Pseudomonas rossensis sp. nov., a novel psychrotolerant species produces antimicrobial agents targeting resistant clinical isolates of Pseudomonas aeruginosa

. 2025 ; 8 () : 100353. [epub] 20250125

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39968173
Odkazy

PubMed 39968173
PubMed Central PMC11833414
DOI 10.1016/j.crmicr.2025.100353
PII: S2666-5174(25)00015-X
Knihovny.cz E-zdroje

The extreme conditions of the Antarctic environment have driven the evolution of highly specialized microbial communities with unique adaptations. In this study, we characterized five Pseudomonas isolates from James Ross Island, which displayed notable taxonomic and metabolite features. Phylogenomic analysis revealed that strain P2663T occupies a distinct phylogenetic position within the Pseudomonas genus, related to species Pseudomonas svalbardensis, Pseudomonas silesiensis, Pseudomonas mucoides, Pseudomonas prosekii, and Pseudomonas gregormendelii. The novelty of five Antarctic isolates was further confirmed through analyses of housekeeping genes, ribotyping, and REP-PCR profiling. MALDI-TOF MS analysis identified 11 unique mass spectrometry signals shared by the Antarctic isolates, which were not detected in other related species. Additionally, chemotaxonomic characterization, including fatty acid composition, demonstrated similarities with related Pseudomonas species. Phenotypic assessments revealed distinctive biochemical and physiological traits. In-depth genomic analysis of strain P2663T uncovered numerous genes which could be involved in survival in extreme Antarctic conditions, including those encoding cold-shock and heat-shock proteins, oxidative and osmotic stress response proteins, and carotenoid-like pigments. Genome mining further revealed several biosynthetic gene clusters, some of which are associated with antimicrobial activity. Functional assays supported the antimicrobial capabilities of this novel species, showing antagonistic effects against clinical isolates of Pseudomonas aeruginosa, possibly mediated by tailocins (phage tail-like particles). This comprehensive polyphasic study characterized a new cold-adapted species, for which we propose the name Pseudomonas rossensis sp. nov.

Zobrazit více v PubMed

Ait Tayeb L., Ageron E., Grimont F., Grimont P.A.D. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res. Microbiol. 2005;156:763–773. doi: 10.1016/j.resmic.2005.02.009. PubMed DOI

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Reich C., Stevens R., Vassieva O., Vonstein V., Wilke A., Zagnitko O. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC

Baltrus D., Clark M., Hockett K., Mollico M., Smith C., Weaver S. Prophylactic application of tailocins prevents infection by Pseudomonas syringae. Phytopathology. 2021 doi: 10.1094/PHYTO-06-21-0269-R. PubMed DOI

Barros J., Becerra J., González C., Martínez M. Antibacterial metabolites synthesized by psychrotrophic bacteria isolated from cold-freshwater environments. Folia Microbiol. 2013;58:127–133. doi: 10.1007/s12223-012-0190-x. PubMed DOI

Bassetti M., Vena A., Giacobbe D.R., Castaldo N. Management of infections caused by multidrug-resistant gram-negative pathogens: recent advances and future directions. Arch. Med. Res. 2021;52:817–827. doi: 10.1016/j.arcmed.2021.09.002. PubMed DOI

Berti A.D., Thomas M.G. Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J. Bacteriol. 2009;191:4594–4604. doi: 10.1128/JB.00457-09. PubMed DOI PMC

Bhattacharjee R., Nandi A., Sinha A., Kumar H., Mitra D., Mojumdar A., Patel P., Jha E., Mishra S., Rout P.K., Panda P.K., Suar M., Verma S.K. Phage-tail-like bacteriocins as a biomedical platform to counter anti-microbial resistant pathogens. Biomed. Pharmacother. 2022;155 doi: 10.1016/j.biopha.2022.113720. PubMed DOI

Blin K., Shaw S., Kloosterman A.M., Charlop-Powers Z., van Wezel G.P., Medema M.H., Weber T. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021;49:W29–W35. doi: 10.1093/nar/gkab335. PubMed DOI PMC

Butler A., Harder T., Ostrowski A.D., Carrano C.J. Photoactive siderophores: structure, function and biology. J. Inorg. Biochem. 2021;221 doi: 10.1016/j.jinorgbio.2021.111457. PubMed DOI

Carrión O., Miñana-Galbis D., Montes M.J., Mercadé E. Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the Antarctic. Int. J. Syst. Evol. Microbiol. 2011;61:2401–2405. doi: 10.1099/ijs.0.024919-0. PubMed DOI

Chatterjee P., Davis E., Yu F., James S., Wildschutte J.H., Wiegmann D.D., Sherman D.H., McKay R.M., LiPuma J.J., Wildschutte H. Environmental pseudomonads inhibit cystic fibrosis patient-derived Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2017;83 doi: 10.1128/AEM.02701-16. PubMed DOI PMC

Chaudhari N., Gupta V., Dutta C. BPGA- an ultra-fast pan-genome analysis pipeline. Sci. Rep. 2016;6 doi: 10.1038/srep24373. PubMed DOI PMC

Chen I.-M.A., Markowitz V.M., Chu K., Palaniappan K., Szeto E., Pillay M., Ratner A., Huang J., Andersen E., Huntemann M., Varghese N., Hadjithomas M., Tennessen K., Nielsen T., Ivanova N.N., Kyrpides N.C. IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–D516. doi: 10.1093/nar/gkw929. PubMed DOI PMC

Chown S.L., Clarke A., Fraser C.I., Cary S.C., Moon K.L., McGeoch M.A. The changing form of Antarctic biodiversity. Nature. 2015;522:431–438. doi: 10.1038/nature14505. PubMed DOI

Cornelis P., Matthijs S. Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol. 2002;4:787–798. doi: 10.1046/j.1462-2920.2002.00369.x. PubMed DOI

Cowan D.A., Tow L.A. Endangered antarctic environments. Annu. Rev. Microbiol. 2004;58:649–690. doi: 10.1146/annurev.micro.57.030502.090811. PubMed DOI

Devereux R., Wilkinson S.S., et al. In: Molecular Microbial Ecology Manual. second ed. Kowalchuk G.A., et al., editors. Kluwer Academic Publishers; London: 2004. Amplification of ribosomal RNA sequences; pp. 509–522.

Diallo S., Crépin A., Barbey C., Orange N., Burini J.-F., Latour X. Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol. Ecol. 2011;75:351–364. doi: 10.1111/j.1574-6941.2010.01023.x. PubMed DOI

Duman M., Mulet M., Altun S., Saticioglu I.B., Gomila M., Lalucat J., Garcia-Valdes E. Pseudomonas piscium sp. nov., Pseudomonas pisciculturae sp. nov., Pseudomonas mucoides sp. nov. and Pseudomonas neuropathica sp. nov. isolated from rainbow trout. Int. J. Syst. Evol. Microbiol. 2019;71 doi: 10.1099/ijsem.0.004714. PubMed DOI

Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. doi: 10.1093/bioinformatics/btq461. PubMed DOI

Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Elmanzalawi M., Fujisawa T., Mori H., Nakamura Y., Tanizawa Y. DFAST_QC: quality assessment and taxonomic identification tool for prokaryotic genomes. BMC Bioinform. 2025;26:3. doi: 10.1186/s12859-024-06030-y. PubMed DOI PMC

Fernandez M., Godino A., Príncipe A., Morales G.M., Fischer S. Effect of a Pseudomonas fluorescens tailocin against phytopathogenic Xanthomonas observed by atomic force microscopy. J. Biotechnol. 2017;256:13–20. doi: 10.1016/j.jbiotec.2017.07.002. PubMed DOI

Freiwald A., Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009;4:732–742. doi: 10.1038/nprot.2009.37. PubMed DOI

Fuchs T.M., Neuhaus K., Scherer S. In: The Prokaryotes Prokaryotic Communities and Ecophysiology. fourth ed. Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F., editors. Springer; Berlin: 2013. Life at low temperatures; pp. 375–420.

García-Valdés E., Lalucat J. Springer; New York: 2016. Pseudomonas: Molecular Phylogeny and Current Taxonomy; pp. 1–23. DOI

Garrido-Sanz D., Arrebola E., Martínez-Granero F., García-Méndez S., Muriel C., Blanco-Romero E., Martín M., Rivilla R., Redondo-Nieto M. Classification of isolates from the Pseudomonas fluorescens complex into phylogenomic groups based inGroup-specific markers. Front. Microbiol. 2017;8:413. doi: 10.3389/fmicb.2017.00413. PubMed DOI PMC

Ge H.Y., Zhang Y.H., Hu Y.Q., Li H.R., Han W., Du Y., Hu T., Luo W., Zeng Y.X. Pseudomonas paeninsulae sp. nov. And Pseudomonas svalbardensis sp. nov., isolated from Antarctic intertidal sediment and Arctic soil, respectively. Int. J. Syst. Evol. Microbiol. 2024;74(7) doi: 10.1099/ijsem.0.006466. PubMed DOI

Gevers D., Huys G., Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 2001;205:31–36. doi: 10.1111/j.1574-6968.2001.tb10921.x. PubMed DOI

Gilichinsky D.A., Wilson G.S., Friedmann E.I., McKay C.P., Sletten R.S., Rivkina E.M., Vishnivetskaya T.A., Erokhina L.G., Ivanushkina N.E., Kochkina G.A., Shcherbakova V.A., Soina V.S., Spirina E.V., Vorobyova E.A., Fyodorov-Davydov D.G., Hallet B., Ozerskaya S.M., Sorokovikov V.A., Laurinavichyus K.S., Shatilovich A.V., Chanton J.P., Ostroumov V.E., Tiedje J.M. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology. 2007;7:275–311. doi: 10.1089/ast.2006.0012. PubMed DOI

Gomila M., Peña A., Mulet M., Lalucat J., García-Valdés E. Phylogenomics and systematics in Pseudomonas. Front. Microbiol. 2015;6:214. doi: 10.3389/fmicb.2015.00214. PMID: 26074881. PubMed DOI PMC

Goodchild A., Saunders N.F.W., Ertan H., Raftery M., Guilhaus M., Curmi P.M.G., Cavicchioli R. A proteomic determination of cold adaptation in the Antarctic archaeon, Methanococcoides burtonii. Mol. Microbiol. 2004;53:309–321. doi: 10.1111/j.1365-2958.2004.04130.x. PubMed DOI

Harrison F., Buckling A. Cooperative production of siderophores by Pseudomonas aeruginosa. FBL. 2009;14:4113–4126. doi: 10.2741/3516. PubMed DOI

Holochová P., Mašlaňová I., Sedláček I., Švec P., Králová S., Kovařovic V., Busse H.-J., Staňková E., Barták M., Pantůček R. Description of Massilia rubra sp. nov., Massilia aquatica sp. nov., Massilia mucilaginosa sp. nov., Massilia frigida sp. nov., and one Massilia genomospecies isolated from Antarctic streams, lakes and regoliths. Syst. Appl. Microbiol. 2020;43 doi: 10.1016/j.syapm.2020.126112. PubMed DOI

Jain C., Rodriguez-R L.M., Phillippy A.M., Konstantinidis K.T., Aluru S. High throughput ANI analysis of 90 K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018;9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC

Jayaseelan S., Ramaswamy D., Dharmaraj S. Pyocyanin: production, applications, challenges and new insights. World J. Microbiol. Biotechnol. 2014;30:1159–1168. doi: 10.1007/s11274-013-1552-5. PubMed DOI

Kaminski M.A., Furmanczyk E.M., Sobczak A., Dziembowski A., Lipinski L. Pseudomonas silesiensis sp. nov. strain A3T isolated from a biological pesticide sewage treatment plant and analysis of the complete genome sequence. Syst. Appl. Microbiol. 2018;41:13–22. doi: 10.1016/j.syapm.2017.09.002. PubMed DOI

Kosina M., Barták M., Mašlaňová I., Pascutti A.V., Sedo O., Lexa M., Sedláček I. Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr. Microbiol. 2013;67:637–646. doi: 10.1007/s00284-013-0406-6. PubMed DOI

Kosina M., Švec P., Černohlávková J., Barták M., Snopková K., De Vos P., Sedláček I. Description of Pseudomonas gregormendelii sp. nov., a novel psychrotrophic bacterium from James Ross Island, Antarctica. Curr. Microbiol. 2016;73:84–90. doi: 10.1007/s00284-016-1029-5. PubMed DOI

Králová S., Busse H.-J., Bezdíček M., Sandoval-Powers M., Nykrýnová M., Staňková E., Krsek D., Sedláček I. Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., two multidrug-resistant psychrotrophic species isolated from Antarctica. Front. Microbiol. 2021;12:729977. doi: 10.3389/fmicb.2021.729977. PubMed DOI PMC

Lavermicocca P., Lonigro S.L., Valerio F., Evidente A., Visconti A. Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei. Appl. Environ. Microbiol. 2002;68:1403–1407. doi: 10.1128/AEM.68.3.1403-1407.2002. PubMed DOI PMC

Laybourn-Parry J., Pearce D. Heterotrophic bacteria in Antarctic lacustrine and glacial environments. Polar. Biol. 2016;39:2207–2225. doi: 10.1007/s00300-016-2011-1. DOI

López N.I., Pettinari M.J., Stackebrandt E., Tribelli P.M., Põtter M., Steinbüchel A., Méndez B.S. Pseudomonas extremaustralis sp. nov., a poly(3-hydroxybutyrate) producer isolated from an antarctic environment. Curr. Microbiol. 2009;59:514–519. doi: 10.1007/s00284-009-9469-9. PubMed DOI

Lorusso A.B., Carrara J.A., Barroso C.D.N., Tuon F.F., Faoro H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022;23:15779. doi: 10.3390/ijms232415779. PubMed DOI PMC

Mannaa M., Oh J.Y., Kim K.D. Biocontrol activity of volatile-producing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology. 2017;45:213–219. doi: 10.5941/MYCO.2017.45.3.213. PubMed DOI PMC

Meier-Kolthoff J.P., Carbasse J.S., Peinado-Olarte R.L., Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–D807. doi: 10.1093/nar/gkab902. PubMed DOI PMC

Meyer J.-M., Gruffaz C., Raharinosy V., Bezverbnaya I., Schäfer M., Budzikiewicz H. Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals. 2008;21:259–271. doi: 10.1007/s10534-007-9115-6. PubMed DOI

Mulani M.S., Kamble E.E., Kumkar S.N., Tawre M.S., Pardesi K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 2019;10:539. doi: 10.3389/fmicb.2019.00539. PubMed DOI PMC

Mulet M., Lalucat J., García-Valdés E. DNA sequence-based analysis of the Pseudomonas species. Environ. Microbiol. 2010;12:1513–1530. doi: 10.1111/j.1462-2920.2010.02181.x. PubMed DOI

Niederberger T.D., McDonald I.R., Hacker A.L., Soo R.M., Barrett J.E., Wall D.H., Cary S.C. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 2008;10:1713–1724. doi: 10.1111/j.1462-2920.2008.01593.x. PubMed DOI

Nováková D., Švec P., Zeman M., Busse H.-J., Mašlaňová I., Pantůček R., Králová S., Krištofová L., Sedláček I. Pseudomonas leptonychotis sp. nov., isolated from Weddell seals in Antarctica. Int. J. Syst. Evol. Microbiol. 2020;70:302–308. doi: 10.1099/ijsem.0.003753. PubMed DOI

Nováková D., Koublová V., Sedlář K., Staňková E., Králová S., Švec P., Neumann-Schaal M., Wolf J., Koudelková S., Barták M., Sedláček I. Pseudomonas petrae sp. nov. isolated from regolith samples in Antarctica. Syst. Appl. Microbiol. 2023;46 doi: 10.1016/j.syapm.2023.126424. PubMed DOI

O'Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D., Astashyn A., Badretdin A., Bao Y., Blinkova O., Brover V., Chetvernin V., Choi J., Cox E., Ermolaeva O., Farrell C.M., Goldfarb T., Gupta T., Haft D., Hatcher E., Hlavina W., Joardar V.S., Kodali V.K., Li W., Maglott D., Masterson P., McGarvey K.M., Murphy M.R., O'Neill K., Pujar S., Rangwala S.H., Rausch D., Riddick L.D., Schoch C., Shkeda A., Storz S.S., Sun H., Thibaud-Nissen F., Tolstoy I., Tully R.E., Vatsan A.R., Wallin C., Webb D., Wu W., Landrum M.J., Kimchi A., Tatusova T., DiCuccio M., Kitts P., Murphy T.D., Pruitt K.D. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC

Olejnickova K., Hola V., Ruzicka F. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships. Pathog. Dis. 2014;72:87–94. doi: 10.1111/2049-632X.12188. PubMed DOI

Palleroni N.J. In: Bergey's Manual of Systematics of Archaea and Bacteria. Volume 1. second ed. Boone D.R., Castenholz R.W., Garrity G.M., editors. Springer; New York: 2015. Genus I. Pseudomonas; pp. 323–379. DOI

Patel H., Tscheka C., Edwards K., Karlsson G., Heerklotz H. All-or-none membrane permeabilization by fengycin-type lipopeptides from Bacillus subtilis QST713. Biochim. Biophys. Acta (BBA) - Biomemb. 2011;1808:2000–2008. doi: 10.1016/j.bbamem.2011.04.008. PubMed DOI

Peix A., Ramírez-Bahena M.-H., Velázquez E. The current status on the taxonomy of Pseudomonas revisited: an update. Infect. Genet. Evol. 2018;57:106–116. doi: 10.1016/j.meegid.2017.10.026. PubMed DOI

Phadtare S. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 2004;6:125–136. PubMed

Priddle J., Heywood R.B. Evolution of Antarctic lake ecosystems. Biol. J. Linn. Soc. 1980;14:51–66. doi: 10.1111/j.1095-8312.1980.tb00097.x. DOI

Raaijmakers J.M., Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu. Rev. Phytopathol. 2012;50:403–424. doi: 10.1146/annurev-phyto-081211-172908. PubMed DOI

Raiger Iustman L.J., Tribelli P.M., Ibarra J.G., Catone M.V., Solar Venero E.C., López N.I. Genome sequence analysis of Pseudomonas extremaustralis provides new insights into environmental adaptability and extreme conditions resistance. Extremophiles. 2015;19:207–220. doi: 10.1007/s00792-014-0700-7. PubMed DOI

Rastogi R.P., Richa null, Sinha R.P., Singh S.P., Häder D.-P. Photoprotective compounds from marine organisms. J. Ind. Microbiol. Biotechnol. 2010;37:537–558. doi: 10.1007/s10295-010-0718-5. PubMed DOI

Reddy G.S.N., Matsumoto G.I., Schumann P., Stackebrandt E., Shivaji S. Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov., Pseudomonas meridiana sp. nov. and Pseudomonas proteolytica sp. nov. Int. J. Syst. Evol. Microbiol. 2004;54:713–719. doi: 10.1099/ijs.0.02827-0. PubMed DOI

Redero M., López-Causapé C., Aznar J., Oliver A., Blázquez J., Prieto A.I. Susceptibility to R-pyocins of Pseudomonas aeruginosa clinical isolates from cystic fibrosis patients. J. Antimicrobial. Chemother. 2018;73:2770–2776. doi: 10.1093/jac/dky261. PubMed DOI

Rehm B.H.A. In: Pseudomonas: Model Organism, Pathogen, Cell Factory Pseudomonas. Rehm B.H.A., editor. John Wiley & Sons, Ltd.; 2008. Biotechnological relevance of pseudomonads; pp. 377–395. DOI

Rodriguez-R L.M., Konstantinidis K.T. PeerJ Inc.; 2016. The Enveomics Collection: A Toolbox for Specialized Analyses of Microbial Genomes and Metagenomes. DOI

Sah S., Singh N., Singh R. Iron acquisition in maize (Zea mays L.) using Pseudomonas siderophore. 3 Biotech. 2017;7:121. doi: 10.1007/s13205-017-0772-z. PubMed DOI PMC

Sánchez L.A., Hedström M., Delgado M.A., Delgado O.D. Production, purification and characterization of serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J. Appl. Microbiol. 2010;109:936–945. doi: 10.1111/j.1365-2672.2010.04720.x. PubMed DOI

Sasser M. MIDI Technical Note 101. MIDI Inc; Newark, DE: 1990. Identification of bacteria by gas chromatography of cellular fatty acids.

Scherer S., Neuhaus K. In: The Prokaryotes: Volume 2: Ecophysiology and Biochemistry. Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., editors. Springer; New York, NY: 2006. Life at low temperatures; pp. 210–262. DOI

Schöner T.A., Gassel S., Osawa A., Tobias N.J., Okuno Y., Sakakibara Y., Shindo K., Sandmann G., Bode H.B. Aryl polyenes, a highly abundant class of bacterial natural products, are functionally related to antioxidative carotenoids. Chembiochem. 2016;17:247–253. doi: 10.1002/cbic.201500474. PubMed DOI

Sedláček I., Králová S., Kýrová K., Mašlaňová I., Busse H.-J., Staňková E., Vrbovská V., Němec M., Barták M., Holochová P., Švec P., Pantůček R. Red-pink pigmented Hymenobacter coccineus sp. nov., hymenobacter lapidarius sp. nov. and hymenobacter glacialis sp. nov., isolated from rocks in Antarctica. Int. J. Syst. Evol. Microbiol. 2017;67:1975–1983. doi: 10.1099/ijsem.0.001898. PubMed DOI

See-Too W.S., Salazar S., Ee R., Convey P., Chan K.-G., Peix Á. Pseudomonas versuta sp. nov., isolated from Antarctic soil. Syst. Appl. Microbiol. 2017;40:191–198. doi: 10.1016/j.syapm.2017.03.002. PubMed DOI

Singh P.B., Saini H.S., Kahlon R.S. In: Pseudomonas: Molecular and Applied Biology. first ed. Kahlon R.S., editor. Springer; Switzerland: 2016. Pseudomonas: the versatile and adaptive metabolic network; pp. 81–126.

Smith I.M., Dunez J., Phillips D.H., Lelliott R.A., Archer S.A. John Wiley & Sons; 2009. European Handbook of Plant Diseases.

Snopková K., Dufková K., Chamrád I., Lenobel R., Čejková D., Kosina M., Hrala M., Holá V., Sedláček I., Šmajs D. Pyocin-mediated antagonistic interactions in Pseudomonas spp. isolated in James Ross Island, Antarctica. Environ. Microbiol. 2022;24:1294–1307. doi: 10.1111/1462-2920.15809. PubMed DOI

Snopkova K., Dufkova K., Klimesova P., Vanerkova M., Ruzicka F., Hola V. Prevalence of bacteriocins and their co-association with virulence factors within Pseudomonas aeruginosa catheter isolates. Int. J. Med. Microbiol. 2020;310 doi: 10.1016/j.ijmm.2020.151454. PubMed DOI

Snopková K., Dufková K., Šmajs D. Pseudomonas prosekii isolated in Antarctica inhibits plantpathogenic strains of Pseudomonas viridiflava and Pseudomonas fluorescens. Czech Polar Rep. 2021;11:270–278. doi: 10.5817/CPR2021-2-18. DOI

Sun J., Lu F., Luo Y., Bie L., Xu L., Wang Y. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res. 2023;51:W397–W403. doi: 10.1093/nar/gkad313. PubMed DOI PMC

Švec P., Nováková D., Žáčková L., Kukletová M., Sedláček I. Evaluation of (GTG)5-PCR for rapid identification of Streptococcus mutans. Antonie Van Leeuwenhoek. 2008;94:573–579. doi: 10.1007/s10482-008-9275-6. PubMed DOI

Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. doi: 10.1093/oxfordjournals.molbev.a040023. PubMed DOI

Tamura K., Stecher G., Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC

Tatusova T., DiCuccio M., Badretdin A., Chetvernin V., Nawrocki E.P., Zaslavsky L., Lomsadze A., Pruitt K.D., Borodovsky M., Ostell J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–6624. doi: 10.1093/nar/gkw569. PubMed DOI PMC

Tindall B.J. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol. Lett. 1990;66:199–202. doi: 10.1111/j.1574-6968.1990.tb03996.x. DOI

Tindall B.J. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 1990;13:128–130. doi: 10.1016/S0723-2020(11)80158-X. DOI

Vancanneyt M., Torck U., Dewettinck D., Vaerewijck M., Kersters K. Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst. Appl. Microbiol. 1996;19:556–568. doi: 10.1016/S0723-2020(96)80027-0. DOI

Vieira S., Huber K.J., Neumann-Schaal M., Geppert A., Luckner M., Wanner G., Overmann J. Usitatibacter rugosus gen. nov., sp. nov. And Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int. J. Syst. Evol. Microbiol. 2021;71 doi: 10.1099/ijsem.0.004631. PubMed DOI

Vinnik V., Zhang F., Park H., Cook T.B., Throckmorton K., Pfleger B.F., Bugni T.S., Thomas M.G. Structural and biosynthetic analysis of the fabrubactins, unusual siderophores from Agrobacterium fabrum Strain C58. ACS. Chem. Biol. 2021;16:125–135. doi: 10.1021/acschembio.0c00809. PubMed DOI PMC

Wargo M.J. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl. Environ. Microbiol. 2013;79:2112–2120. doi: 10.1128/AEM.03565-12. PubMed DOI PMC

White A., Hughes J.M. Critical importance of a one health approach to antimicrobial resistance. EcoHealth. 2019;16:404–409. doi: 10.1007/s10393-019-01415-5. PubMed DOI

Williams S.R., Gebhart D., Martin D.W., Scholl D. Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl. Environ. Microbiol. 2008;74:3868–3876. doi: 10.1128/AEM.00141-08. PubMed DOI PMC

Wong C.M.V.L., Tam H.K., Alias S., Gonzalez M., González-Rocha G., Domínguez M. Pseudomonas and Pedobacter isolates from King George Island inhibited the growth of foodborne pathogens. Pol. Polar Res. 2011;32:3–14.

Yoon S.-H., Ha S.-M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Yoon S.H., Ha S.M., Lim J., Kwon S., Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–1286. doi: 10.1007/s10482-017-0844-4. PubMed DOI

Zamioudis C., Mastranesti P., Dhonukshe P., Blilou I., Pieterse C.M.J. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. bacteria. Plant Physiol. 2013;162:304–318. doi: 10.1104/pp.112.212597. PubMed DOI PMC

Zhang X.-X., Rainey P.B. Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution. (N. Y) 2013;67:3161–3174. doi: 10.1111/evo.12183. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace