Limited Proteolysis-Coupled Mass Spectrometry Identifies Phosphatidylinositol 4,5-Bisphosphate Effectors in Human Nuclear Proteome

. 2021 Jan 04 ; 10 (1) : . [epub] 20210104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33406800

Specific nuclear sub-compartments that are regions of fundamental processes such as gene expression or DNA repair, contain phosphoinositides (PIPs). PIPs thus potentially represent signals for the localization of specific proteins into different nuclear functional domains. We performed limited proteolysis followed by label-free quantitative mass spectrometry and identified nuclear protein effectors of the most abundant PIP-phosphatidylinositol 4,5-bisphosphate (PIP2). We identified 515 proteins with PIP2-binding capacity of which 191 'exposed' proteins represent a direct PIP2 interactors and 324 'hidden' proteins, where PIP2 binding was increased upon trypsin treatment. Gene ontology analysis revealed that 'exposed' proteins are involved in the gene expression as regulators of Pol II, mRNA splicing, and cell cycle. They localize mainly to non-membrane bound organelles-nuclear speckles and nucleolus and are connected to the actin nucleoskeleton. 'Hidden' proteins are linked to the gene expression, RNA splicing and transport, cell cycle regulation, and response to heat or viral infection. These proteins localize to the nuclear envelope, nuclear pore complex, or chromatin. Bioinformatic analysis of peptides bound in both groups revealed that PIP2-binding motifs are in general hydrophilic. Our data provide an insight into the molecular mechanism of nuclear PIP2 protein interaction and advance the methodology applicable for further studies of PIPs or other protein ligands.

Zobrazit více v PubMed

Dundr M., Misteli T. Functional architecture in the cell nucleus. Biochem. J. 2001;356:297–310. doi: 10.1042/bj3560297. PubMed DOI PMC

Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell. Sci. 2018;131 doi: 10.1242/jcs.211094. PubMed DOI

Sztacho M., Sobol M., Balaban C., Eliana S., Lopes E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI

Castano E., Yildirim S., Fáberová V., Krausová A., Uličná L., Paprčková D., Sztacho M., Hozáket P. Nuclear phosphoinositides-versatile regulators of genome functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC

Di Paolo G., De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature. 2006;443:651–657. doi: 10.1038/nature05185. PubMed DOI

Sztacho M., Segeletz S., Sanchez-Fernandez M.A., Czupalla C., Niehage C., Hoflack B. BAR proteins PSTPIP1/2 regulate podosome dynamics and the resorption activity of osteoclasts. PLoS ONE. 2016;11:e0164829. doi: 10.1371/journal.pone.0164829. PubMed DOI PMC

Lewis A.E., Sommer L., Arntzen M.Ø., Strahm Y., Morrice N.A., Divecha N., D‘Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell. Proteom. 2011;10 doi: 10.1074/mcp.M110.003376. PubMed DOI PMC

Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell. Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI

Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozák P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI

Suh M.J., Pourshahian S., Limbach P.A. Developing limited proteolysis and mass spectrometry for the characterization of ribosome topography. J. Am. Soc. Mass. Spectrom. 2007;18:1304–1317. doi: 10.1016/j.jasms.2007.03.028. PubMed DOI PMC

Gao X., Bain K., Bonanno J.B., Buchanan M., Henderson D., Lorimer D., Marsh C., Reynes J.A., Sauder J.M., Schwinn K., et al. High–throughput limited proteolysis/mass spectrometry for protein domain elucidation. J. Struct. Funct. Genom. 2005;6:129–134. doi: 10.1007/s10969-005-1918-5. PubMed DOI

Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using stagetips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI

Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell. Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC

Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R.A., Olsen J.V., Mann M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011;10:1794–1805. doi: 10.1021/pr101065j. PubMed DOI

Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 24 April 2020)]. Available online: https://www.Rproject.org/.v4.0.0.

Szklarczyk D., Gable A.L., Lyon D., Junge A., Wyder S., Huerta-Cepas J., Simonovic M., Doncheva N.T., Morris J.H., Bork P., et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 doi: 10.1093/nar/gky1131. PubMed DOI PMC

UniProt C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019;47:506–515. doi: 10.1093/nar/gky1049. PubMed DOI PMC

Sigrist C.J.A., de Castro E., Cerutti L., Cuche B.A., Hulo N., Bridge A., Bougueleret L., Xenarios I. New and continuing developments at prosite. Nucleic Acids Res. 2013;41:344–347. doi: 10.1093/nar/gks1067. PubMed DOI PMC

Faberova V., Kalasová I., Krausová A., Hozák P. Super-resolution localisation of nuclear PI(4)P and identification of its interacting proteome. Cells. 2020;9:1191. doi: 10.3390/cells9051191. PubMed DOI PMC

Zubarev R.A. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics. 2013;13:723–726. doi: 10.1002/pmic.201200451. PubMed DOI

Schopper S., Kahraman A., Leuenberger P., Feng Y., Piazza I., Müller O., Boersema P.J., Picotti P. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat. Protoc. 2017;12:2391–2410. doi: 10.1038/nprot.2017.100. PubMed DOI

Guillen-Chable F., Corona U.R., Pereira-Santana A., Bayona A., Rodríguez-Zapata L.C., Aquino C., Šebestová L., Vitale N., Hozak P., Castano E. Fibrillarin ribonuclease activity is dependent on the gar domain and modulated by phospholipids. Cells. 2020;9:1143. doi: 10.3390/cells9051143. PubMed DOI PMC

Uhlen M., Fagerberg L., Hallström B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjöstedt E., Navani S., et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI

Thul P.J., Akesson L., Wiking M., Mahdessian D., Geladaki A., Blal H.A., Alm T., Asplund A., Björk L., Breckels L.M., et al. A subcellular map of the human proteome. Science. 2017;356 doi: 10.1126/science.aal3321. PubMed DOI

Lamond I.A., Spector D.L. Nuclear speckles: A model for nuclear organelles. Nat. Rev. Mol. Cell. Biol. 2003;4:605–612. doi: 10.1038/nrm1172. PubMed DOI

Mintz P.J., Patterson S.D., Neuwald A.F., Spahr C.S., Spector D.L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999;18:4308–4320. doi: 10.1093/emboj/18.15.4308. PubMed DOI PMC

Bavelloni A., Faenza I., Cioffi G., Piazzi M., Parisi D., Matic I., Maraldi N.M., Cocco L. Proteomic-based analysis of nuclear signaling: PLCbeta1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells. Proteomics. 2006;6:5725–5734. doi: 10.1002/pmic.200600318. PubMed DOI

Faenza I., Ramazzotti G., Bavelloni A., Fiume R., Gaboardi G.C., Follo M.Y., Gilmour R.S., Martelli A.M., Ravid K., Cocco L. Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology. 2007;148:1108–1117. doi: 10.1210/en.2006-1003. PubMed DOI

Hochberg-Laufer H., Neufeld N., Brody Y., Nadav-Eliyahu S., Ben-Yishay R., Shav-Tal Y. Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLoS Genet. 2019;15:e1008459. doi: 10.1371/journal.pgen.1008459. PubMed DOI PMC

Viita T., Kyheröinen S., Prajapati B., Virtanen J., Frilander M.J., Varjosalo M., Vartiainen M.K. Nuclear actin interactome analysis links actin to KAT14 histone acetyl transferase and mRNA splicing. J. Cell Sci. 2019;132 doi: 10.1242/jcs.226852. PubMed DOI PMC

Yamazaki S., Yamamoto K., Harata M. Contribution of nuclear actin to transcription regulation. Genom. Data. 2015;4:127–129. doi: 10.1016/j.gdata.2015.04.009. PubMed DOI PMC

Pestic-Dragovich L., Stojiljkovic L., Philimonenko A.A., Nowak G., Ke Y., Settlage R.E., Shabanowitz J., Hunt D.F., Hozak P., de Lanerolle P. A myosin I isoform in the nucleus. Science. 2000;290:337–341. doi: 10.1126/science.290.5490.337. PubMed DOI

Philimonenko V.V., Zhao J., Iben S., Dingová H., Kyselá K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozák P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell. Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI

Hofmann W.A., Vargas G.M., Ramchandran R., Stojiljkovic L., Goodrich J.A., de Lanerolle P. Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J. Cell Biochem. 2006;99:1001–1009. doi: 10.1002/jcb.21035. PubMed DOI

Hofmann W.A., Stojiljkovic L., Fuchsova B., Vargas G.M., Mavrommatis E., Philimonenko V., Kysela K., Goodrich J.A., Lessard J.L., Hope T.J., et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 2004;6:1094–1101. doi: 10.1038/ncb1182. PubMed DOI

Takahashi Y., Hiratsuka S., Machida N., Takahashi D., Matsushita J., Hozak P., Misteli T., Miyamoto K., Harata M. Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in Hutchinson-Gilford progeria syndrome. Nucleus. 2020;11:250–263. doi: 10.1080/19491034.2020.1815395. PubMed DOI PMC

Venit T., Semesta K., Farrukh S., Endara-Coll M., Havalda R., Hozak P., Percipalle P. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Commun. Biol. 2020;3:115. doi: 10.1038/s42003-020-0836-1. PubMed DOI PMC

Frottin F., Schueder F., Tiwary S., Gupta R., Körner R., Schlichthaerle T., Cox J., Jungmann R., Hartl F.U., Hipp M.S. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342–347. doi: 10.1126/science.aaw9157. PubMed DOI

Azkanaz M., López A.R., de Boer B., Huiting W., Angrand P., Vellenga E., Kampinga H.H., Bergink S., Martens J.H.A., Schuringa J., et al. Protein quality control in the nucleolus safeguards recovery of epigenetic regulators after heat shock. Elife. 2019;8 doi: 10.7554/eLife.45205. PubMed DOI PMC

Zaffagnini G., Savova A., Danieli A., Romanov J., Tremel S., Ebner M., Peterbauer T., Sztacho M., Trapannone R., Tarafder A.K., et al. Phasing out the bad-How SQSTM1/p62 sequesters ubiquitinated proteins for degradation by autophagy. Autophagy. 2018;14:1280–1282. doi: 10.1080/15548627.2018.1462079. PubMed DOI PMC

Turco E., Witt M., Abert C., Bock-Bierbaum T., Su M.Y., Trapannone R., Sztacho M., Danieli A., Shi X., Fracchiolla D., et al. FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol. Cell. 2019;74:330–346.e11. doi: 10.1016/j.molcel.2019.01.035. PubMed DOI PMC

Cohen-Kaplan V., Livneh I., Avni N., Cohen-Rosenzweig C., Ciechanove A. The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. Int. J. Biochem. Cell. Biol. 2016;79:403–418. doi: 10.1016/j.biocel.2016.07.019. PubMed DOI

Latonen L., Moore H.M., Bai B., Jäämaa S., Laiho M. Proteasome inhibitors induce nucleolar aggregation of proteasome target proteins and polyadenylated RNA by altering ubiquitin availability. Oncogene. 2011;30:790–805. doi: 10.1038/onc.2010.469. PubMed DOI

Kraft L.J., Manral P., Dowler J., Kenworthy A.K. Nuclear LC3 associates with slowly diffusing complexes that survey the nucleolus. Traffic. 2016;17:369–399. doi: 10.1111/tra.12372. PubMed DOI PMC

Salmina K., Huna A., Inashkina I., Belyayev A., Krigerts J., Pastova L., Vazquez-Martin A., Erenpreisa J. Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells. Nucleus. 2017;8:205–221. doi: 10.1080/19491034.2017.1279775. PubMed DOI PMC

Mostofa M.G., Rahman M.A., Koike N., Yeasmin A.M., Islam N., Waliullah T.M., Hosoyamada S. CLIP and cohibin separate rDNA from nucleolar proteins destined for degradation by nucleophagy. J. Cell Biol. 2018;217:2675–2690. doi: 10.1083/jcb.201706164. PubMed DOI PMC

Iadevaia V., Zhang Z., Jan E., Proud C.G. mTOR signaling regulates the processing of pre-rRNA in human cells. Nucleic Acids Res. 2012;40:2527–2539. doi: 10.1093/nar/gkr1040. PubMed DOI PMC

Tsang K.C., Liu H., Zheng X.F. mTOR binds to the promoters of RNA polymerase I- and III-transcribed genes. Cell. Cycle. 2010:953–957. doi: 10.4161/cc.9.5.10876. PubMed DOI PMC

Katagiri N., Kuroda T., Kishimoto H., Hayashi Y., Kumazawa T., Kimura K. The nucleolar protein nucleophosmin is essential for autophagy induced by inhibiting Pol I transcription. Sci. Rep. 2015;5:8903. doi: 10.1038/srep08903. PubMed DOI PMC

Marx B., Hufbauer M., Zigrino P., Majewski S., Markiefka B., Sachsenheimer T., Brügger B., Akgül B. Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: Implication in carcinogenesis. Oncotarget. 2018;9:34142–34158. doi: 10.18632/oncotarget.26140. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer

. 2025 Feb 06 ; 24 (1) : 39. [epub] 20250206

The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization

. 2024 Dec ; 20 (12) : e1011462. [epub] 20241202

Quantitative super-resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5-bisphosphate in human healthy skin and skin warts

. 2023 ; 11 () : 1217637. [epub] 20230707

PIP2-Effector Protein MPRIP Regulates RNA Polymerase II Condensation and Transcription

. 2023 Feb 24 ; 13 (3) : . [epub] 20230224

How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription

. 2021 Jun 22 ; 22 (13) : . [epub] 20210622

Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates

. 2021 ; 8 () : 101372. [epub] 20210501

The F-Actin-Binding MPRIP Forms Phase-Separated Condensates and Associates with PI(4,5)P2 and Active RNA Polymerase II in the Cell Nucleus

. 2021 Apr 08 ; 10 (4) : . [epub] 20210408

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...