Pyocin-mediated antagonistic interactions in Pseudomonas spp. isolated in James Ross Island, Antarctica

. 2022 Mar ; 24 (3) : 1294-1307. [epub] 20211104

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34735036

Interactions within bacterial communities are frequently mediated by the production of antimicrobial agents. Despite the increasing interest in research of new antimicrobials, studies describing antagonistic interactions among cold-adapted microorganisms are still rare. Our study assessed the antimicrobial interactions of 36 Antarctic Pseudomonas spp. and described the genetic background of these interactions in selected strains. The overall bacteriocinogeny was greater compared to mesophilic Pseudomonas non-aeruginosa species. R-type tailocins were detected on transmission electron micrographs in 16 strains (44.4%); phylogenetic analysis of the corresponding gene clusters revealed that the P. prosekii CCM 8878 tailocin was related to the Rp3 group, whereas the tailocin in Pseudomonas sp. CCM 8880 to the Rp4 group. Soluble antimicrobials were produced by eight strains (22.-2%); gene mining found pyocin L homologues in the genomes of P. prosekii CCM 8881 and CCM 8879 and pyocin S9-like homologues in P. prosekii CCM 8881 and Pseudomonas sp. CCM 8880. Analysis of secretomes confirmed the production of all S- and L-type pyocin genes. Our results suggest that bacteriocin-based inhibition plays an important role in interactions among Antarctic soil bacteria, and these native, cold-adapted microorganisms could be a promising source of new antimicrobials.

Zobrazit více v PubMed

Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D.S. (2016) PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44: W16-W21.

Bakkal, S., Robinson, S.M., Ordonez, C.L., Waltz, D.A., and Riley, M.A. (2010) Role of bacteriocins in mediating interactions of bacterial isolates taken from cystic fibrosis patients. Microbiol Read Engl 156: 2058-2067.

Bara, J.J., Matson, Z., and Remold, S.K. (2018) Life in the cystic fibrosis upper respiratory tract influences competitive ability of the opportunistic pathogen Pseudomonas aeruginosa. R Soc Open Sci 5: 180623.

Barreteau, H., Tiouajni, M., Graille, M., Josseaume, N., Bouhss, A., Patin, D., et al. (2012) Functional and structural characterization of PaeM, a colicin M-like bacteriocin produced by Pseudomonas aeruginosa. J Biol Chem 287: 37395-37405.

Barros, J., Becerra, J., González, C., and Martínez, M. (2013) Antibacterial metabolites synthesized by psychrotrophic bacteria isolated from cold-freshwater environments. Folia Microbiol (Praha) 58: 127-133.

Barták, M., Hazdrová, J., Skácelová, K., and Hájek, J. (2016) Dehydration-induced responses of primary photosynthetic processes and spectral reflectance indices in Antarctic Nostoc commune. Czech Polar Rep 6: 87-95.

Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trim-mer for Illumina sequence data. Bioinformatics, 30: 2114-2120.

Bosák, J., Hrala, M., Micenková, L., and Šmajs, D. (2021) Non-antibiotic antibacterial peptides and proteins of Escherichia coli: efficacy and potency of bacteriocins. Expert Rev Anti Infect Ther 19: 309-322.

Bruce, J.B., West, S.A., and Griffin, A.S. (2017) Bacteriocins and the assembly of natural Pseudomonas fluorescens populations. J Evol Biol 30: 352-360.

Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., et al. (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25: 1327-1333.

Cavera, V.L., Arthur, T.D., Kashtanov, D., and Chikindas, M.L. (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46: 494-501.

Chamrád, I., Simerský, R., Bérešová, L., Strnad, M., Šebela, M., and Lenobel, R. (2014) Proteomic identification of a candidate sequence of wheat cytokinin-binding protein 1. J Plant Growth Regul 33: 896-902.

Chatterjee, P., Davis, E., Yu, F., James, S., Wildschutte, J.H., Wiegmann, D.D., et al. (2017) Environmental Pseudomonads inhibit cystic fibrosis patient-derived Pseudomonas aeruginosa. Appl Environ Microbiol 83: e02701-16.

Chen, I.-M.A., Markowitz, V.M., Chu, K., Palaniappan, K., Szeto, E., Pillay, M., et al. (2017) IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res 45: D507-D516.

Cowan, D.A., and Tow, L.A. (2004) Endangered antarctic environments. Annu Rev Microbiol 58: 649-690.

Dorosky, R.J., Yu, J.M., Pierson, L.S., and Pierson, E.A. (2017) Pseudomonas chlororaphis produces two distinct R-Tailocins that contribute to bacterial competition in biofilms and on roots. Appl Environ Microbiol 83: e00706-17.

Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792-1797.

France, M.T., and Remold, S.K. (2016) Interference competition among household strains of Pseudomonas. Microb Ecol 72: 821-830.

Fischer, S., Godino, A., Quesada, J.M., Cordero, P., Jofré, E., Mori, G., and Espinosa-Urgel, M. (2012). Characterization of a phage-like pyocin from the plant growth-promoting rhizobacterium Pseudomonas fluorescens SF4c. Microbiology 158: 1493-1503.

Fyfe, J.A., Harris, G., and Govan, J.R. (1984) Revised pyocin typing method for Pseudomonas aeruginosa. J Clin Microbiol 20: 47-50.

Ghequire, M.G.K., and De Mot, R. (2014) Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol Rev 38: 523-568.

Ghequire, M.G.K., Dillen, Y., Lambrichts, I., Proost, P., Wattiez, R., and De Mot, R. (2015) Different ancestries of R tailocins in rhizospheric Pseudomonas isolates. Genome Biol Evol 7: 2810-2828.

Ghequire, M.G.K., Li, W., Proost, P., Loris, R., and De Mot, R. (2012) Plant lectin-like antibacterial proteins from phytopathogens Pseudomonas syringae and Xanthomonas citri. Environ Microbiol Rep 4: 373-380.

Ghequire, M.G.K., Öztürk, B., and De Mot, R. (2018a) Lectin-like bacteriocins. Front Microbiol 9: 2706.

Ghequire, M.G.K., Swings, T., Michiels, J., Buchanan, S.K., and De Mot, R. (2018b) Hitting with a BAM: selective killing by lectin-like bacteriocins. mBio 9: e02138-17.

Ghoul, M., West, S.A., Johansen, H.K., Molin, S., Harrison, O.B., Maiden, M.C.J., et al. (2015) Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc Biol Sci 282: 20150972.

Granato, E.T., Meiller-Legrand, T.A., and Foster, K.R. (2019) The evolution and ecology of bacterial warfare. Curr Biol 29: R521-R537.

Green, M.R., Sambrook, J., and Sambrook, J. (2012) Molecular Cloning: A Laboratory Manual, 4th ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

Grinter, R., Milner, J., and Walker, D. (2012a) Bacteriocins active against plant pathogenic bacteria. Biochem Soc Trans 40: 1498-1502.

Grinter, R., Roszak, A.W., Cogdell, R.J., Milner, J.J., and Walker, D. (2012b) The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins. J Biol Chem 287: 38876-38888.

Grose, J.H., and Casjens, S.R. (2014) Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468-470: 421-443.

Hockett, K.L., Renner, T., and Baltrus, D.A. (2015) Independent co-option of a tailed bacteriophage into a killing complex in Pseudomonas. 6: e00452.

Hrbáček, F., Kňažková, M., Nývlt, D., Láska, K., Mueller, C.W., and Ondruch, J. (2017) Active layer monitoring at CALM-S site near J.G.Mendel Station, James Ross Island, eastern Antarctic peninsula. Sci Total Environ 601-602: 987-997.

Hrbáček, F., Nývlt, D., Láska, K., Kňažková, M., Kampová, B., Engel, Z., et al. (2019) Permafrost and active layer research on James Ross Island: an overview. Czech Polar Rep 9: 20-36.

Hyatt, D., Chen, G.-L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.

Jayaseelan, S., Ramaswamy, D., and Dharmaraj, S. (2014) Pyocyanin: production, applications, challenges and new insights. World J Microbiol Biotechnol 30: 1159-1168.

Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., et al. (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716-721.

Kosina, M., Barták, M., Mašlaňová, I., Pascutti, A.V., Sedo, O., Lexa, M., and Sedláček, I. (2013) Pseudomonas prosekii sp. nov., a novel psychrotrophic bacterium from Antarctica. Curr Microbiol 67: 637-646.

Kosina, M., Švec, P., Černohlávková, J., Barták, M., Snopková, K., De Vos, P., and Sedláček, I. (2016) Description of Pseudomonas gregormendelii sp. nov., a novel Psychrotrophic bacterium from James Ross Island, Antarctica. Curr Microbiol 73: 84-90.

Kumar, S., Stecher, G., and Tamura, K. (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 1870-1874.

Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.

Lan, S.-F., Huang, C.-H., Chang, C.-H., Liao, W.-C., Lin, I.-H., Jian, W.-N., et al. (2009) Characterization of a new plasmid-like prophage in a pandemic Vibrio parahaemolyticus O3:K6 strain. Appl Environ Microbiol 75: 2659-2667.

Lee, J., Cho, Y.-J., Yang, J., Jung, Y.-J., Hong, S.G., and Kim, O.-S. (2017) Complete genome sequence of Pseudomonas antarctica PAMC 27494, a bacteriocin-producing psychrophile isolated from Antarctica. J Biotechnol 259: 15-18.

Livermore, D.M. (2002) Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis Off Publ Infect Dis Soc Am 34: 634-640.

Loper, J.E., Hassan, K.A., Mavrodi, D.V., Davis, E.W., Lim, C.K., Shaffer, B.T., et al. (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8: e1002784.

Mavrodi, D.V., Loper, J.E., Paulsen, I.T., and Thomashow, L.S. (2009) Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol 9: 8.

McCaughey, L.C., Grinter, R., Josts, I., Roszak, A.W., Waløen, K.I., Cogdell, R.J., et al. (2014) Lectin-like bacteriocins from Pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor. PLoS Pathog 10: e1003898.

Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.-P., and Göker, M. (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.

Metelev, M., Serebryakova, M., Ghilarov, D., Zhao, Y., and Severinov, K. (2013) Structure of microcin B-like compounds produced by Pseudomonas syringae and species specificity of their antibacterial action. J Bacteriol 195: 4129-4137.

Micenková, L., Štaudová, B., Bosák, J., Mikalová, L., Littnerová, S., Vrba, M., et al. (2014) Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol 14: 109.

Michel-Briand, Y., and Baysse, C. (2002) The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499-510.

Minas, K., McEwan, N.R., Newbold, C.J., and Scott, K.P. (2011). Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cul-tures. FEMS Microbiology Letters, 325: 162-169.

Mobberley, J., Authement, R., Segall, A., and Paul, J. (2008) The temperate marine phage ΦHAP-1 of Halomonas aquamarina possesses a linear plasmid-like prophage genome. J Virol 82: 6618-6630.

Mojesky, A.A., and Remold, S.K. (2020) Spatial structure maintains diversity of pyocin inhibition in household Pseudomonas aeruginosa. Proc Biol Sci 287: 20201706.

Nakayama, K., Takashima, K., Ishihara, H., Shinomiya, T., Kageyama, M., Kanaya, S., et al. (2000) The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38: 213-231.

Nedbalová, L., Mihál, M., Kvíderová, J., Procházková, L., Řezanka, T., and Elster, J. (2017) Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Extrem Life Extreme Cond 21: 187-200.

Niederberger, T.D., McDonald, I.R., Hacker, A.L., Soo, R.M., Barrett, J.E., Wall, D.H., and Cary, S.C. (2008) Microbial community composition in soils of northern Victoria Land, Antarctica. Environ Microbiol 10: 1713-1724.

O'Brien, A., Sharp, R., Russell, N.J., and Roller, S. (2004) Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiol Ecol 48: 157-167.

Øvstedal, D.O., and Smith, R.I.L. (2001) Lichens of Antarctica and South Georgia: A Guide to their Identification and Ecology, 1st ed. Cambridge, U.K: Cambridge University Press.

Palleroni, N.J. (2015) Pseudomonas. In Bergey's Manual of Systematics of Archaea and Bacteria, Whitman, W.B., Rainey, F., Kämpfer, P., Trujillo, M., Chun, J., DeVos, P., et al. (eds). New Jersey: John Wiley & Sons, pp. 323-379.

Parret, A.H.A., Schoofs, G., Proost, P., and De Mot, R. (2003) Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185: 897-908.

Parret, A.H.A., Temmerman, K., and De Mot, R. (2005) Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71: 5197-5207.

Rabassa, J., Skvarca, P., Bertani, L., and Mazzoni, E. (1982) Glacier inventory of James Ross and Vega Islands, Antarctic peninsula. Ann Glaciol 3: 260-264.

Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 1896-1906.

Rehm, B.H.A. (2008) Biotechnological relevance of Pseudomonads. In Pseudomonas: Model Organism, Pathogen, Cell Factory, Rehm, B.H.A. (ed). New Jersey: John Wiley & Sons, pp. 377-395.

Riley, M.A., Goldstone, C.M., Wertz, J.E., and Gordon, D. (2003) A phylogenetic approach to assessing the targets of microbial warfare. J Evol Biol 16: 690-697.

Saitou, N., and Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425.

Sánchez, L.A., Gómez, F.F., and Delgado, O.D. (2009) Cold-adapted microorganisms as a source of new antimicrobials. Extrem Life Extreme Cond 13: 111-120.

Sánchez, L.A., Hedström, M., Delgado, M.A., and Delgado, O.D. (2010) Production, purification and characterization of serraticin A, a novel cold-active antimicrobial produced by Serratia proteamaculans 136. J Appl Microbiol 109: 936-945.

Scherer, S., and Neuhaus, K. (2006) Life at low temperatures. In The Prokaryotes: Volume 2: Ecophysiology and Biochemistry, Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., and Stackebrandt, E. (eds). New York, NY: Springer, pp. 210-262.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9: 671-675.

Sebela, M., Stosová, T., Havlis, J., Wielsch, N., Thomas, H., Zdráhal, Z., and Shevchenko, A. (2006) Thermostable trypsin conjugates for high-throughput proteomics: synthesis and performance evaluation. Proteomics 6: 2959-2963.

Sharp, C., Bray, J., Housden, N.G., Maiden, M.C.J., and Kleanthous, C. (2017) Diversity and distribution of nuclease bacteriocins in bacterial genomes revealed using hidden Markov models. PLoS Comput Biol 13: e1005652.

Shevchenko, A., Tomas, H., Havli, J., Olsen, J.V., and Mann, M. (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1: 2856-2860.

Snopkova, K., Dufkova, K., Klimesova, P., Vanerkova, M., Ruzicka, F., and Hola, V. (2020) Prevalence of bacteriocins and their co-association with virulence factors within Pseudomonas aeruginosa catheter isolates. Int J Med Microbiol 310: 151454.

Snopková, K., Sedláček, I., and Šmajs, D. (2018) First evidence of high-molecular-weight bacteriocin (tailocin) produced by Antarctic Pseudomonas spp. Czech Polar Rep 8: 178-185.

Tamura, K., Nei, M., and Kumar, S. (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101: 11030-11035.

Varghese, N.J., Mukherjee, S., Ivanova, N., Konstantinidis, K.T., Mavrommatis, K., Kyrpides, N.C., and Pati, A. (2015) Microbial species delineation using whole genome sequences. Nucleic Acids Res 43: 6761-6771.

Wang, D., Yu, J.M., Dorosky, R.J., Iii, L.S.P., and Pierson, E.A. (2016) The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30-84. PLoS One 11: e0148003.

Zhang, Y., Chen, X.-L., Huang, A.-W., Liu, S.-L., Liu, W.-J., Zhang, N., and Lu, X.-Z. (2016) Mortality attributable to carbapenem-resistant Pseudomonas aeruginosa bacteremia: a meta-analysis of cohort studies. Emerg Microbes Infect 5: e27.

Zhou, J., Davey, M.E., Figueras, J.B., Rivkina, E., Gilichinsky, D., and Tiedje, J.M. (1997) Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiol Read Engl 143: 3913-3919.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...