed

Wang YH, Hariharan A, Bastianello G, Toyama Y, Shivashankar GV, Foiani M et al. DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat Commun. 2017;8. PubMed PMC

Blind RD, Sablin EP, Kuchenbecker KM, Chiu HJ, Deacon AM, Das D, et al. The signaling phospholipid PIP3 creates a new interaction surface on the nuclear receptor SF-1. Proc Natl Acad Sci U S A. 2014;111:15054–9. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace