Impairment of nuclear F-actin formation and its relevance to cellular phenotypes in Hutchinson-Gilford progeria syndrome
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, audiovizuální média
PubMed
32954953
PubMed Central
PMC7529414
DOI
10.1080/19491034.2020.1815395
Knihovny.cz E-zdroje
- Klíčová slova
- Hutchinson-Gilford progeria syndrome, Nuclear actin, gene expression, lamin, nuclear organization, progerin,
- MeSH
- aktiny genetika metabolismus MeSH
- buněčné jádro genetika metabolismus patologie MeSH
- buňky NIH 3T3 MeSH
- lamin typ A genetika metabolismus MeSH
- lidé MeSH
- myši MeSH
- oprava DNA * MeSH
- progerie genetika metabolismus patologie MeSH
- signální dráha Wnt * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- aktiny MeSH
- lamin typ A MeSH
- LMNA protein, human MeSH Prohlížeč
- Lmna protein, mouse MeSH Prohlížeč
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disorder caused by a mutation of lamin A, which contributes to nuclear architecture and the spatial organization of chromatin in the nucleus. The expression of a lamin A mutant, named progerin, leads to functional and structural disruption of nuclear organization. Since progerin lacks a part of the actin-binding site of lamin A, we hypothesized that nuclear actin dynamics and function are altered in HGPS cells. Nuclear F-actin is required for the organization of nuclear shape, transcriptional regulation, DNA damage repair, and activation of Wnt/β-catenin signaling. Here we show that the expression of progerin decreases nuclear F-actin and impairs F-actin-regulated transcription. When nuclear F-actin levels are increased by overexpression of nuclear-targeted actin or by using jasplakinolide, a compound that stabilizes F-actin, the irregularity of nuclear shape and defects in gene expression can be reversed. These observations provide evidence for a novel relationship between nuclear actin and the etiology of HGPS.
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
National Cancer Institute National Institutes of Health Bethesda MD USA
Zobrazit více v PubMed
Pollex RL, Hegele RA.. Hutchinson-Gilford progeria syndrome. Clin Genet. 2004;66(5):375–381. PubMed
Hennekam RCM. Hutchinson–Gilford progeria syndrome: review of the phenotype. Am J Med Genet Part A. 2006;140A(23):2603–2624. PubMed
Kieran MW, Gordon L, Kleinman M. New approaches to progeria. Pediatrics. 2007;120(4):834–841. PubMed
Hamczyk MR, Andrés V. Accelerated atherosclerosis in HGPS. Aging (Albany NY). 2018;10(10):2555–2556. PubMed PMC
Gordon LB, Rothman FG, López-Otín C, et al. Progeria: a paradigm for translational medicine. Cell. 2014;156(3):400–407. PubMed PMC
Prokocimer M, Davidovich M, Nissim-Rafinia M, et al. Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med. 2009;13(6):1059–1085. PubMed PMC
Davies BSJ, Fong LG, Yang SH, et al. The posttranslational processing of prelamin a and disease. Annu Rev Genomics Hum Genet. 2009;10(1):153–174. PubMed PMC
Shumaker DK, Dechat T, Kohlmaier A, et al. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A. 2006;103(23):8703–8708. PubMed PMC
Scaffidi P. Lamin A-Dependent Nuclear Defects in Human Aging. Science. 2006;312(5776):1059–1063. PubMed PMC
Goldman RD, Shumaker DK, Erdos MR, et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2004;101(24):8963–8968. PubMed PMC
Heyn H, Moran S, Esteller EM. Aberrant DNA methylation profiles in the premature aging disorders Hutchinson-Gilford progeria and werner syndrome. Epigenetics. 2013;8(1):28–33. PubMed PMC
Gonzalo S, Kreienkamp R. DNA repair defects and genome instability in Hutchinson–Gilford Progeria syndrome. Curr Opin Cell Biol. 2015;34:75–83. PubMed PMC
Hernandez L, Roux KJ, Wong ESM, et al. Functional coupling between the extracellular matrix and nuclear lamina by wnt signaling in progeria. Dev Cell. 2010;19(3):413–425. PubMed PMC
Choi JY, Lai JK, Xiong Z-M, et al. Diminished Canonical β-catenin signaling during osteoblast differentiation contributes to osteopenia in progeria. J Bone Miner Res. 2018;33(11):2059–2070. PubMed PMC
Schmidt E, Nilsson O, Koskela A, et al. Expression of the Hutchinson-Gilford progeria mutation during osteoblast development results in loss of osteocytes, irregular mineralization, and poor biomechanical properties. J Biol Chem. 2012;287(40):33512–33522. PubMed PMC
Choi H, Kim T-H, Jeong J-K, et al. Expression of the hutchinson-gilford progeria mutation leads to aberrant dentin formation. Sci Rep. 2018;8(1):1–12. PubMed PMC
Pederson T, Aebi U. Actin in the nucleus: what form and what for? J Struct Biol 2002; 140:3–9. Academic Press. PubMed
Kristó I, Bajusz I, Bajusz C, et al. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 2016;145(4):373–388. PubMed
Plessner M, Grosse R. Dynamizing nuclear actin filaments. Curr Opin Cell Biol. 2019;56:1–6. PubMed
Yamazaki S, Gerhold C, Yamamoto K, et al. The actin-family protein Arp4 is a novel suppressor for the formation and functions of nuclear F-actin. Cells. 2020;9(3):758. PubMed PMC
Misu S, Takebayashi M, Miyamoto K. Nuclear actin in development and transcriptional reprogramming. Front Genet. 2017;8:27. PubMed PMC
Baarlink C, Plessner M, Sherrard A, et al. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol. 2017;19(12):1389–1399. PubMed
Yamazaki S, Yamamoto K, de Lanerolle P, et al. Nuclear F-actin enhances the transcriptional activity of β-catenin by increasing its nuclear localization and binding to chromatin. Histochem Cell Biol. 2016;145(4):389–399. PubMed
Schrank BR, Aparicio T, Li Y, et al. Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature. 2018;559(7712):61–66. PubMed PMC
Caridi CP, D’Agostino C, Ryu T, et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature. 2018;559(7712):54–60. PubMed PMC
Kapoor P, Shen X. Mechanisms of nuclear actin in chromatin-remodeling complexes. Trends Cell Biol. 2014;24(4):238–246. PubMed PMC
Vartiainen MK, Guettler S, Larijani B, et al. Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science. 2007;316(5832):1749–1752. PubMed
Baarlink C, Wang H, Grosse R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science. 2013;340(6134):864–867. PubMed
Simon DN, Zastrow MS, Wilson KL. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus. 2010;1(3):264–272. PubMed PMC
Sasseville AM-J, Langelier Y. In vitro interaction of the carboxy-terminal domain of lamin A with actin. FEBS Lett. 1998;425(3):485–489. PubMed
Zastrow MS. Nuclear titin interacts with A- and B-type lamins in vitro and in vivo. J Cell Sci. 2006;119(2):239–249. PubMed
Ho CY, Jaalouk DE, Vartiainen MK, et al. Lamin A/C and emerin regulate MKL1–SRF activity by modulating actin dynamics. Nature. 2013;497(7450):507–511. PubMed PMC
González-Granado JM, Silvestre-Roig C, Rocha-Perugini V, et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci Signal. 2014;7(322):ra37. PubMed PMC
Plessner M, Melak M, Chinchilla P, et al. Nuclear F-actin formation and reorganization upon cell spreading. J Biol Chem. 2015;290(18):11209–11216. PubMed PMC
Wang Y, Sherrard A, Zhao B, et al. GPCR-induced calcium transients trigger nuclear actin assembly for chromatin dynamics. Nat Commun. 2019;10(1):5271. PubMed PMC
Vidak S, Kubben N, Dechat T, et al. Proliferation of progeria cells is enhanced by lamina-associated polypeptide 2α (LAP2α) through expression of extracellular matrix proteins. Genes Dev. 2015;29(19):2022–2036. PubMed PMC
Kubben N, Brimacombe KR, Donegan M, et al. A high-content imaging-based screening pipeline for the systematic identification of anti-progeroid compounds. Methods. 2016;96:46–58. PubMed PMC
Kubben N, Zhang W, Wang L, et al. Repression of the antioxidant NRF2 pathway in premature aging. Cell. 2016;165(6):1361–1374. PubMed PMC
Buchwalter A, Hetzer MW. Nucleolar expansion and elevated protein translation in premature aging. Nat Commun. 2017;8(1):1–13. PubMed PMC
Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.. Proc Natl Acad Sci U S A. 1992;89(12):5547–5551. PubMed PMC
Gossen M, Freundlieb S, Bender G, et al. Transcriptional activation by tetracyclines in mammalian cells. Science. 1995;268(5218):1766–1769. PubMed
Hofmann WA, Arduini A, Nicol SM, et al. SUMOylation of nuclear actin. J Cell Biol. 2009;186(2):193–200. PubMed PMC
Filippi-Chiela EC, Oliveira MM, Jurkovski B, et al.. . Nuclear Morphometric Analysis (NMA): screening of senescence, apoptosis and nuclear irregularities. Lebedeva I V., ed. PLoS One. 2012;7(8):e42522. PubMed PMC
Kudlow BA, Stanfel MN, Burtner CR, et al.. Suppression of proliferative defects associated with processing-defective lamin A mutants by hTERT or inactivation of p53. Mol Biol Cell. 2008;19(12):5238–5248. PubMed PMC
Roose J, Huls G, van Beest M, et al.. Synergy between tumor suppressor APC and the -catenin-Tcf4 target Tcf1. Science. 1999;285(5435):1923–1926. PubMed
Cramer LP, Briggs LJ, Dawe HR. Use of fluorescently labelled deoxyribonuclease I to spatially measure G-actin levels in migrating and non-migrating cells. Cell Motil Cytoskeleton. 2002;51(1):27–38. PubMed
Chatzifrangkeskou M, Pefani D, Eyres M, et al. RASSF 1A is required for the maintenance of nuclear actin levels. Embo J. 2019;38(16):16. PubMed PMC
Snow CJ, Dar A, Dutta A, et al.. Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. J Cell Biol. 2013;201(4):541–557. PubMed PMC
Scaffidi P, Misteli MT. Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol. 2008;10(4):452–459. PubMed PMC
Xie X, Almuzzaini B, Drou N, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. Faseb J. 2018;32(3):1296–1314. PubMed
Xie X, Jankauskas R, Mazari AMA, et al.. β-actin regulates a heterochromatin landscape essential for optimal induction of neuronal programs during direct reprograming. Shen X, ed. PLOS Genetics. 2018;14(12):e1007846. PubMed PMC
Cao K, Capell BC, Erdos MR, et al.. A lamin A protein isoform overexpressed in Hutchinson-Gilford progeria syndrome interferes with mitosis in progeria and normal cells. Proc Natl Acad Sci U S A. 2007;104(12):4949–4954. PubMed PMC
Pratt CH, Curtain M, Donahue LR, et al.. Mitotic defects lead to pervasive aneuploidy and accompany loss of RB1 activity in mouse lmnadhe dermal fibroblasts. Abdelhay E, ed. PLoS One. 2011;6(3):e18065. PubMed PMC
Yamazaki S, Yamamoto K, Harata M. Contribution of nuclear actin to transcription regulation. Genom Data. 2015;4:127–129. PubMed PMC
Sharili AS, Kenny FN, Vartiainen MK, et al.. Nuclear actin modulates cell motility via transcriptional regulation of adhesive and cytoskeletal genes. Sci Rep. 2016;6(1):1–9. PubMed PMC
Bubb MR, Senderowicz AM, Sausville EA, et al. Jasplakinolide, a cytotoxic natural product, induces actin polymerization and competitively inhibits the binding of phalloidin to F-actin.. J Biol Chem. 1994;269(21):14869–14871. PubMed
Bubb MR, Spector I, Beyer BB, et al.. Effects of jasplakinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J Biol Chem. 2000;275(7):5163–5170. PubMed
Takeuchi H, Ara G, Sausville EA, et al.. Jasplakinolide: interaction with radiation and hyperthermia in human prostate carcinoma and Lewis lung carcinoma. Cancer Chemother Pharmacol. 1998;42(6):491–496. PubMed
Senderowicz AMJ, Kaur G, Sainz E, et al.. Jasplakinolide’s inhibition of the growth of prostate carcinoma cells in vitro with disruption of the actin cytoskeleton. J Natl Cancer Inst. 1995;87(1):46-51. https://academic.oup.com/jnci/article/87/1/46/901636 PubMed
Serebryannyy LA, Yuen M, Parilla M, et al.. The effects of disease models of nuclear actin polymerization on the nucleus. Front Physiol. 2016;7(OCT):454. PubMed PMC
Izdebska M, Zielińska W, Grzanka D, et al.. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets. Biomed Res Int. 2018;2018:1–13. PubMed PMC