Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., Two Multidrug-Resistant Psychrotrophic Species Isolated From Antarctica

. 2021 ; 12 () : 729977. [epub] 20211022

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34745033

Despite unfavorable Antarctic conditions, such as cold temperatures, freeze-thaw cycles, high ultraviolet radiation, dryness and lack of nutrients, microorganisms were able to adapt and surprisingly thrive in this environment. In this study, eight cold-adapted Flavobacterium strains isolated from a remote Antarctic island, James Ross Island, were studied using a polyphasic taxonomic approach to determine their taxonomic position. Phylogenetic analyses based on the 16S rRNA gene and 92 core genes clearly showed that these strains formed two distinct phylogenetic clusters comprising three and five strains, with average nucleotide identities significantly below 90% between both proposed species as well as between their closest phylogenetic relatives. Phenotyping revealed a unique pattern of biochemical and physiological characteristics enabling differentiation from the closest phylogenetically related Flavobacterium spp. Chemotaxonomic analyses showed that type strains P4023T and P7388T were characterized by the major polyamine sym-homospermidine and a quinone system containing predominantly menaquinone MK-6. In the polar lipid profile phosphatidylethanolamine, an ornithine lipid and two unidentified lipids lacking a functional group were detected as major lipids. These characteristics along with fatty acid profiles confirmed that these species belong to the genus Flavobacterium. Thorough genomic analysis revealed the presence of numerous cold-inducible or cold-adaptation associated genes, such as cold-shock proteins, proteorhodopsin, carotenoid biosynthetic genes or oxidative-stress response genes. Genomes of type strains surprisingly harbored multiple prophages, with many of them predicted to be active. Genome-mining identified biosynthetic gene clusters in type strain genomes with a majority not matching any known clusters which supports further exploratory research possibilities involving these psychrotrophic bacteria. Antibiotic susceptibility testing revealed a pattern of multidrug-resistant phenotypes that were correlated with in silico antibiotic resistance prediction. Interestingly, while typical resistance finder tools failed to detect genes responsible for antibiotic resistance, genomic prediction confirmed a multidrug-resistant profile and suggested even broader resistance than tested. Results of this study confirmed and thoroughly characterized two novel psychrotrophic Flavobacterium species, for which the names Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov. are proposed.

Zobrazit více v PubMed

Aislabie J. M., Jordan S., Barker G. M. (2008). Relation between soil classification and bacterial diversity in soils of the Ross Sea region. Antarctica. Geoderma 144 9–20. 10.1016/j.geoderma.2007.10.006 DOI

Ali Z., Cousin S., Frühling A., Brambilla E., Schumann P., Yang Y., et al. (2009). Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov. and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int. J. Sys. Evol. Microbiol. 59 2610–2617. 10.1099/ijs.0.008771-8770 PubMed DOI

Altenburger P., Kämpfer P., Makristathisc A., Werner L., Busse H.-J. (1996). Classification of bacteria isolated from a medieval wall painting. J. Biotechnol. 47 39–52.

Arndt D., Grant J. R., Marcu A., Sajed T., Pon A., Liang Y., et al. (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44 W16–W21. 10.1093/nar/gkw387 PubMed DOI PMC

Arnold J. W., Koudelka G. B. (2014). The trojan horse of the microbiological arms race: phage-encoded toxins as a defence against eukaryotic predators. Environ. Microbiol. 16 454–466. 10.1111/1462-2920.12232 PubMed DOI

Atlas R. M. (2010). Handbook of Microbiological Media, 4th Edn. Washington, D.C: ASM Press.

Ausland C., Zheng J., Yi H., Yang B., Li T., Feng X., et al. (2021). dbCAN-PUL: a database of experimentally characterized CAZyme gene clusters and their substrates. Nucleic Acids Res. 49 D523–D528. 10.1093/nar/gkaa742 PubMed DOI PMC

Ayub N. D., Tribelli P. M., López N. I. (2009). Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13 59–66. 10.1007/s00792-008-0197-z PubMed DOI

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC

Baraúna R. A., Freitas D. Y., Pinheiro J. C., Folador A. R. C., Silva A. (2017). A proteomic perspective on the bacterial adaptation to cold: integrating OMICs data of the psychrotrophic bacterium Exiguobacterium antarcticum B7. Proteomes 5:9. 10.3390/proteomes5010009 PubMed DOI PMC

Barria C., Malecki M., Arraiano C. M. Y. (2013). Bacterial adaptation to cold. Microbiology 159 2437–2443. 10.1099/mic.0.052209-52200 PubMed DOI

Barrow G. I., Feltham R. K. A. (eds) (1993). Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd Edn. Cambridge: Cambridge University Press, 10.1017/CBO9780511527104 DOI

Benaud N., Edwards R. J., Amos T. G., D’Agostino P. M., Gutiérrez-Chávez C., Montgomery K., et al. (2020). Antarctic desert soil bacteria exhibit high novel natural product potential, evaluated through long-read genome sequencing and comparative genomics. Environ. Microbiol. 23 3646–3664. 10.1111/1462-2920.15300 PubMed DOI

Bengoechea J. A., Skurnik M. (2000). Temperature-regulated efflux pump/potassium antiporter system mediates resistance to cationic antimicrobial peptides in Yersinia. Mol. Microbiol. 37 67–80. 10.1046/j.1365-2958.2000.01956.x PubMed DOI

Bernardet J.-F., Bowman J. P. (2015). “Flavobacterium,” in Bergey’s Manual of Systematics of Archaea and Bacteria, eds Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., et al. (Hoboken, NJ: John Wiley & Sons, Ltd; ), 10.1002/9781118960608.gbm00312 DOI

Bernardet J.-F., Nakagawa Y., Holmes B., and Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes (2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol. 52 1049–1070. 10.1099/00207713-52-3-1049 PubMed DOI

Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. (1996). Cutting a gordian knot: emended classification and description of the genus flavobacterium, emended description of the family flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int. J. Sys. Evol. Microbiol. 46 128–148. 10.1099/00207713-46-1-128 DOI

Besemer J., Lomsadze A., Borodovsky M. (2001). GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29 2607–2618. 10.1093/nar/29.12.2607 PubMed DOI PMC

Biswas A., Staals R. H. J., Morales S. E., Fineran P. C., Brown C. M. (2016). CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17:356. 10.1186/s12864-016-2627-2620 PubMed DOI PMC

Blin K., Shaw S., Kloosterman A. M., Charlop-Powers Z., van Wezel G. P., Medema M. H., et al. (2021). antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49 W29–W35. 10.1093/nar/gkab335 PubMed DOI PMC

Boetius A., Anesio A. M., Deming J. W., Mikucki J. A., Rapp J. Z. (2015). Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13 677–690. 10.1038/nrmicro3522 PubMed DOI

Brooks K., Sodeman T. (1974). A rapid method for determining decarboxylase and dihydrolase activity. J. Clin. Pathol. 27 148–152. PubMed PMC

Busse H.-J., Bunka S., Hensel A., Lubitz W. (1997). Discrimination of members of the family pasteurellaceae based on polyamine patterns. Int. J. Sys. Evol. Microbiol. 47 698–708. 10.1099/00207713-47-3-698 DOI

Busse J., Auling G. (1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst. Appl. Microbiol. 11 1–8. 10.1016/S0723-2020(88)80040-80047 DOI

Cabello F. C., Godfrey H. P., Buschmann A. H., Dölz H. J. (2016). Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 16 e127–e133. 10.1016/S1473-3099(16)00100-106 PubMed DOI

Casas V., Maloy S. (2018). “The role of phage in the adaptation of bacteria to new environmental niches,” in Molecular Mechanisms of Microbial Evolution Grand Challenges in Biology and Biotechnology, ed. Rampelotto P. H. (Cham: Springer International Publishing; ), 267–306. 10.1007/978-3-319-69078-0_11 DOI

Cavicchioli R., Charlton T., Ertan H., Mohd Omar S., Siddiqui K. S., Williams T. J. (2011). Biotechnological uses of enzymes from psychrophiles. Microb. Biotechnol. 4 449–460. 10.1111/j.1751-7915.2011.00258.x PubMed DOI PMC

Christensen W. B. (1946). Urea decomposition as a means of differentiating proteus and paracolon cultures from each other and from Salmonella and Shigella Types 1. J. Bacteriol. 52 461–466. PubMed PMC

Christner B. C., Mosley-Thompson E., Thompson L. G., Zagorodnov V., Sandman K., Reeve J. N. (2000). Recovery and identification of viable bacteria immured in glacial ice. Icarus 144 479–485. 10.1006/icar.1999.6288 DOI

Ciufo S., Kannan S., Sharma S., Badretdin A., Clark K., Turner S., et al. (2018). Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68 2386–2392. 10.1099/ijsem.0.002809 PubMed DOI PMC

Clarridge J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17 840–862. 10.1128/CMR.17.4.840-862.2004 PubMed DOI PMC

CLSI (2015). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement (M100-S25). Wayne, PA: Clinical and Laboratory Standards Institute.

Cox G., Stogios P. J., Savchenko A., Wright G. D. (2015). Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia. mBio 6:e02180-14. 10.1128/mBio.02180-2114 PubMed DOI PMC

Dong K., Chen F., Du Y., Wang G. (2013). Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int. J. Syst. Evol. Microbiol. 63 886–892. 10.1099/ijs.0.039974-39970 PubMed DOI

Doster E., Lakin S. M., Dean C. J., Wolfe C., Young J. G., Boucher C., et al. (2020). MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 48 D561–D569. 10.1093/nar/gkz1010 PubMed DOI PMC

Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17 7843–7853. PubMed PMC

EUCAST (2017). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 7.1. Sweden: The European Committee on Antimicrobial Susceptibility Testing.

Ewing W. H. (1960). Enterobacteriaceae. Biochemical Methods for Group Differentiation. Public Health Service Publication No. 734. Atlanta, ATL: CDC.

Fox G. E., Wisotzkey J. D., Jurtshuk P. (1992). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42 166–170. 10.1099/00207713-42-1-166 PubMed DOI

Franceschini N., Boschi L., Pollini S., Herman R., Perilli M., Galleni M., et al. (2001). Characterization of OXA-29 from Legionella (Fluoribacter) gormanii: molecular class D β-lactamase with unusual properties. Antimicrob. Agents Chemother 45 3509–3516. 10.1128/AAC.45.12.3509-3516.2001 PubMed DOI PMC

Gilardi G. L. (ed.) (1985). Nonfermentative Gram-negative Rods: Laboratory Identification and Clinical Aspects. New York, NY: M. Dekker.

González-Aravena M., Urtubia R., Campo K. D., Lavín P., Wong C. M. V. L., Cárdenas C. A., et al. (2016). Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin. Antarct. Sci. 28 261–268. 10.1017/S0954102016000109 DOI

Gorter F. A., Scanlan P. D., Buckling A. (2016). Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments. Biol. Lett. 12:20150879. 10.1098/rsbl.2015.0879 PubMed DOI PMC

Gualerzi C. O., Maria Giuliodori A., Pon C. L. (2003). Transcriptional and post-transcriptional control of cold-shock genes. J. Mol. Biol. 331 527–539. 10.1016/S0022-2836(03)00732-730 PubMed DOI

Guo Y., Zheng W., Rong X., Huang Y. (2008). A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int. J. Syst. Evol. Microbiol. 58 149–159. 10.1099/ijs.0.65224-65220 PubMed DOI

Gupta S. K., Padmanabhan B. R., Diene S. M., Lopez-Rojas R., Kempf M., Landraud L., et al. (2014). ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents. Chemother 58 212–220. 10.1128/AAC.01310-1313 PubMed DOI PMC

Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29 1072–1075. 10.1093/bioinformatics/btt086 PubMed DOI PMC

Hao S., Yang P., Han M., Xu J., Yu S., Chen C., et al. (2018). Data-mining of antibiotic resistance genes provides insight into the community structure of ocean microbiome. bioRxiv [preprint] 10.1101/246033 DOI

Hesami S., Metcalf D. S., Lumsden J. S., MacInnes J. I. (2011). Identification of cold-temperature-regulated genes in Flavobacterium psychrophilum. Appl. Environ. Microbiol. 77 1593–1600. 10.1128/AEM.01717-1710 PubMed DOI PMC

Huerta-Cepas J., Szklarczyk D., Heller D., Hernández-Plaza A., Forslund S. K., Cook H., et al. (2019). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47 D309–D314. 10.1093/nar/gky1085 PubMed DOI PMC

Hugh R., Leifson E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram negative bacteria. J. Bacteriol. 66 24–26. PubMed PMC

Hughes D., Andersson D. I. (2017). Environmental and genetic modulation of the phenotypic expression of antibiotic reistance. FEMS Microbiol. Rev. 41 374–391. 10.1093/femsre/fux004 PubMed DOI PMC

Hurwitz B. L., Brum J. R., Sullivan M. B. (2015). Depth-stratified functional and taxonomic niche specialization in the “core” and “flexible”. Pacific Ocean virome. ISME J. 9 472–484. 10.1038/ismej.2014.143 PubMed DOI PMC

Ibrahim A. M., Hamouda R. A., El-Naggar N. E. A., et al. (2021). Bioprocess development for enhanced endoglucanase production by newly isolated bacteria, purification, characterization and in-vitro efficacy as anti-biofilm of Pseudomonas aeruginosa. Sci. Rep. 11:9754. 10.1038/s41598-021-87901-87909 PubMed DOI PMC

Jain C., Rodriguez-R L. M., Phillippy A. M., Konstantinidis K. T., Aluru S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9:5114. 10.1038/s41467-018-07641-7649 PubMed DOI PMC

Jang G. I., Lee I., Ha T. T., Yoon S. J., Hwang Y. J., Yi H., et al. (2020). Pseudomonas neustonica sp. nov., isolated from the sea surface microlayer of the Ross Sea (Antarctica). Int. J. Syst. Evol. Microbiol. 70 3832–3838. 10.1099/ijsem.0.004240 PubMed DOI

Jara D., Bello-Toledo H., Domínguez M., Cigarroa C., Fernández P., Vergara L., et al. (2020). Antibiotic resistance in bacterial isolates from freshwater samples in Fildes Peninsula, King George Island, Antarctica. Sci. Rep. 10:3145. 10.1038/s41598-020-60035-60030 PubMed DOI PMC

Jia B., Raphenya A. R., Alcock B., Waglechner N., Guo P., Tsang K. K., et al. (2017). CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45 D566–D573. 10.1093/nar/gkw1004 PubMed DOI PMC

Jung Y. H., Lee Y. K., Lee H. K., Lee K., Im H. (2018). CspB of an arctic bacterium, Polaribacter irgensii KOPRI 22228, confers extraordinary freeze-tolerance. Braz. J. Microbiol. 49 97–103. 10.1016/j.bjm.2017.04.006 PubMed DOI PMC

Kämpfer P., Busse H.-J., McInroy J. A., Xu J., Glaeser S. P. (2015). Flavobacterium nitrogenifigens sp. nov., isolated from switchgrass (Panicum virgatum). Int. J. Syst. Evol. Microbiol. 65 2803–2809. 10.1099/ijs.0.000330 PubMed DOI

Kämpfer P., Glaeser S. P., McInroy J. A., Xu J., Busse H.-J., Clermont D., et al. (2020). Flavobacterium panici sp. nov. isolated from the rhizosphere of the switchgrass Panicum virgatum. Int. J. Syst. Evol. Microbiol. 70 5824–5831. 10.1099/ijsem.0.004482 PubMed DOI

Kämpfer P., Lodders N., Martin K., Avendaño-Herrera R. (2012). Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int. J. Syst. Evol. Microbiol. 62 1402–1408. 10.1099/ijs.0.033431-33430 PubMed DOI

Kautsar S. A., Blin K., Shaw S., Navarro-Muñoz J. C., Terlouw B. R., van der Hooft J. J. J., et al. (2020). MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48 D454–D458. 10.1093/nar/gkz882 PubMed DOI PMC

Kawai Y., Yano I., Kaneda K. (1988). Various kinds of lipoamino acids including a novel serine-containing lipid in an opportunistic pathogen Flavobacterium. their structures and biological activities on erythrocytes. Eur. J. Biochem. 171 73–80. 10.1111/j.1432-1033.1988.tb13760.x PubMed DOI

Kim E. J., Kim J. E., Hwang J. S., Kim I.-C., Lee S. G., Kim S., et al. (2019). Increased productivity and antifreeze activity of ice-binding protein from Flavobacterium frigoris PS1 produced using Escherichia coli as bioreactor. Appl. Biochem. Microbiol. 55 489–494. 10.1134/S0003683819050077 DOI

Kim J.-J., Kanaya E., Weon H.-Y., Koga Y., Takano K., Dunfield P. F., et al. (2012). Flavobacterium compostarboris sp. nov., isolated from leaf-and-branch compost, and emended descriptions of Flavobacterium hercynium, Flavobacterium resistens and Flavobacterium johnsoniae. Int. J. Syst. Evol. Microbiol. 62 2018–2024. 10.1099/ijs.0.032920-32920 PubMed DOI

Kimura H., Young C. R., Martinez A., Delong E. F. (2011). Light-induced transcriptional responses associated with proteorhodopsin-enhanced growth in a marine Flavobacterium. ISME J. 5 1641–1651. 10.1038/ismej.2011.36 PubMed DOI PMC

Kopalová K., Nedbalová L., Nıvlt D., Elster J., Vijver B. V., de. (2013). Diversity, ecology and biogeography of the freshwater diatom communities from Ulu Peninsula (James Ross Island, NE Antarctic Peninsula). Polar Biol. 36 933–948. 10.1007/s00300-013-1317-1315 DOI

Kosina M., Barták M., Mašlaòová I., Pascutti A. V., Šedo O., Lexa M., et al. (2013). Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from antarctica. Curr. Microbiol. 67 637–646. 10.1007/s00284-013-0406-406 PubMed DOI

Kumar N., Grogan P., Chu H., Christiansen C. T., Walker V. K. (2013). The effect of freeze-thaw conditions on arctic soil bacterial communities. Biology (Basel) 2 356–377. 10.3390/biology2010356 PubMed DOI PMC

Kurup V. P., Babcock J. B. (1979). Use of casein, tyrosine, and hypoxanthine in the identification of nonfermentative gram-negative bacilli. Med. Microbiol. Immunol. 167 71–75. 10.1007/BF02123556 PubMed DOI

Langmead B., Salzberg S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nat. Methods 9 357–359. 10.1038/nmeth.1923 PubMed DOI PMC

Lapage S. P., Shelton J. E., Mitchell T. G. (1970). “Chapter I media for the maintenance and preservation of bacteria,” in Methods in Microbiology, eds Norris J. R., Ribbons D. W. (Cambridge, MA: Academic Press; ), 1–133. 10.1016/S0580-9517(08)70539-7 DOI

Larsbrink J., Zhu Y., Kharade S. S., Kwiatkowski K. J., Eijsink V. G. H., Koropatkin N. M., et al. (2016). A polysaccharide utilization locus from Flavobacterium johnsoniae enables conversion of recalcitrant chitin. Biotechnol. Biofuels 9:260. 10.1186/s13068-016-0674-z PubMed DOI PMC

Lee J. Y., Li Z., Miller E. S. (2017). Vibrio Phage KVP40 encodes a functional NAD+ Salvage pathway. J. Bacteriol. 199:e00855-16. 10.1128/JB.00855-816 PubMed DOI PMC

Lee S., Weon H.-Y., Han K., Ahn T.-Y. (2012). Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile. Int. J. Syst. Evol. Microbiol. 62 2378–2382. 10.1099/ijs.0.032698-32690 PubMed DOI

Lefort V., Desper R., Gascuel O. (2015). FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32 2798–2800. 10.1093/molbev/msv150 PubMed DOI PMC

Li A.-Z., Han X.-B., Zhang M.-X., Zhou Y., Chen M., Yao Q., et al. (2019). Culture-Dependent and -independent analyses reveal the diversity, structure, and assembly mechanism of benthic bacterial community in the Ross Sea, Antarctica. Front. Microbiol. 10:2523. 10.3389/fmicb.2019.02523 PubMed DOI PMC

Li W., O’Neill K. R., Haft D. H., DiCuccio M., Chetvernin V., Badretdin A., et al. (2021). RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res. 49 D1020–D1028. 10.1093/nar/gkaa1105 PubMed DOI PMC

Liu Q., Liu H.-C., Zhou Y.-G., Xin Y.-H. (2019). Microevolution and adaptive strategy of psychrophilic species Flavobacterium bomense sp. nov. isolated from glaciers. Front. Microbiol. 10:1069. 10.3389/fmicb.2019.01069 PubMed DOI PMC

Lowe G. H. (1962). The rapid detection of lactose fermentation in paracolon organisms by the demonstration of beta-D-galactosidase. J. Med. Lab. Technol. 19 21–25. PubMed

McBride M. J., Xie G., Martens E. C., Lapidus A., Henrissat B., Rhodes R. G., et al. (2009). Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium johnsoniae as revealed by genome sequence analysis. Appl. Environ. Microbiol. 75 6864–6875. 10.1128/AEM.01495-1499 PubMed DOI PMC

McCann C. M., Christgen B., Roberts J. A., Su J.-Q., Arnold K. E., Gray N. D., et al. (2019). Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ. Int. 125 497–504. 10.1016/j.envint.2019.01.034 PubMed DOI

McCarren J., DeLong E. F. (2007). Proteorhodopsin photosystem gene clusters exhibit co-evolutionary trends and shared ancestry among diverse marine microbial phyla. Environ. Microbiol. 9 846–858. 10.1111/j.1462-2920.2006.01203.x PubMed DOI

Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. 10.1186/1471-2105-14-60 PubMed DOI PMC

Meier-Kolthoff J. P., Göker M. (2019). TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10:2182. 10.1038/s41467-019-10210-10213 PubMed DOI PMC

Na S.-I., Kim Y. O., Yoon S.-H., Ha S., Baek I., Chun J. (2018). UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56 280–285. 10.1007/s12275-018-8014-8016 PubMed DOI

Naas T., Bellais S., Nordmann P. (2003). Molecular and biochemical characterization of a carbapenem-hydrolysing β-lactamase from Flavobacterium johnsoniae. J. Antimicrob. Chemother. 51 267–273. 10.1093/jac/dkg069 PubMed DOI

Nedbalová L., Nıvlt D., Kopáèek J., Šobr M., Elster J. (2013). Freshwater lakes of Ulu Peninsula, James Ross Island, north-east Antarctic Peninsula: origin, geomorphology and physical and chemical limnology. Antarct. Sci. 25 358–372. 10.1017/S0954102012000934 DOI

Nett M., König G. M. (2007). The chemistry of gliding bacteria. Nat. Prod. Rep. 24 1245–1261. 10.1039/B612668P PubMed DOI

Oberhofer T. R., Rowen J. W. (1974). Acetamide agar for differentiation of nonfermentative bacteria. Appl. Microbiol. 28 720–721. PubMed PMC

Orellana-Saez M., Pacheco N., Costa J. I., Mendez K. N., Miossec M. J., Meneses C., et al. (2019). In-Depth genomic and phenotypic characterization of the antarctic psychrotolerant strain Pseudomonas sp. MPC6 reveals unique metabolic features, plasticity, and biotechnological potential. Front. Microbiol. 10:1154. 10.3389/fmicb.2019.01154 PubMed DOI PMC

Owens J. J. (1974). The egg yolk reaction produced by several species of bacteria. J. Appl. Bacteriol. 37 137–148. 10.1111/j.1365-2672.1974.tb00424.x PubMed DOI

Pacova Z., Kocur. (1984). New medium for detection of esterase and gelatinase activity. Zentralbl. Bakteriol. Mikrobiol. Hyg. Ser. A 258 69–73. 10.1016/S0176-6724(84)80010-80013 PubMed DOI

Parte A. C., Sardà Carbasse J., Meier-Kolthoff J. P., Reimer L. C., Göker M. (2020). List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70 5607–5612. 10.1099/ijsem.0.004332 PubMed DOI PMC

Pasamontes L., Hug D., Tessier M., Hohmann H.-P., Schierle J., van Loon A. P. G. M. (1997). Isolation and characterization of the carotenoid biosynthesis genes of Flavobacterium sp. strain R1534. Gene 185 35–41. 10.1016/S0378-1119(96)00624-625 PubMed DOI

Peck R. F., Echavarri-Erasun C., Johnson E. A., Ng W. V., Kennedy S. P., Hood L., et al. (2001). brp and blh are required for synthesis of the retinal cofactor of bacteriorhodopsin in Halobacterium salinarum. J. Biol. Chem. 276 5739–5744. 10.1074/jbc.M009492200 PubMed DOI

Piette F., D’Amico S., Struvay C., Mazzucchelli G., Renaut J., Tutino M. L., et al. (2010). Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol. Microbiol. 76 120–132. 10.1111/j.1365-2958.2010.07084.x PubMed DOI

Reddy G. S. N., Matsumoto G. I., Schumann P., Stackebrandt E., Shivaji S. (2004). Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 54 713–719. 10.1099/ijs.0.02827-2820 PubMed DOI

Rodriguez-R L. M., Gunturu S., Harvey W. T., Rosselló-Mora R., Tiedje J. M., Cole J. R., et al. (2018). The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 46 W282–W288. 10.1093/nar/gky467 PubMed DOI PMC

Rodriguez-R L. M., Konstantinidis K. T. (2016). The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 4:e1900v1. 10.7287/peerj.preprints.1900v1 DOI

Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V. (2015). Flavobacterium maris sp. nov. isolated from shallow sediments of the Sea of Japan. Arch. Microbiol. 197 941–947. 10.1007/s00203-015-1128-x PubMed DOI

Sasser M. (1990). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, NJ: MIDI Inc.

Schöner T. A., Gassel S., Osawa A., Tobias N. J., Okuno Y., Sakakibara Y., et al. (2016). Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. ChemBioChem. 17 247–253. 10.1002/cbic.201500474 PubMed DOI

Shapiro J. W., Williams E. S. C. P., Turner P. E. (2016). Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli. PeerJ 4:e2060. 10.7717/peerj.2060 PubMed DOI PMC

Song W., Sun H.-X., Zhang C., Cheng L., Peng Y., Deng Z., et al. (2019). Prophage hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 47 W74–W80. 10.1093/nar/gkz380 PubMed DOI PMC

Stolz A., Busse H.-J., Kämpfer P. (2007). Pseudomonas knackmussii sp. nov. Int. J. Syst. Evol. Microbiol. 57 572–576. 10.1099/ijs.0.64761-64760 PubMed DOI

Taboada B., Estrada K., Ciria R., Merino E. (2018). Operon-mapper: a web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 34 4118–4120. 10.1093/bioinformatics/bty496 PubMed DOI PMC

Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30 2725–2729. 10.1093/molbev/mst197 PubMed DOI PMC

Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E. P., Zaslavsky L., et al. (2016). NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44 6614–6624. 10.1093/nar/gkw569 PubMed DOI PMC

Thierauf A., Perez G., Maloy S. (2009). “Generalized transduction,” in Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions Methods in Molecular BiologyTM, eds Clokie M. R. J., Kropinski A. M. (Totowa, NJ: Humana Press; ), 267–286. 10.1007/978-1-60327-164-6_23 DOI

Tindall B. J. (1990b). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 66 199–202. 10.1111/j.1574-6968.1990.tb03996.x DOI

Tindall B. J. (1990a). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Sys. Appl. Microbiol. 13 128–130. 10.1016/S0723-2020(11)80158-X DOI

Tribelli P. M., Pezzoni M., Brito M. G., Montesinos N. V., Costa C. S., López N. I. (2020). Response to lethal UVA radiation in the Antarctic bacterium Pseudomonas extremaustralis: polyhydroxybutyrate and cold adaptation as protective factors. Extremophiles 24 265–275. 10.1007/s00792-019-01152-1151 PubMed DOI

Van Goethem M. W., Pierneef R., Bezuidt O. K. I., Van De Peer Y., Cowan D. A., Makhalanyane T. P. (2018). A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6:40. 10.1186/s40168-018-0424-425 PubMed DOI PMC

Wahli T., Madsen L. (2018). Flavobacteria, a never ending threat for fish: a review. Curr. Clin. Micro. Rpt. 5 26–37. 10.1007/s40588-018-0086-x DOI

Waschulin V., Borsetto C., James R., Newsham K. K., Donadio S., Corre C., et al. (2020). Metabolic potential of uncultured Antarctic soil bacteria revealed through long-read metagenomic sequencing. bioRxiv [preprint] 10.1101/2020.12.09.416412 PubMed DOI PMC

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis, 2nd Edn. Berlin: Springer International Publishing, 10.1007/978-3-319-24277-4 DOI

Wilkins D., Kurtz Z. (2019). gggenes: Draw Gene Arrow Maps in “ggplot2”. R package version 0.4. 0.

Wilson S. L., Kelley D. L., Walker V. K. (2006). Ice-active characteristics of soil bacteria selected by ice-affinity. Environ. Microbiol. 8 1816–1824. 10.1111/j.1462-2920.2006.01066.x PubMed DOI

Yi H., Chun J. (2006). Flavobacterium weaverense sp. nov. and Flavobacterium segetis sp. nov., novel psychrophiles isolated from the Antarctic. Int. J. Syst. Evol. Microbiol. 56 1239–1244. 10.1099/ijs.0.64164-64160 PubMed DOI

Yin Y., Mao X., Yang J., Chen X., Mao F., Xu Y. (2012). dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40 W445–W451. 10.1093/nar/gks479 PubMed DOI PMC

Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., et al. (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67 1613–1617. 10.1099/ijsem.0.001755 PubMed DOI PMC

Yoshizawa S., Kawanabe A., Ito H., Kandori H., Kogure K. (2012). Diversity and functional analysis of proteorhodopsin in marine Flavobacteria. Environ. Microbiol. 14 1240–1248. 10.1111/j.1462-2920.2012.02702.x PubMed DOI

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., et al. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother 67 2640–2644. 10.1093/jac/dks261 PubMed DOI PMC

Zhang H., Yohe T., Huang L., Entwistle S., Wu P., Yang Z., et al. (2018). dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 46 W95–W101. 10.1093/nar/gky418 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...