Nuclear patterns of phosphatidylinositol 4,5- and 3,4-bisphosphate revealed by super-resolution microscopy differ between the consecutive stages of RNA polymerase II transcription
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO 68378050
Ústav Molekulární Genetiky, Akademie Věd České Republiky
ERDF CZ.02.1.01/0.0/0.0/16_013/0001775
Ministry of Education, Youth and Science
ERDF CZ.02.1.01/0.0/0.0/18_046/0016045
Ministry of Education, Youth and Science
LRI LM2023050
Ministry of Education, Youth and Science
LX22NPO5102
Ministry of Education, Youth and Science
e-INFRALM2018140
Ministry of Education, Youth and Science
15214
European Cooperation in Science and Technology
CA19105
European Cooperation in Science and Technology
19105
European Cooperation in Science and Technology
LTC19048
European Cooperation in Science and Technology
LTC20024
European Cooperation in Science and Technology
PubMed
38734927
DOI
10.1111/febs.17136
Knihovny.cz E-zdroje
- Klíčová slova
- gene expression, nuclear architecture, nuclear speckles, nucleoplasm, quantitative direct stochastic optical reconstruction microscopy dSTORM,
- MeSH
- buněčné jádro * metabolismus MeSH
- fosfatidylinositol-4,5-difosfát * metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- genetická transkripce * MeSH
- HeLa buňky MeSH
- lidé MeSH
- RNA-polymerasa II * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát * MeSH
- fosfatidylinositolfosfáty MeSH
- RNA-polymerasa II * MeSH
Phosphatidylinositol phosphates are powerful signaling molecules that orchestrate signaling and direct membrane trafficking in the cytosol. Interestingly, phosphatidylinositol phosphates also localize within the membrane-less compartments of the cell nucleus, where they participate in the regulation of gene expression. Nevertheless, current models of gene expression, which include condensates of proteins and nucleic acids, do not include nuclear phosphatidylinositol phosphates. This gap is partly a result of the missing detailed analysis of the subnuclear distribution of phosphatidylinositol phosphates and their relationships with gene expression. Here, we used quantitative dual-color direct stochastic optical reconstruction microscopy to analyze the nanoscale co-patterning between RNA polymerase II transcription initiation and elongation markers with respect to phosphatidylinositol 4,5- or 3,4-bisphosphate in the nucleoplasm and nuclear speckles and compared it with randomized data and cells with inhibited transcription. We found specific co-patterning of the transcription initiation marker P-S5 with phosphatidylinositol 4,5-bisphosphate in the nucleoplasm and with phosphatidylinositol 3,4-bisphosphate at the periphery of nuclear speckles. We showed the specific accumulation of the transcription elongation marker PS-2 and of nascent RNA in the proximity of phosphatidylinositol 3,4-bisphosphate associated with nuclear speckles. Taken together, this shows that the distinct spatial associations between the consecutive stages of RNA polymerase II transcription and nuclear phosphatidylinositol phosphates exhibit specificity within the gene expression compartments. Thus, in analogy to the cellular membranes, where phospholipid composition orchestrates signaling pathways and directs membrane trafficking, we propose a model in which the phospholipid identity of gene expression compartments orchestrates RNA polymerase II transcription.
Zobrazit více v PubMed
Bhat P, Honson D & Guttman M (2021) Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat Rev Mol Cell Biol 22, 653–670.
Belmont AS (2022) Nuclear compartments: an incomplete primer to nuclear compartments, bodies, and genome organization relative to nuclear architecture. Cold Spring Harb Perspect Biol 14, a041268.
Dundr M & Misteli T (2010) Biogenesis of nuclear bodies. Cold Spring Harb Perspect Biol 2, a000711.
Antifeeva IA, Fonin AV, Fefilova AS, Stepanenko OV, Povarova OI, Silonov SA, Kuznetsova IM, Uversky VN & Turoverov KK (2022) Liquid‐liquid phase separation as an organizing principle of intracellular space: overview of the evolution of the cell compartmentalization concept. Cell Mol Life Sci 79, 251.
Phillips TEJ & Maguire E (2021) Phosphoinositides: roles in the development of microglial‐mediated neuroinflammation and neurodegeneration. Front Cell Neurosci 15, 652593.
Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93, 1019–1137.
Lemmon MA (2008) Membrane recognition by phospholipid‐binding domains. Nat Rev Mol Cell Biol 9, 99–111.
Di Paolo G & De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657.
Dumelie JG, Chen Q, Miller D, Attarwala N, Gross SS & Jaffrey SR (2023) Biomolecular condensates create phospholipid‐enriched microenvironments. Nat Chem Biol 20, 302–313.
Jacobsen RG, Mazloumi Gavgani F, Edson AJ, Goris M, Altankhuyag A & Lewis AE (2019) Polyphosphoinositides in the nucleus: roadmap of their effectors and mechanisms of interaction. Adv Biol Regul 72, 7–21.
Shah ZH, Jones DR, Sommer L, Foulger R, Bultsma Y, D'Santos C & Divecha N (2013) Nuclear phosphoinositides and their impact on nuclear functions. FEBS J 280, 6295–6310.
Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G, Jones DR, Martelli AM, Somner L, Follo MY, Divecha N et al. (2012) Nuclear phosphoinositides: location, regulation and function. Subcell Biochem 59, 335–361.
Sztacho M, Sobol M, Balaban C, Escudeiro Lopes SE & Hozak P (2019) Nuclear phosphoinositides and phase separation: important players in nuclear compartmentalization. Adv Biol Regul 71, 111–117.
Boronenkov IV, Loijens JC, Umeda M & Anderson RA (1998) Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre‐mRNA processing factors. Mol Biol Cell 9, 3547–3560.
Bunce MW, Bergendahl K & Anderson RA (2006) Nuclear PI(4,5)P(2): a new place for an old signal. Biochim Biophys Acta 1761, 560–569.
Mellman DL, Gonzales ML, Song C, Barlow CA, Wang P, Kendziorski C & Anderson RA (2008) A PtdIns4,5P2‐regulated nuclear poly(a) polymerase controls expression of select mRNAs. Nature 451, 1013–1017.
Sobol M, Krausova A, Yildirim S, Kalasova I, Faberova V, Vrkoslav V, Philimonenko V, Marasek P, Pastorek L, Capek M et al. (2018) Nuclear phosphatidylinositol 4,5‐bisphosphate islets contribute to efficient RNA polymerase II‐dependent transcription. J Cell Sci 131, jcs211094.
Balaban C, Sztacho M, Blazikova M & Hozak P (2021) The F‐Actin‐binding MPRIP forms phase‐separated condensates and associates with PI(4,5)P2 and active RNA polymerase II in the cell nucleus. Cells 10, 848.
Sztacho M, Salovska B, Cervenka J, Balaban C, Hoboth P & Hozak P (2021) Limited proteolysis‐coupled mass spectrometry identifies phosphatidylinositol 4,5‐bisphosphate effectors in human nuclear proteome. Cells 10, 68.
Mazzotti G, Zini N, Rizzi E, Rizzoli R, Galanzi A, Ognibene A, Santi S, Matteucci A, Martelli AM & Maraldi NM (1995) Immunocytochemical detection of phosphatidylinositol 4,5‐bisphosphate localization sites within the nucleus. J Histochem Cytochem 43, 181–191.
Ramos AR, Ghosh S, Suhel T, Chevalier C, Obeng EO, Fafilek B, Krejci P, Beck B & Erneux C (2020) Phosphoinositide 5‐phosphatases SKIP and SHIP2 in ruffles, the endoplasmic reticulum and the nucleus: an update. Adv Biol Regul 75, 100660.
Lewis AE, Sommer L, Arntzen MO, Strahm Y, Morrice NA, Divecha N & D'Santos CS (2011) Identification of nuclear phosphatidylinositol 4,5‐bisphosphate‐interacting proteins by neomycin extraction. Mol Cell Proteomics 10, M110.003376.
Hoboth P, Sztacho M, Sebesta O, Schatz M, Castano E & Hozak P (2021) Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual‐color dSTORM. Biochim Biophys Acta 1866, 158890.
Balaban C, Sztacho M, Antiga L, Miladinovic A, Harata M & Hozak P (2023) PIP2‐effector protein MPRIP regulates RNA polymerase II condensation and transcription. Biomolecules 13, 426.
Chen M, Choi S, Wen T, Chen C, Thapa N, Lee JH, Cryns VL & Anderson RA (2022) A p53‐phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol 24, 1099–1113.
Choi S, Chen M, Cryns VL & Anderson RA (2019) A nuclear phosphoinositide kinase complex regulates p53. Nat Cell Biol 21, 462–475.
Hoboth P, Sztacho M, Quaas A, Akgul B & Hozak P (2023) Quantitative super‐resolution microscopy reveals the differences in the nanoscale distribution of nuclear phosphatidylinositol 4,5‐bisphosphate in human healthy skin and skin warts. Front Cell Dev Biol 11, 1217637.
Kalasova I, Faberova V, Kalendova A, Yildirim S, Ulicna L, Venit T & Hozak P (2016) Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol 145, 485–496.
Norton L, Lindsay Y, Deladeriere A, Chessa T, Guillou H, Suire S, Lucocq J, Walker S, Andrews S, Segonds‐Pichon A et al. (2016) Localizing the lipid products of PI3Kgamma in neutrophils. Adv Biol Regul 60, 36–45.
Roman‐Fernandez A, Roignot J, Sandilands E, Nacke M, Mansour MA, McGarry L, Shanks E, Mostov KE & Bryant DM (2018) The phospholipid PI(3,4)P2 is an apical identity determinant. Nat Commun 9, 5041.
Faberova V, Kalasova I, Krausova A & Hozak P (2020) Super‐resolution localisation of nuclear PI(4)P and identification of its interacting proteome. Cells 9, 1191.
Mazloumi Gavgani F, Slinning MS, Morovicz AP, Arnesen VS, Turcu DC, Ninzima S, D'Santos CS & Lewis AE (2021) Nuclear phosphatidylinositol 3,4,5‐trisphosphate interactome uncovers an enrichment in nucleolar proteins. Mol Cell Proteomics 20, 100102.
Carrillo ND, Chen M, Cryns VL & Anderson RA (2023) Lipid transfer proteins initiate nuclear phosphoinositide signaling. bioRxiv, doi: 10.1101/2023.05.08.539894
Chen C, Chen M, Wen T, Anderson RA & Cryns VL (2023) Regulation of NRF2 by Phosphoinositides and small heat shock proteins. bioRxiv, doi: 10.1101/2023.10.26.564194
Didichenko SA & Thelen M (2001) Phosphatidylinositol 3‐kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 276, 48135–48142.
Schill NJ & Anderson RA (2009) Two novel phosphatidylinositol‐4‐phosphate 5‐kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 422, 473–482.
Mellman DL & Anderson RA (2009) A novel gene expression pathway regulated by nuclear phosphoinositides. Adv Enzyme Regul 49, 11–28.
Steger DJ, Haswell ES, Miller AL, Wente SR & O'Shea EK (2003) Regulation of chromatin remodeling by inositol polyphosphates. Science 299, 114–116.
Marx B, Hufbauer M, Zigrino P, Majewski S, Markiefka B, Sachsenheimer T, Brugger B & Akgul B (2018) Phospholipidation of nuclear proteins by the human papillomavirus E6 oncoprotein: implication in carcinogenesis. Oncotarget 9, 34142–34158.
Rattay S, Hufbauer M, Hoboth P, Sztacho M & Akgul B (2023) Viruses and phospholipids: friends and foes during infection. J Med Virol 95, e28658.
Cramer P (2019) Organization and regulation of gene transcription. Nature 573, 45–54.
Boehning M, Dugast‐Darzacq C, Rankovic M, Hansen AS, Yu T, Marie‐Nelly H, McSwiggen DT, Kokic G, Dailey GM, Cramer P et al. (2018) RNA polymerase II clustering through carboxy‐terminal domain phase separation. Nat Struct Mol Biol 25, 833–840.
Hsin JP & Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26, 2119–2137.
Meinhart A, Kamenski T, Hoeppner S, Baumli S & Cramer P (2005) A structural perspective of CTD function. Genes Dev 19, 1401–1415.
Stasevich TJ, Hayashi‐Takanaka Y, Sato Y, Maehara K, Ohkawa Y, Sakata‐Sogawa K, Tokunaga M, Nagase T, Nozaki N, McNally JG et al. (2014) Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275.
Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S, Imai R, Nozaki T, Tamura S, Tani T, Kimura H et al. (2019) Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J Cell Biol 218, 1511–1530.
Phatnani HP & Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20, 2922–2936.
Schuller R, Forne I, Straub T, Schreieck A, Texier Y, Shah N, Decker TM, Cramer P, Imhof A & Eick D (2016) Heptad‐specific phosphorylation of RNA polymerase II CTD. Mol Cell 61, 305–314.
Harlen KM & Churchman LS (2017) The code and beyond: transcription regulation by the RNA polymerase II carboxy‐terminal domain. Nat Rev Mol Cell Biol 18, 263–273.
Cho WK, Jayanth N, English BP, Inoue T, Andrews JO, Conway W, Grimm JB, Spille JH, Lavis LD, Lionnet T et al. (2016) RNA polymerase II cluster dynamics predict mRNA output in living cells. Elife 5, e13617.
Cho WK, Spille JH, Hecht M, Lee C, Li C, Grube V & Cisse II (2018) Mediator and RNA polymerase II clusters associate in transcription‐dependent condensates. Science 361, 412–415.
Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A, Muresan L, Dugast‐Darzacq C, Hajj B, Dahan M & Darzacq X (2013) Real‐time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667.
Zhao ZW, Roy R, Gebhardt JC, Suter DM, Chapman AR & Xie XS (2014) Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light‐sheet superresolution microscopy. Proc Natl Acad Sci USA 111, 681–686.
Chen X, Wei M, Zheng MM, Zhao J, Hao H, Chang L, Xi P & Sun Y (2016) Study of RNA polymerase II clustering inside live‐cell nuclei using Bayesian Nanoscopy. ACS Nano 10, 2447–2454.
Cook PR (2010) A model for all genomes: the role of transcription factories. J Mol Biol 395, 1–10.
Papantonis A & Cook PR (2013) Transcription factories: genome organization and gene regulation. Chem Rev 113, 8683–8705.
Patange S, Ball DA, Karpova TS & Larson DR (2021) Towards a ‘Spot On’ understanding of transcription in the nucleus. J Mol Biol 433, 167016.
Bartman CR, Hamagami N, Keller CA, Giardine B, Hardison RC, Blobel GA & Raj A (2019) Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol Cell 73, 519–532.e4.
Pancholi A, Klingberg T, Zhang W, Prizak R, Mamontova I, Noa A, Sobucki M, Kobitski AY, Nienhaus GU, Zaburdaev V et al. (2021) RNA polymerase II clusters form in line with surface condensation on regulatory chromatin. Mol Syst Biol 17, e10272.
Heidemann M, Hintermair C, Voss K & Eick D (2013) Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829, 55–62.
Zhang J, Zhang X, Huang H & Ding Y (2020) A review on kinases phosphorylating the carboxyl‐terminal domain of RNA polymerase II‐biological functions and inhibitors. Bioorg Chem 104, 104318.
Buratowski S (2009) Progression through the RNA polymerase II CTD cycle. Mol Cell 36, 541–546.
Adelman K & Lis JT (2012) Promoter‐proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13, 720–731.
Core L & Adelman K (2019) Promoter‐proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev 33, 960–982.
Gressel S, Schwalb B, Decker TM, Qin W, Leonhardt H, Eick D & Cramer P (2017) CDK9‐dependent RNA polymerase II pausing controls transcription initiation. Elife 6, e29736.
Ahn SH, Kim M & Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase II C‐terminal domain couples transcription and 3′ end processing. Mol Cell 13, 67–76.
Guo YE, Manteiga JC, Henninger JE, Sabari BR, Dall'Agnese A, Hannett NM, Spille JH, Afeyan LK, Zamudio AV, Shrinivas K et al. (2019) Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548.
Forero‐Quintero LS, Raymond W, Handa T, Saxton MN, Morisaki T, Kimura H, Bertrand E, Munsky B & Stasevich TJ (2021) Live‐cell imaging reveals the spatiotemporal organization of endogenous RNA polymerase II phosphorylation at a single gene. Nat Commun 12, 3158.
Chen Y & Belmont AS (2019) Genome organization around nuclear speckles. Curr Opin Genet Dev 55, 91–99.
Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA, Takei Y, Huang W, Blanco MR & Guttman M (2023) 3D genome organization around nuclear speckles drives mRNA splicing efficiency. bioRxiv, doi: 10.1101/2023.01.04.522632
Rieder D, Ploner C, Krogsdam AM, Stocker G, Fischer M, Scheideler M, Dani C, Amri EZ, Muller WG, McNally JG et al. (2014) Co‐expressed genes prepositioned in spatial neighborhoods stochastically associate with SC35 speckles and RNA polymerase II factories. Cell Mol Life Sci 71, 1741–1759.
Ilik IA, Malszycki M, Lubke AK, Schade C, Meierhofer D & Aktas T (2020) SON and SRRM2 are essential for nuclear speckle formation. Elife 9, e60579.
Ilik IA & Aktas T (2021) Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J 289, 7234–7245.
Galganski L, Urbanek MO & Krzyzosiak WJ (2017) Nuclear speckles: molecular organization, biological function and role in disease. Nucleic Acids Res 45, 10350–10368.
Thiry M (1993) Differential location of nucleic acids within interchromatin granule clusters. Eur J Cell Biol 62, 259–269.
Hall LL, Smith KP, Byron M & Lawrence JB (2006) Molecular anatomy of a speckle. Anat Rec A Discov Mol Cell Evol Biol 288, 664–675.
Spector DL & Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3, a000646.
Lamond AI & Sleeman JE (2003) Nuclear substructure and dynamics. Curr Biol 13, R825–R828.
Mintz PJ, Patterson SD, Neuwald AF, Spahr CS & Spector DL (1999) Purification and biochemical characterization of interchromatin granule clusters. EMBO J 18, 4308–4320.
Saitoh N, Spahr CS, Patterson SD, Bubulya P, Neuwald AF & Spector DL (2004) Proteomic analysis of interchromatin granule clusters. Mol Biol Cell 15, 3876–3890.
Brown JM, Green J, das Neves RP, Wallace HA, Smith AJ, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR et al. (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182, 1083–1097.
Alexander KA, Cote A, Nguyen SC, Zhang L, Gholamalamdari O, Agudelo‐Garcia P, Lin‐Shiao E, Tanim KMA, Lim J, Biddle N et al. (2021) p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol Cell 81, 1666–1681.e6.
Kim J, Venkata NC, Hernandez Gonzalez GA, Khanna N & Belmont AS (2020) Gene expression amplification by nuclear speckle association. J Cell Biol 219, jcb.201904046.
Chen Y, Zhang Y, Wang Y, Zhang L, Brinkman EK, Adam SA, Goldman R, van Steensel B, Ma J & Belmont AS (2018) Mapping 3D genome organization relative to nuclear compartments using TSA‐seq as a cytological ruler. J Cell Biol 217, 4025–4048.
Prasanth KV, Sacco‐Bubulya PA, Prasanth SG & Spector DL (2003) Sequential entry of components of the gene expression machinery into daughter nuclei. Mol Biol Cell 14, 1043–1057.
Berchtold D, Battich N & Pelkmans LA (2018) Systems‐level study reveals regulators of membrane‐less organelles in human cells. Mol Cell 72, 1035–1049.e5.
Gonzales ML, Mellman DL & Anderson RA (2008) CKIalpha is associated with and phosphorylates star‐PAP and is also required for expression of select star‐PAP target messenger RNAs. J Biol Chem 283, 12665–12673.
Hoboth P, Sebesta O, Sztacho M, Castano E & Hozak P (2021) Dual‐color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX 8, 101372.
Malkusch S, Endesfelder U, Mondry J, Gelleri M, Verveer PJ & Heilemann M (2012) Coordinate‐based colocalization analysis of single‐molecule localization microscopy data. Histochem Cell Biol 137, 1–10.
Osborne SL, Thomas CL, Gschmeissner S & Schiavo G (2001) Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre‐mRNA splicing. J Cell Sci 114, 2501–2511.
Hammond G, Thomas CL & Schiavo G (2004) Nuclear phosphoinositides and their functions. Curr Top Microbiol Immunol 282, 177–206.
Posor Y, Eichhorn‐Gruenig M, Puchkov D, Schoneberg J, Ullrich A, Lampe A, Muller R, Zarbakhsh S, Gulluni F, Hirsch E et al. (2013) Spatiotemporal control of endocytosis by phosphatidylinositol‐3,4‐bisphosphate. Nature 499, 233–237.
Ovesny M, Krizek P, Borkovec J, Svindrych Z & Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug‐in for PALM and STORM data analysis and super‐resolution imaging. Bioinformatics 30, 2389–2390.
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET & Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529.
Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB, Dastur A, Amzallag A, Ramaswamy S, Tesar B et al. (2014) Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620.
Sampathi S, Acharya P, Zhao Y, Wang J, Stengel KR, Liu Q, Savona MR & Hiebert SW (2019) The CDK7 inhibitor THZ1 alters RNA polymerase dynamics at the 5′ and 3′ ends of genes. Nucleic Acids Res 47, 3921–3936.
Bensaude O (2011) Inhibiting eukaryotic transcription: which compound to choose? How to evaluate its activity? Transcription 2, 103–108.
Kwak H & Lis JT (2013) Control of transcriptional elongation. Annu Rev Genet 47, 483–508.
Fisher RP (2019) Cdk7: a kinase at the core of transcription and in the crosshairs of cancer drug discovery. Transcription 10, 47–56.
Uchino S, Ito Y, Sato Y, Handa T, Ohkawa Y, Tokunaga M & Kimura H (2022) Live imaging of transcription sites using an elongating RNA polymerase II‐specific probe. J Cell Biol 221, e202104134.
Khanna N, Hu Y & Belmont AS (2014) HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr Biol 24, 1138–1144.
Wang K, Wang L, Wang J, Chen S, Shi M & Cheng H (2018) Intronless mRNAs transit through nuclear speckles to gain export competence. J Cell Biol 217, 3912–3929.
Sacco‐Bubulya P & Spector DL (2002) Disassembly of interchromatin granule clusters alters the coordination of transcription and pre‐mRNA splicing. J Cell Biol 156, 425–436.
Okada M, Jang SW & Ye K (2008) Akt phosphorylation and nuclear phosphoinositide association mediate mRNA export and cell proliferation activities by ALY. Proc Natl Acad Sci USA 105, 8649–8654.
Castells‐Garcia A, Ed‐Daoui I, Gonzalez‐Almela E, Vicario C, Ottestrom J, Lakadamyali M, Neguembor MV & Cosma MP (2022) Super resolution microscopy reveals how elongating RNA polymerase II and nascent RNA interact with nucleosome clutches. Nucleic Acids Res 50, 175–190.
Cho WK, Jayanth N, Mullen S, Tan TH, Jung YJ & Cisse II (2016) Super‐resolution imaging of fluorescently labeled, endogenous RNA polymerase II in living cells with CRISPR/Cas9‐mediated gene editing. Sci Rep 6, 35949.
Izeddin I, Recamier V, Bosanac L, Cisse II, Boudarene L, Dugast‐Darzacq C, Proux F, Benichou O, Voituriez R, Bensaude O et al. (2014) Single‐molecule tracking in live cells reveals distinct target‐search strategies of transcription factors in the nucleus. Elife 3, e02230.
Hoboth P, Sebesta O & Hozak P (2021) How single‐molecule localization microscopy expanded our mechanistic understanding of RNA polymerase II transcription. Int J Mol Sci 22, 6694.
Cocco L, Gilmour RS, Ognibene A, Letcher AJ, Manzoli FA & Irvine RF (1987) Synthesis of polyphosphoinositides in nuclei of friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. Biochem J 248, 765–770.
Cocco L, Martelli AM, Barnabei O & Manzoli FA (2001) Nuclear inositol lipid signaling. Adv Enzyme Regul 41, 361–384.
Cocco L, Martelli AM, Gilmour RS, Ognibene A, Manzoli FA & Irvine RF (1988) Rapid changes in phospholipid metabolism in the nuclei of Swiss 3T3 cells induced by treatment of the cells with insulin‐like growth factor I. Biochem Biophys Res Commun 154, 1266–1272.
Cocco L, Martelli AM, Gilmour RS, Ognibene A, Manzoli FA & Irvine RF (1989) Changes in nuclear inositol phospholipids induced in intact cells by insulin‐like growth factor I. Biochem Biophys Res Commun 159, 720–725.
Cocco L, Martelli AM, Gilmour RS, Rhee SG & Manzoli FA (2001) Nuclear phospholipase C and signaling. Biochim Biophys Acta 1530, 1–14.
Fiume R, Ramazzotti G, Faenza I, Piazzi M, Bavelloni A, Billi AM & Cocco L (2012) Nuclear PLCs affect insulin secretion by targeting PPARgamma in pancreatic beta cells. FASEB J 26, 203–210.
Manzoli FA, Maraldi NM, Cocco L, Capitani S & Facchini A (1977) Chromatin phospholipids in normal and chronic lymphocytic leukemia lymphocytes. Cancer Res 37, 843–849.
Manzoli FA, Martelli AM, Capitani S, Maraldi NM, Rizzoli R, Barnabei O & Cocco L (1989) Nuclear polyphosphoinositides during cell growth and differentiation. Adv Enzyme Regul 28, 25–34.
Manzoli L, Billi AM, Rubbini S, Bavelloni A, Faenza I, Gilmour RS, Rhee SG & Cocco L (1997) Essential role for nuclear phospholipase C beta1 in insulin‐like growth factor I‐induced mitogenesis. Cancer Res 57, 2137–2139.
Martelli AM, Billi AM, Manzoli L, Faenza I, Aluigi M, Falconi M, De Pol A, Gilmour RS & Cocco L (2000) Insulin selectively stimulates nuclear phosphoinositide‐specific phospholipase C (PI‐PLC) beta1 activity through a mitogen‐activated protein (MAP) kinase‐dependent serine phosphorylation. FEBS Lett 486, 230–236.
Martelli AM, Gilmour RS, Falcieri E, Manzoli FA & Cocco L (1989) Mitogen‐stimulated phosphorylation of nuclear proteins in Swiss 3T3 cells: evidence for a protein kinase C requirement. Exp Cell Res 185, 191–202.
Martelli AM, Tabellini G, Bortul R, Manzoli L, Bareggi R, Baldini G, Grill V, Zweyer M, Narducci P & Cocco L (2000) Enhanced nuclear diacylglycerol kinase activity in response to a mitogenic stimulation of quiescent Swiss 3T3 cells with insulin‐like growth factor I. Cancer Res 60, 815–821.
Martelli AM, Bortul R, Tabellini G, Bareggi R, Manzoli L, Narducci P & Cocco L (2002) Diacylglycerol kinases in nuclear lipid‐dependent signal transduction pathways. Cell Mol Life Sci 59, 1129–1137.
Barlow CA, Laishram RS & Anderson RA (2010) Nuclear phosphoinositides: a signaling enigma wrapped in a compartmental conundrum. Trends Cell Biol 20, 25–35.
Martelli AM, Bortul R, Tabellini G, Aluigi M, Peruzzi D, Bareggi R, Narducci P & Cocco L (2001) Re‐examination of the mechanisms regulating nuclear inositol lipid metabolism. FEBS Lett 505, 1–6.
Larochelle S, Amat R, Glover‐Cutter K, Sanso M, Zhang C, Allen JJ, Shokat KM, Bentley DL & Fisher RP (2012) Cyclin‐dependent kinase control of the initiation‐to‐elongation switch of RNA polymerase II. Nat Struct Mol Biol 19, 1108–1115.
Singh N, Asalam M, Ansari MO, Gerasimova NS, Studitsky VM & Akhtar MS (2022) Transcription by RNA polymerase II and the CTD‐chromatin crosstalk. Biochem Biophys Res Commun 599, 81–86.
Bataille AR, Jeronimo C, Jacques PE, Laramee L, Fortin ME, Forest A, Bergeron M, Hanes SD & Robert F (2012) A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol Cell 45, 158–170.
Ahn SH, Keogh MC & Buratowski S (2009) Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J 28, 205–212.
Mosley AL, Pattenden SG, Carey M, Venkatesh S, Gilmore JM, Florens L, Workman JL & Washburn MP (2009) Rtr1 is a CTD phosphatase that regulates RNA polymerase II during the transition from serine 5 to serine 2 phosphorylation. Mol Cell 34, 168–178.
Harlen KM, Trotta KL, Smith EE, Mosaheb MM, Fuchs SM & Churchman LS (2016) Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each Phospho‐CTD residue. Cell Rep 15, 2147–2158.
Dunn KW, Kamocka MM & McDonald JH (2011) A practical guide to evaluating colocalization in biological microscopy. Am J Physiol Cell Physiol 300, C723–C742.
Plasma membrane and nuclear phosphatidylinositol 4,5-bisphosphate signalling in cancer