Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33406800
PubMed Central
PMC7824793
DOI
10.3390/cells10010068
PII: cells10010068
Knihovny.cz E-zdroje
- Klíčová slova
- limited proteolysis, mass spectrometry, nucleus, phosphatidylinositol 4,5-bisphosphate, phosphoinositides,
- MeSH
- buněčné jádro metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- genová ontologie MeSH
- HeLa buňky MeSH
- hmotnostní spektrometrie * MeSH
- hydrofobní a hydrofilní interakce MeSH
- lidé MeSH
- peptidy metabolismus MeSH
- proteolýza * MeSH
- proteom chemie metabolismus MeSH
- regulace genové exprese MeSH
- sekvence aminokyselin MeSH
- trypsin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- peptidy MeSH
- proteom MeSH
- trypsin MeSH
Specific nuclear sub-compartments that are regions of fundamental processes such as gene expression or DNA repair, contain phosphoinositides (PIPs). PIPs thus potentially represent signals for the localization of specific proteins into different nuclear functional domains. We performed limited proteolysis followed by label-free quantitative mass spectrometry and identified nuclear protein effectors of the most abundant PIP-phosphatidylinositol 4,5-bisphosphate (PIP2). We identified 515 proteins with PIP2-binding capacity of which 191 'exposed' proteins represent a direct PIP2 interactors and 324 'hidden' proteins, where PIP2 binding was increased upon trypsin treatment. Gene ontology analysis revealed that 'exposed' proteins are involved in the gene expression as regulators of Pol II, mRNA splicing, and cell cycle. They localize mainly to non-membrane bound organelles-nuclear speckles and nucleolus and are connected to the actin nucleoskeleton. 'Hidden' proteins are linked to the gene expression, RNA splicing and transport, cell cycle regulation, and response to heat or viral infection. These proteins localize to the nuclear envelope, nuclear pore complex, or chromatin. Bioinformatic analysis of peptides bound in both groups revealed that PIP2-binding motifs are in general hydrophilic. Our data provide an insight into the molecular mechanism of nuclear PIP2 protein interaction and advance the methodology applicable for further studies of PIPs or other protein ligands.
Zobrazit více v PubMed
Dundr M., Misteli T. Functional architecture in the cell nucleus. Biochem. J. 2001;356:297–310. doi: 10.1042/bj3560297. PubMed DOI PMC
Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell. Sci. 2018;131 doi: 10.1242/jcs.211094. PubMed DOI
Sztacho M., Sobol M., Balaban C., Eliana S., Lopes E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI
Castano E., Yildirim S., Fáberová V., Krausová A., Uličná L., Paprčková D., Sztacho M., Hozáket P. Nuclear phosphoinositides-versatile regulators of genome functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC
Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–657. doi: 10.1038/nature05185. PubMed DOI
Sztacho M., Segeletz S., Sanchez-Fernandez M.A., Czupalla C., Niehage C., Hoflack B. BAR proteins PSTPIP1/2 regulate podosome dynamics and the resorption activity of osteoclasts. PLoS ONE. 2016;11:e0164829. doi: 10.1371/journal.pone.0164829. PubMed DOI PMC
Lewis A.E., Sommer L., Arntzen M.Ø., Strahm Y., Morrice N.A., Divecha N., D‘Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell. Proteom. 2011;10 doi: 10.1074/mcp.M110.003376. PubMed DOI PMC
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell. Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozák P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI
Suh M.J., Pourshahian S., Limbach P.A. Developing limited proteolysis and mass spectrometry for the characterization of ribosome topography. J. Am. Soc. Mass. Spectrom. 2007;18:1304–1317. doi: 10.1016/j.jasms.2007.03.028. PubMed DOI PMC
Gao X., Bain K., Bonanno J.B., Buchanan M., Henderson D., Lorimer D., Marsh C., Reynes J.A., Sauder J.M., Schwinn K., et al. High–throughput limited proteolysis/mass spectrometry for protein domain elucidation. J. Struct. Funct. Genom. 2005;6:129–134. doi: 10.1007/s10969-005-1918-5. PubMed DOI
Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell. Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 24 April 2020)]. Available online: https://www.Rproject.org/.v4.0.0.
Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 doi: 10.1093/nar/gky1131. PubMed DOI PMC
UniProt C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:506–515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Sigrist C.J.A., de Castro E., Cerutti L., Cuche B.A., Hulo N., Bridge A., Bougueleret L., Xenarios I. New and continuing developments at prosite. Nucleic Acids Res. 2013;41:344–347. doi: 10.1093/nar/gks1067. PubMed DOI PMC
Faberova V., Kalasová I., Krausová A., Hozák P. Super-resolution localisation of nuclear PI(4)P and identification of its interacting proteome. Cells. 2020;9:1191. doi: 10.3390/cells9051191. PubMed DOI PMC
Zubarev R.A. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics. 2013;13:723–726. doi: 10.1002/pmic.201200451. PubMed DOI
Schopper S., Kahraman A., Leuenberger P., Feng Y., Piazza I., Müller O., Boersema P.J., Picotti P. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat. Protoc. 2017;12:2391–2410. doi: 10.1038/nprot.2017.100. PubMed DOI
Guillen-Chable F., Corona U.R., Pereira-Santana A., Bayona A., Rodríguez-Zapata L.C., Aquino C., Šebestová L., Vitale N., Hozak P., Castano E. Fibrillarin ribonuclease activity is dependent on the gar domain and modulated by phospholipids. Cells. 2020;9:1143. doi: 10.3390/cells9051143. PubMed DOI PMC
Uhlen M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjöstedt E., Navani S., et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI
Thul P.J., Akesson L., Wiking M., Mahdessian D., Geladaki A., Blal H.A., Alm T., Asplund A., Björk L., Breckels L.M., et al. A subcellular map of the human proteome. Science. 2017;356 doi: 10.1126/science.aal3321. PubMed DOI
Lamond I.A., Spector D.L. Nuclear speckles: A model for nuclear organelles. Nat. Rev. Mol. Cell. Biol. 2003;4:605–612. doi: 10.1038/nrm1172. PubMed DOI
Mintz P.J., Patterson S.D., Neuwald A.F., Spahr C.S., Spector D.L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999;18:4308–4320. doi: 10.1093/emboj/18.15.4308. PubMed DOI PMC
Bavelloni A., Faenza I., Cioffi G., Piazzi M., Parisi D., Matic I., Maraldi N.M., Cocco L. Proteomic-based analysis of nuclear signaling: PLCbeta1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics. 2006;6:5725–5734. doi: 10.1002/pmic.200600318. PubMed DOI
Faenza I., Ramazzotti G., Bavelloni A., Fiume R., Gaboardi G.C., Follo M.Y., Gilmour R.S., Martelli A.M., Ravid K., Cocco L. Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology. 2007;148:1108–1117. doi: 10.1210/en.2006-1003. PubMed DOI
Hochberg-Laufer H., Neufeld N., Brody Y., Nadav-Eliyahu S., Ben-Yishay R., Shav-Tal Y. Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLoS Genet. 2019;15:e1008459. doi: 10.1371/journal.pgen.1008459. PubMed DOI PMC
Viita T., Kyheröinen S., Prajapati B., Virtanen J., Frilander M.J., Varjosalo M., Vartiainen M.K. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J. Cell Sci. 2019;132 doi: 10.1242/jcs.226852. PubMed DOI PMC
Yamazaki S., Yamamoto K., Harata M. Contribution of nuclear actin to transcription regulation. Genom. Data. 2015;4:127–129. doi: 10.1016/j.gdata.2015.04.009. PubMed DOI PMC
Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin I isoform in the nucleus. Science. 2000;290:337–341. doi: 10.1126/science.290.5490.337. PubMed DOI
Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell. Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI
Hofmann W.A., Vargas G.M., Ramchandran R., Stojiljkovic L., Goodrich J.A., de Lanerolle P. Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J. Cell Biochem. 2006;99:1001–1009. doi: 10.1002/jcb.21035. PubMed DOI
Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 2004;6:1094–1101. doi: 10.1038/ncb1182. PubMed DOI
Takahashi Y., Hiratsuka S., Machida N., Takahashi D., Matsushita J., Hozak P., Misteli T., Miyamoto K., Harata M. Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in Hutchinson-Gilford progeria syndrome. Nucleus. 2020;11:250–263. doi: 10.1080/19491034.2020.1815395. PubMed DOI PMC
Venit T., Semesta K., Farrukh S., Endara-Coll M., Havalda R., Hozak P., Percipalle P. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Commun. Biol. 2020;3:115. doi: 10.1038/s42003-020-0836-1. PubMed DOI PMC
Frottin F., Schueder F., Tiwary S., Gupta R., Körner R., Schlichthaerle T., Cox J., Jungmann R., Hartl F.U., Hipp M.S. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342–347. doi: 10.1126/science.aaw9157. PubMed DOI
Azkanaz M., López A.R., de Boer B., Huiting W., Angrand P., Vellenga E., Kampinga H.H., Bergink S., Martens J.H.A., Schuringa J., et al. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. Elife. 2019;8 doi: 10.7554/eLife.45205. PubMed DOI PMC
Zaffagnini G., Savova A., Danieli A., Romanov J., Tremel S., Ebner M., Peterbauer T., Sztacho M., Trapannone R., Tarafder A.K., et al. Phasing out the bad-How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy. Autophagy. 2018;14:1280–1282. doi: 10.1080/15548627.2018.1462079. PubMed DOI PMC
Turco E., Witt M., Abert C., Bock-Bierbaum T., Su M.Y., Trapannone R., Sztacho M., Danieli A., Shi X., Fracchiolla D., et al. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell. 2019;74:330–346.e11. doi: 10.1016/j.molcel.2019.01.035. PubMed DOI PMC
Cohen-Kaplan V., Livneh I., Avni N., Cohen-Rosenzweig C., Ciechanove A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int. J. Biochem. Cell. Biol. 2016;79:403–418. doi: 10.1016/j.biocel.2016.07.019. PubMed DOI
Latonen L., Moore H.M., Bai B., Jäämaa S., Laiho M. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene. 2011;30:790–805. doi: 10.1038/onc.2010.469. PubMed DOI
Kraft L.J., Manral P., Dowler J., Kenworthy A.K. Nuclear LC3 associates with slowly diffusing complexes that survey the nucleolus. Traffic. 2016;17:369–399. doi: 10.1111/tra.12372. PubMed DOI PMC
Salmina K., Huna A., Inashkina I., Belyayev A., Krigerts J., Pastova L., Vazquez-Martin A., Erenpreisa J. Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells. Nucleus. 2017;8:205–221. doi: 10.1080/19491034.2017.1279775. PubMed DOI PMC
Mostofa M.G., Rahman M.A., Koike N., Yeasmin A.M., Islam N., Waliullah T.M., Hosoyamada S. CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. J. Cell Biol. 2018;217:2675–2690. doi: 10.1083/jcb.201706164. PubMed DOI PMC
Iadevaia V., Zhang Z., Jan E., Proud C.G. mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res. 2012;40:2527–2539. doi: 10.1093/nar/gkr1040. PubMed DOI PMC
Tsang K.C., Liu H., Zheng X.F. mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell. Cycle. 2010:953–957. doi: 10.4161/cc.9.5.10876. PubMed DOI PMC
Katagiri N., Kuroda T., Kishimoto H., Hayashi Y., Kumazawa T., Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci. Rep. 2015;5:8903. doi: 10.1038/srep08903. PubMed DOI PMC
Marx B., Hufbauer M., Zigrino P., Majewski S., Markiefka B., Sachsenheimer T., Brügger B., Akgül B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: Implication in carcinogenesis. Oncotarget. 2018;9:34142–34158. doi: 10.18632/oncotarget.26140. PubMed DOI PMC
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer
PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription