Super-Resolution Localisation of Nuclear PI(4)P and Identification of Its Interacting Proteome
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32403279
PubMed Central
PMC7291030
DOI
10.3390/cells9051191
PII: cells9051191
Knihovny.cz E-zdroje
- Klíčová slova
- PI(4)P, nucleus, phosphoinositides,
- MeSH
- buněčné jadérko metabolismus ultrastruktura MeSH
- buněčné jádro metabolismus ultrastruktura MeSH
- buněčný cyklus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- jaderné proteiny metabolismus MeSH
- jaderný obal metabolismus ultrastruktura MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- proteom metabolismus MeSH
- shluková analýza MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfatidylinositolfosfáty MeSH
- jaderné proteiny MeSH
- phosphatidylinositol 4-phosphate MeSH Prohlížeč
- proteom MeSH
Phosphoinositides are glycerol-based phospholipids, and they play essential roles in cellular signalling, membrane and cytoskeletal dynamics, cell movement, and the modulation of ion channels and transporters. Phosphoinositides are also associated with fundamental nuclear processes through their nuclear protein-binding partners, even though membranes do not exist inside of the nucleus. Phosphatidylinositol 4-phosphate (PI(4)P) is one of the most abundant cellular phosphoinositides; however, its functions in the nucleus are still poorly understood. In this study, we describe PI(4)P localisation in the cell nucleus by super-resolution light and electron microscopy, and employ immunoprecipitation with a specific anti-PI(4)P antibody and subsequent mass spectrometry analysis to determine PI(4)P's interaction partners. We show that PI(4)P is present at the nuclear envelope, in nuclear lamina, in nuclear speckles and in nucleoli and also forms multiple small foci in the nucleoplasm. Nuclear PI(4)P undergoes re-localisation to the cytoplasm during cell division; it does not localise to chromosomes, nucleolar organising regions or mitotic interchromatin granules. When PI(4)P and PI(4,5)P2 are compared, they have different nuclear localisations during interphase and mitosis, pointing to their functional differences in the cell nucleus. Mass spectrometry identified hundreds of proteins, including 12 potentially novel PI(4)P interactors, most of them functioning in vital nuclear processes such as pre-mRNA splicing, transcription or nuclear transport, thus extending the current knowledge of PI(4)P's interaction partners. Based on these data, we propose that PI(4)P also plays a role in essential nuclear processes as a part of protein-lipid complexes. Altogether, these observations provide a novel insight into the role of PI(4)P in nuclear functions and provide a direction for further investigation.
Zobrazit více v PubMed
Viaud J., Mansour R., Antkowiak A., Mujalli A., Valet C., Chicanne G., Xuereb J.M., Terrisse A.D., Séverin S., Gratacap M.P., et al. Phosphoinositides: Important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–258. doi: 10.1016/j.biochi.2015.09.005. PubMed DOI
Cauvin C., Echard A. Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim. Biophys. Acta. 2015;1851:832–843. doi: 10.1016/j.bbalip.2014.10.013. PubMed DOI
Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol. Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. PubMed DOI PMC
Ramos A.R., Elong Edimo W., Erneux C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv. Biol. Regul. 2018;67:40–48. doi: 10.1016/j.jbior.2017.09.001. PubMed DOI
Vann L.R., Wooding F.B., Irvine R.F., Divecha N. Metabolism and possible compartmentalization of inositol lipids in isolated rat-liver nuclei. Biochem. J. 1997;327:569–576. doi: 10.1042/bj3270569. PubMed DOI PMC
Mazzotti G., Zini N., Rizzi E., Rizzoli R., Galanzi A., Ognibene A., Santi S., Matteucci A., Martelli A.M., Maraldi N.M. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem. Cytochem. 1995;43:181–191. doi: 10.1177/43.2.7822774. PubMed DOI
Boronenkov I.V., Loijens J.C., Umeda M., Anderson R.A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell. 1998;9:3547–3560. PubMed PMC
Gillooly D.J., Morrow I.C., Lindsay M., Gould R., Bryant N.J., Gaullier J.M., Parton R.G., Stenmark H. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 2000;19:4577–4588. doi: 10.1093/emboj/19.17.4577. PubMed DOI PMC
Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;114:2501–2511. PubMed
Watt S.A., Kular G., Fleming I.N., Downes C.P., Lucocq J.M. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem. J. 2002;363:657–666. doi: 10.1042/bj3630657. PubMed DOI PMC
Lindsay Y., McCoull D., Davidson L., Leslie N.R., Fairservice A., Gray A., Lucocq J., Downes C.P. Localization of agonist-sensitive PtdIns(3,4,5)P3 reveals a nuclear pool that is insensitive to PTEN expression. J. Cell Sci. 2006;119:5160–5168. doi: 10.1242/jcs.000133. PubMed DOI
Hammond G.R., Sim Y., Lagnado L., Irvine R.F. Reversible binding and rapid diffusion of proteins in complex with inositol lipids serves to coordinate free movement with spatial information. J. Cell Biol. 2009;184:297–308. doi: 10.1083/jcb.200809073. PubMed DOI PMC
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Castano E., Yildirim S., Faberova V., Krausova A., Ulicna L., Paprckova D., Sztacho M., Hozák P. Nuclear phosphoinositides-versatile regulators of genome functions. Cells. 2019;8:649. doi: 10.3390/cells8070649. PubMed DOI PMC
Jacobsen R.G., Mazloumi Gavgani F., Edson A.J., Goris M., Altankhuyag A., Lewis A.E. Polyphosphoinositides in the nucleus: Roadmap of their effectors and mechanisms of interaction. Adv. Biol. Regul. 2019;72:7–21. doi: 10.1016/j.jbior.2019.04.001. PubMed DOI
Blind R.D., Suzawa M., Ingraham H.A. Direct modification and activation of a nuclear receptor-PIP(2) complex by the inositol lipid kinase IPMK. Sci. Signal. 2012;5:ra44. doi: 10.1126/scisignal.2003111. PubMed DOI PMC
Toska E., Campbell H.A., Shandilya J., Goodfellow S.J., Shore P., Medler K.F., Roberts S.G. Repression of transcription by WT1-BASP1 requires the myristoylation of BASP1 and the PIP2-dependent recruitment of histone deacetylase. Cell Rep. 2012;2:462–469. doi: 10.1016/j.celrep.2012.08.005. PubMed DOI PMC
Sobol M., Yildirim S., Philimonenko V.V., Marasek P., Castano E., Hozak P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Sobol M., Krausova A., Yildirim S., Kalasova I., Faberova V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131 doi: 10.1242/jcs.211094. PubMed DOI
Stijf-Bultsma Y., Sommer L., Tauber M., Baalbaki M., Giardoglou P., Jones D.R., Gelato K.A., van Pelt J., Shah Z., Rahnamoun H., et al. The basal transcription complex component TAF3 transduces changes in nuclear phosphoinositides into transcriptional output. Mol. Cell. 2015;58:453–467. doi: 10.1016/j.molcel.2015.03.009. PubMed DOI PMC
Rando O.J., Zhao K., Janmey P., Crabtree G.R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA. 2002;99:2824–2829. doi: 10.1073/pnas.032662899. PubMed DOI PMC
Gelato K.A., Tauber M., Ong M.S., Winter S., Hiragami-Hamada K., Sindlinger J., Lemak A., Bultsma Y., Houliston S., Schwarzer D., et al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol. Cell. 2014;54:905–919. doi: 10.1016/j.molcel.2014.04.004. PubMed DOI
Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozak P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI
Ulicna L., Paprckova D., Faberova V., Hozak P. Phospholipids and inositol phosphates linked to the epigenome. Histochem. Cell Biol. 2018;150:245–253. doi: 10.1007/s00418-018-1690-9. PubMed DOI
Graham T.R., Burd C.G. Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol. 2011;21:113–121. doi: 10.1016/j.tcb.2010.10.002. PubMed DOI PMC
Hammond G.R., Schiavo G., Irvine R.F. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2) Biochem. J. 2009;422:23–35. doi: 10.1042/BJ20090428. PubMed DOI PMC
Kalasova I., Faberova V., Kalendova A., Yildirim S., Ulicna L., Venit T., Hozák P. Tools for visualization of phosphoinositides in the cell nucleus. Histochem. Cell Biol. 2016;145:485–496. doi: 10.1007/s00418-016-1409-8. PubMed DOI
Andersen J.S., Lyon C.E., Fox A.H., Leung A.K., Lam Y.W., Steen H., Mann M., Lamond A.I. Directed proteomic analysis of the human nucleolus. Curr. Biol. 2002;12:1–11. doi: 10.1016/S0960-9822(01)00650-9. PubMed DOI
Masuda T., Tomita M., Ishihama Y. Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Rappsilber J., Mann M., Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI
Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Stradalova V., Gaplovska-Kysela K., Hozak P. Ultrastructural and nuclear antigen preservation after high-pressure freezing/freeze-substitution and low-temperature LR White embedding of HeLa cells. Histochem. Cell Biol. 2008;130:1047–1052. doi: 10.1007/s00418-008-0504-x. PubMed DOI
Philimonenko A.A., Janacek J., Hozak P. Statistical evaluation of colocalization patterns in immunogold labeling experiments. J. Struct. Biol. 2000;132:201–210. doi: 10.1006/jsbi.2000.4326. PubMed DOI
Sharma A., Takata H., Shibahara K., Bubulya A., Bubulya P.A. Son is essential for nuclear speckle organization and cell cycle progression. Mol. Biol. Cell. 2010;21:650–663. doi: 10.1091/mbc.e09-02-0126. PubMed DOI PMC
Huen M.S., Sy S.M., Leung K.M., Ching Y.P., Tipoe G.L., Man C., Dong S., Chen J. SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle. 2010;9:2679–2685. doi: 10.4161/cc.9.13.12151. PubMed DOI PMC
Spector D.L., Lamond A.I. Nuclear speckles. Cold Spring Harb Perspect Biol. 2011;3 doi: 10.1101/cshperspect.a000646. PubMed DOI PMC
Quinodoz S.A., Ollikainen N., Tabak B., Palla A., Schmidt J.M., Detmar E., Lai M.M., Shishkin A.A., Bhat P., Takei Y., et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell. 2018;174:744–757. doi: 10.1016/j.cell.2018.05.024. PubMed DOI PMC
Kim J., Han K.Y., Khanna N., Ha T., Belmont A.S. Nuclear speckle fusion via long-range directional motion regulates speckle morphology after transcriptional inhibition. J. Cell Sci. 2019;132 doi: 10.1242/jcs.226563. PubMed DOI PMC
Yao R.W., Xu G., Wang Y., Shan L., Luan P.F., Wang Y., Wu M., Yang L.Z., Xing Y.H., Yang L., et al. Nascent Pre-rRNA Sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell. 2019;76:767–783. PubMed
Prasanth K.V., Sacco-Bubulya P.A., Prasanth S.G., Spector D.L. Sequential entry of components of the gene expression machinery into daughter nuclei. Mol. Biol. Cell. 2003;14:1043–1057. doi: 10.1091/mbc.e02-10-0669. PubMed DOI PMC
Gomes X.V., Wold M.S. Functional domains of the 70-kilodalton subunit of human replication protein A. Biochemistry. 1996;35:10558–10568. doi: 10.1021/bi9607517. PubMed DOI
Smith C.D., Wells W.W. Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. J. Biol. Chem. 1983;258:9368–9373. PubMed
Cocco L., Gilmour R.S., Ognibene A., Letcher A.J., Manzoli F.A., Irvine R.F. Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem. J. 1987;248:765–770. doi: 10.1042/bj2480765. PubMed DOI PMC
Yang Y., Lee M., Fairn G.D. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 2018;293:6230–6240. doi: 10.1074/jbc.R117.000582. PubMed DOI PMC
Vance J.E. Phospholipid synthesis and transport in mammalian cells. Traffic. 2015;16:1–18. doi: 10.1111/tra.12230. PubMed DOI
de Graaf P., Klapisz E.E., Schulz T.K., Cremers A.F., Verkleij A.J., van Bergen en Henegouwen P.M. Nuclear localization of phosphatidylinositol 4-kinase beta. J. Cell Sci. 2002;115:1769–1775. PubMed
Strahl T., Hama H., DeWald D.B., Thorner J. Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J. Cell Biol. 2005;171:967–979. doi: 10.1083/jcb.200504104. PubMed DOI PMC
Szivak I., Lamb N., Heilmeyer L.M. Subcellular localization and structural function of endogenous phosphorylated phosphatidylinositol 4-kinase (PI4K92) J. Biol. Chem. 2006;281:16740–16749. doi: 10.1074/jbc.M511645200. PubMed DOI
Kakuk A., Friedlander E., Vereb G., Jr., Kasa A., Balla A., Balla T., Heilmeyer L.M., Jr., Gergely P., Vereb G. Nucleolar localization of phosphatidylinositol 4-kinase PI4K230 in various mammalian cells. Cytometry A. 2006;69:1174–1183. doi: 10.1002/cyto.a.20347. PubMed DOI
Lachyankar M.B., Sultana N., Schonhoff C.M., Mitra P., Poluha W., Lambert S., Quesenberry P.J., Litofsky N.S., Recht L.D., Nabi R., et al. A role for nuclear PTEN in neuronal differentiation. J. Neurosci. 2000;20:1404–1413. doi: 10.1523/JNEUROSCI.20-04-01404.2000. PubMed DOI PMC
Gimm O., Perren A., Weng L.P., Marsh D.J., Yeh J.J., Ziebold U., Gil E., Hinze R., Delbridge L., Lees J.A., et al. Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am. J. Pathol. 2000;156:1693–1700. doi: 10.1016/S0002-9440(10)65040-7. PubMed DOI PMC
Deleris P., Bacqueville D., Gayral S., Carrez L., Salles J.P., Perret B., Breton-Douillon M. SHIP-2 and PTEN are expressed and active in vascular smooth muscle cell nuclei, but only SHIP-2 is associated with nuclear speckles. J. Biol. Chem. 2003;278:38884–38891. doi: 10.1074/jbc.M300816200. PubMed DOI
Elong Edimo W., Derua R., Janssens V., Nakamura T., Vanderwinden J.M., Waelkens E., Erneux C. Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem. J. 2011;439:391–401. doi: 10.1042/BJ20110173. PubMed DOI
Nalaskowski M.M., Metzner A., Brehm M.A., Labiadh S., Brauer H., Grabinski N., Mayr G.W., Jücker M. The inositol 5-phosphatase SHIP1 is a nucleo-cytoplasmic shuttling protein and enzymatically active in cell nuclei. Cell Signal. 2012;24:621–628. doi: 10.1016/j.cellsig.2011.07.012. PubMed DOI
Ehm P., Nalaskowski M.M., Wundenberg T., Jucker M. The tumor suppressor SHIP1 colocalizes in nucleolar cavities with p53 and components of PML nuclear bodies. Nucleus. 2015;6:154–164. doi: 10.1080/19491034.2015.1022701. PubMed DOI PMC
Mellman D.L., Gonzales M.L., Song C., Barlow C.A., Wang P., Kendziorski C., Anderson R.A. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature. 2008;451:1013–1017. doi: 10.1038/nature06666. PubMed DOI
Kakuk A., Friedlander E., Vereb G., Jr., Lisboa D., Bagossi P., Toth G., Gergely P., Vereb G. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230. Exp. Cell Res. 2008;314:2376–8238. doi: 10.1016/j.yexcr.2008.05.006. PubMed DOI
Balla A., Kim Y.J., Varnai P., Szentpetery Z., Knight Z., Shokat K.M., Balla T. Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell. 2008;19:711–721. doi: 10.1091/mbc.e07-07-0713. PubMed DOI PMC
Harak C., Radujkovic D., Taveneau C., Reiss S., Klein R., Bressanelli S., Lohmann V. Mapping of functional domains of the lipid kinase phosphatidylinositol 4-kinase type III alpha involved in enzymatic activity and hepatitis C virus replication. J. Virol. 2014;88:9909–9926. doi: 10.1128/JVI.01063-14. PubMed DOI PMC
Izquierdo J.M., Majos N., Bonnal S., Martinez C., Castelo R., Guigo R., Bilbao D., Valcárcel J. Regulation of Fas alternative splicing by antagonistic effects of TIA-1 and PTB on exon definition. Mol. Cell. 2005;19:475–484. doi: 10.1016/j.molcel.2005.06.015. PubMed DOI
Kotak S., Busso C., Gonczy P. NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J. 2014;33:1815–1830. doi: 10.15252/embj.201488147. PubMed DOI PMC
Kukalev A., Nord Y., Palmberg C., Bergman T., Percipalle P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 2005;12:238–244. doi: 10.1038/nsmb904. PubMed DOI
Hautbergue G.M., Hung M.L., Golovanov A.P., Lian L.Y., Wilson S.A. Mutually exclusive interactions drive handover of mRNA from export adaptors to TAP. Proc. Natl. Acad. Sci. USA. 2008;105:5154–5159. doi: 10.1073/pnas.0709167105. PubMed DOI PMC
Sztacho M., Sobol M., Balaban C., Escudeiro Lopes S.E., Hozak P. NucSlear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI