Lamin A/C and PI(4,5)P2-A Novel Complex in the Cell Nucleus

. 2024 Feb 25 ; 13 (5) : . [epub] 20240225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38474363

Grantová podpora
19-05608S Czech Science Foundation
18-19714S Czech Science Foundation
17-09103S Czech Science Foundation
16-03346S Czech Science Foundation
15-08738S Czech Science Foundation
68378050 Czech Academy of Sciences, Institute of Molecular Genetics: RVO:
LTC19048 Ministry of Education Youth and Sports
LTC20024 Ministry of Education Youth and Sports
CA19105 action COST: EpiLipidNET
LM2018129 Ministry of Education Youth and Sports
LM2023050 Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001775 European Regional Development Fund
CA15214 action COST: EuroCellNet

Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.

Zobrazit více v PubMed

Gruenbaum Y., Foisner R. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 2015;84:131–164. doi: 10.1146/annurev-biochem-060614-034115. PubMed DOI

Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D.Z., Barkan R., Meshorer E., Gruenbaum Y. Nuclear lamins: Key regulators of nuclear structure and activities. J. Cell. Mol. Med. 2009;13:1059–1085. doi: 10.1111/j.1582-4934.2008.00676.x. PubMed DOI PMC

Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D.K., Solimando L., Goldman R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes. Dev. 2008;22:832–853. doi: 10.1101/gad.1652708. PubMed DOI PMC

Shimi T., Pfleghaar K., Kojima S., Pack C.G., Solovei I., Goldman A.E., Adam S.A., Shumaker D.K., Kinjo M., Cremer T., et al. The A- and B-type nuclear lamin networks: Microdomains involved in chromatin organization and transcription. Genes. Dev. 2008;22:3409–3421. doi: 10.1101/gad.1735208. PubMed DOI PMC

Kreienkamp R., Graziano S., Coll-Bonfill N., Bedia-Diaz G., Cybulla E., Vindigni A., Dorsett D., Kubben N., Batista L.F.Z., Gonzalo S. A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin. Cell Rep. 2018;22:2006–2015. doi: 10.1016/j.celrep.2018.01.090. PubMed DOI PMC

Oca R.M.d., Shoemaker C.J., Gucek M., Cole R.N., Wilson K.L. Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners. PLoS ONE. 2009;4:e7050. PubMed PMC

Dittmer T., Misteli T. The lamin protein family. Genome Biol. 2011;12:222. doi: 10.1186/gb-2011-12-5-222. PubMed DOI PMC

Gruenbaum Y., Medalia O. Lamins: The structure and protein complexes. Curr. Opin. Cell Biol. 2015;32:7–12. doi: 10.1016/j.ceb.2014.09.009. PubMed DOI

Maraldi N.M., Capanni C., Cenni V., Fini M., Lattanzi G. Laminopathies and lamin-associated signaling pathways. J. Cell. Biochem. 2011;112:979–992. doi: 10.1002/jcb.22992. PubMed DOI

Cattin M.E., Ferry A., Vignaud A., Mougenot N., Jacquet A., Wahbi K., Bertrand A.T., Bonne G. Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscul. Disord. 2016;26:490–499. doi: 10.1016/j.nmd.2016.05.010. PubMed DOI

Bertrand A.T., Brull A., Azibani F., Benarroch L., Chikhaoui K., Stewart C.L., Medalia O., Ben Yaou R., Bonne G. Lamin A/C Assembly Defects in LMNA-Congenital Muscular Dystrophy Is Responsible for the Increased Severity of the Disease Compared with Emery-Dreifuss Muscular Dystrophy. Cells. 2020;9:844. doi: 10.3390/cells9040844. PubMed DOI PMC

Worman H.J. Nuclear lamins and laminopathies. J. Pathol. 2012;226:316–325. doi: 10.1002/path.2999. PubMed DOI PMC

Prokocimer M., Barkan R., Gruenbaum Y. Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell. 2013;12:533–543. doi: 10.1111/acel.12070. PubMed DOI

Benarroch L., Cohen E., Atalaia A., Ben Yaou R., Bonne G., Bertrand A.T. Preclinical Advances of Therapies for Laminopathies. J. Clin. Med. 2021;10:4834. doi: 10.3390/jcm10214834. PubMed DOI PMC

Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC

Hozák P., Sasseville A.M.-J., Raymond Y., Cook P.R. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 1995;108:635–644. doi: 10.1242/jcs.108.2.635. PubMed DOI

Moir R.D., Yoon M., Khuon S., Goldman R.D. Nuclear Lamins A and B1: Different Pathways of Assembly during Nuclear Envelope Formation in Living Cells. J. Cell Biol. 2000;151:1155–1168. doi: 10.1083/jcb.151.6.1155. PubMed DOI PMC

Naetar N., Korbei B., Kozlov S., Kerenyi M.A., Dorner D., Kral R., Gotic I., Fuchs P., Cohen T.V., Bittner R., et al. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat. Cell Biol. 2008;10:1341–1348. doi: 10.1038/ncb1793. PubMed DOI

Kolb T., Maass K., Hergt M., Aebi U., Herrmann H. Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus. 2011;2:425–433. doi: 10.4161/nucl.2.5.17765. PubMed DOI

Eriksson J.E., Dechat T., Grin B., Helfand B., Mendez M., Pallari H.M., Goldman R.D. Introducing intermediate filaments: From discovery to disease. J. Clin. Investig. 2009;119:1763–1771. doi: 10.1172/JCI38339. PubMed DOI PMC

Liu S.Y., Ikegami K. Nuclear lamin phosphorylation: An emerging role in gene regulation and pathogenesis of laminopathies. Nucleus. 2020;11:299–314. doi: 10.1080/19491034.2020.1832734. PubMed DOI PMC

Buxboim A., Swift J., Irianto J., Spinler K.R., Dingal P.C., Athirasala A., Kao Y.R., Cho S., Harada T., Shin J.W., et al. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 2014;24:1909–1917. doi: 10.1016/j.cub.2014.07.001. PubMed DOI PMC

Naetar N., Ferraioli S., Foisner R. Lamins in the nuclear interior—Life outside the lamina. J. Cell Sci. 2017;130:2087–2096. doi: 10.1242/jcs.203430. PubMed DOI

Kochin V., Shimi T., Torvaldson E., Adam S.A., Goldman A., Pack C.G., Melo-Cardenas J., Imanishi S.Y., Goldman R.D., Eriksson J.E. Interphase phosphorylation of lamin A. J. Cell Sci. 2014;127 Pt. 12:2683–2696. doi: 10.1242/jcs.141820. PubMed DOI PMC

Ikegami K., Secchia S., Almakki O., Lieb J.D., Moskowitz I.P. Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria. Dev. Cell. 2020;52:699–713. doi: 10.1016/j.devcel.2020.02.011. PubMed DOI PMC

Towbin B.D., Meister P., Pike B.L., Gasser S.M. Cold Spring Harbor Symposia on Quantitative Biology. Volume 75. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY. USA: 2010. Repetitive Transgenes in C. elegans Accumulate Heterochromatic Marks and Are Sequestered at the Nuclear Envelope in a Copy Numberand Lamin-Dependent Manner; pp. 555–565. PubMed

Gesson K., Rescheneder P., Skoruppa M.P., von Haeseler A., Dechat T., Foisner R. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 2016;26:462–473. doi: 10.1101/gr.196220.115. PubMed DOI PMC

Capanni C., Del Coco R., Mattioli E., Camozzi D., Columbaro M., Schena E., Merlini L., Squarzoni S., Maraldi N.M., Lattanzi G. Emerin-prelamin A interplay in human fibroblasts. Biol. Cell. 2009;101:541–554. doi: 10.1042/BC20080175. PubMed DOI

Holaska J.M., Wilson K.L. An emerin “proteome”: Purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry. 2007;46:8897–8908. doi: 10.1021/bi602636m. PubMed DOI PMC

Ranade D., Pradhan R., Jayakrishnan M., Hegde S., Sengupta K. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Mol. Cell Biol. 2019;20:11. doi: 10.1186/s12860-019-0192-5. PubMed DOI PMC

Pradhan R., Nallappa M.J., Sengupta K. Lamin A/C modulates spatial organization and function of the Hsp70 gene locus via nuclear myosin I. J. Cell Sci. 2020;133:jcs236265. doi: 10.1242/jcs.236265. PubMed DOI

Fomproix N., Percipalle P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 2004;294:140–148. doi: 10.1016/j.yexcr.2003.10.028. PubMed DOI

Kysela K., Philimonenko A.A., Philimonenko V.V., Janacek J., Kahle M., Hozak P. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem. Cell Biol. 2005;124:347–358. doi: 10.1007/s00418-005-0042-8. PubMed DOI

Percipalle P., Visa N. Molecular functions of nuclear actin in transcription. J. Cell Biol. 2006;172:967–971. doi: 10.1083/jcb.200512083. PubMed DOI PMC

Sarshad A., Sadeghifar F., Louvet E., Mori R., Bohm S., Al-Muzzaini B., Vintermist A., Fomproix N., Ostlund A.K., Percipalle P. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet. 2013;9:e1003397. doi: 10.1371/journal.pgen.1003397. PubMed DOI PMC

Sarshad A.A., Percipalle P. New insight into role of myosin motors for activation of RNA polymerases. Int. Rev. Cell Mol. Biol. 2014;311:183–230. doi: 10.1016/B978-0-12-800179-0.00004-0. PubMed DOI

Ye J., Zhao J., Hoffmann-Rohrer U., Grummt I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes. Dev. 2008;22:322–330. doi: 10.1101/gad.455908. PubMed DOI PMC

Hokanson D.E., Ostap E.M. Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA. 2005;103:3118–3123. doi: 10.1073/pnas.0505685103. PubMed DOI PMC

Yin H.L., Janmey P.A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 2003;65:761–789. doi: 10.1146/annurev.physiol.65.092101.142517. PubMed DOI

Skare P., Karlsson R. Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian pro¢lin I. FEBS Lett. 2002;522:119–124. doi: 10.1016/S0014-5793(02)02913-7. PubMed DOI

Rando O.J., Zhao K., Janmey P., Crabtree G.R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA. 2002;99:2824–2829. doi: 10.1073/pnas.032662899. PubMed DOI PMC

York J.D. Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta. 2006;1761:552–559. doi: 10.1016/j.bbalip.2006.04.014. PubMed DOI

Lewis A.E., Sommer L., Arntzen M.O., Strahm Y., Morrice N.A., Divecha N., D’Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell. Proteom. 2011;10:S1–S15. doi: 10.1074/mcp.M110.003376. PubMed DOI PMC

Philimonenko V.V., Zhao J., Iben S., Dingova H., Kysela K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozak P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI

Sobol M., Yildirim S., Philimonenko V.V., Marasek P., Castano E., Hozak P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC

Hofmann W.A., Johnson T., Klapczynski M., Fan J.L., de Lanerolle P. From transcription to transport: Emerging roles for nuclear myosin I. Biochem. Cell Biol. 2006;84:418–426. doi: 10.1139/o06-069. PubMed DOI

Venit T., Dzijak R., Kalendova A., Kahle M., Rohozkova J., Schmidt V., Rulicke T., Rathkolb B., Hans W., Bohla A., et al. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus. PLoS ONE. 2013;8:e61406. doi: 10.1371/journal.pone.0061406. PubMed DOI PMC

Sobol M., Krausova A., Yildirim S., Kalasova I., Faberova V., Vrkoslav V., Philimonenko V., Marasek P., Pastorek L., Capek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI

Jungmichel S., Sylvestersen K.B., Choudhary C., Nguyen S., Mann M., Nielsen M.L. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep. 2014;6:578–591. doi: 10.1016/j.celrep.2013.12.038. PubMed DOI

Stierle V., Couprie J., Ostlund C., Krimm I., Zinn-Justin S., Hossenlopp P., Worman H.J., Courvalin J.-C., Duband-Goulet I. The Carboxyl-Terminal Region Common to Lamins A and C Contains a DNA Binding Domain. Biochemistry. 2003;42:4819–4828. doi: 10.1021/bi020704g. PubMed DOI

Goldberg M., Harel A., Gruenbaum Y. The Nuclear Lamina: Molecular Organization and Interaction with Chromatin. Crit. Rev. Eukaryot. Gene Expr. 1999;9:285–293. doi: 10.1615/CritRevEukarGeneExpr.v9.i3-4.130. PubMed DOI

Mattout A., Goldberg M., Tzur Y., Margalit A., Gruenbaum Y. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. Pt 1J. Cell Sci. 2007;120:77–85. doi: 10.1242/jcs.03325. PubMed DOI

Hodge K., ten Have S. Cell Fractionation—Cytoplasmic, Nucleoplasmic and Nucleoli Fractionation. 2012. [(accessed on 5 October 2023)]. Available online: https://www.lamondlab.com/newwebsite/Protocols%20for%20Website/Cellular%20Fractionation%20Protocol.pdf.

Hoboth P., Šebesta O., Sztacho M., Castano E., Hozák P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX. 2021;8:101372. doi: 10.1016/j.mex.2021.101372. PubMed DOI PMC

Hoboth P., Šebesta O., Hozák P. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. Int. J. Mol. Sci. 2021;22:6694. doi: 10.3390/ijms22136694. PubMed DOI PMC

Mou F., Forest T., Baines J.D. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J. Virol. 2007;81:6459–6470. doi: 10.1128/JVI.00380-07. PubMed DOI PMC

Al-Saaidi R., Bross P. Do lamin A and lamin C have unique roles? Chromosoma. 2015;124:1–12. doi: 10.1007/s00412-014-0484-7. PubMed DOI

Ghosh S., Zhou Z. Genetics of aging, progeria and lamin disorders. Curr. Opin. Genet. Dev. 2014;26:41–46. doi: 10.1016/j.gde.2014.05.003. PubMed DOI

Rana R.A., Cataldi A., Di Pietro R., Mazzotti G., Centurione L., Robuffo I., Vitale M., Miscia S. Evidence for an early and transient involvement of nuclear inositol lipids in subcellular signalling events related to DNA repair processes. Cell. Signal. 1994;6:475–480. doi: 10.1016/0898-6568(94)90095-7. PubMed DOI

Wang Y.H., Hariharan A., Bastianello G., Toyama Y., Shivashankar G.V., Foiani M., Sheetz M.P. DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat. Commun. 2017;8:2118. doi: 10.1038/s41467-017-01805-9. PubMed DOI PMC

Wang Y.H., Sheetz M.P. When PIP(2) Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front. Cell Dev. Biol. 2022;10:903994. doi: 10.3389/fcell.2022.903994. PubMed DOI PMC

Liu B., Wang J., Chan K.M., Tjia W.M., Deng W., Guan X., Huang J.D., Li K.M., Chau P.Y., Chen D.J., et al. Genomic instability in laminopathy-based premature aging. Nat. Med. 2005;11:780–785. doi: 10.1038/nm1266. PubMed DOI

Liu Y., Rusinol A., Sinensky M., Wang Y., Zou Y. DNA Damage Responses in Progeroid Syndromes Arising from Defective Maturation of Prelamin A. J. Cell Sci. 2006;119:4644–4649. doi: 10.1242/jcs.03263. PubMed DOI PMC

Sztacho M., Sobol M., Balaban C., Lopes S.E.E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI

Simon D.N., Zastrow M.S., Wilson K.L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus. 2010;1:264–272. doi: 10.4161/nucl.11799. PubMed DOI PMC

Yamagata A., Kristensen D.B., Takeda Y., Miyamoto Y., Okada K., Inamatsu M., Yoshizato K. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics. 2002;2:1267–1276. doi: 10.1002/1615-9861(200209)2:9<1267::AID-PROT1267>3.0.CO;2-R. PubMed DOI

Ardito F., Giuliani M., Perrone D., Troiano G., Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review) Int. J. Mol. Med. 2017;40:271–280. doi: 10.3892/ijmm.2017.3036. PubMed DOI PMC

Nishi H., Hashimoto K., Panchenko A.R. Phosphorylation in protein-protein binding: Effect on stability and function. Structure. 2011;19:1807–1815. doi: 10.1016/j.str.2011.09.021. PubMed DOI PMC

Torvaldson E., Kochin V., Eriksson J.E. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus. 2015;6:166–171. doi: 10.1080/19491034.2015.1017167. PubMed DOI PMC

Machowska M., Piekarowicz K., Rzepecki R. Regulation of lamin properties and functions: Does phosphorylation do it all? Open Biol. 2015;5:150094. doi: 10.1098/rsob.150094. PubMed DOI PMC

Shimizu T., Cao C.X., Shao R.G., Pommier Y. Lamin B phosphorylation by protein kinase calpha and proteolysis during apoptosis in human leukemia HL60 cells. J. Biol. Chem. 1998;273:8669–8674. doi: 10.1074/jbc.273.15.8669. PubMed DOI

Karoutas A., Akhtar A. Functional mechanisms and abnormalities of the nuclear lamina. Nat. Cell Biol. 2021;23:116–126. doi: 10.1038/s41556-020-00630-5. PubMed DOI

Ovsiannikova N.L., Lavrushkina S.V., Ivanova A.V., Mazina L.M., Zhironkina O.A., Kireev I.I. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. Biochem. (Mosc.) 2021;86:1288–1300. doi: 10.1134/S0006297921100102. PubMed DOI

Tenga R., Medalia O. Structure and unique mechanical aspects of nuclear lamin filaments. Curr. Opin. Struct. Biol. 2020;64:152–159. doi: 10.1016/j.sbi.2020.06.017. PubMed DOI

Boubriak I.I., Malhas A.N., Drozdz M.M., Pytowski L., Vaux D.J. Stress-induced release of Oct-1 from the nuclear envelope is mediated by JNK phosphorylation of lamin B1. PLoS ONE. 2017;12:e0177990. doi: 10.1371/journal.pone.0177990. PubMed DOI PMC

Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozak P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI

Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozak P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI

Shin Y., Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382. doi: 10.1126/science.aaf4382. PubMed DOI

Owen I., Shewmaker F. The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. Int. J. Mol. Sci. 2019;20:5501. doi: 10.3390/ijms20215501. PubMed DOI PMC

Dumelie J.G., Chen Q., Miller D., Attarwala N., Gross S.S., Jaffrey S.R. Biomolecular condensates create phospholipid-enriched microenvironments. Nat. Chem. Biol. 2023 doi: 10.1038/s41589-023-01474-4. PubMed DOI PMC

Nevzorov I., Sidorenko E., Wang W., Zhao H., Vartiainen M.K. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization. EMBO Rep. 2018;19:290–304. doi: 10.15252/embr.201744296. PubMed DOI PMC

Venit T., Kalendova A., Petr M., Dzijak R., Pastorek L., Rohozkova J., Malohlava J., Hozak P. Nuclear myosin I regulates cell membrane tension. Sci. Rep. 2016;6:30864. doi: 10.1038/srep30864. PubMed DOI PMC

Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;114:2501–2511. doi: 10.1242/jcs.114.13.2501. PubMed DOI

YU H., FUKAMI K., WATANABE Y., OZAKI C., TAKENAWA T. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 1998;251:281–287. doi: 10.1046/j.1432-1327.1998.2510281.x. PubMed DOI

Ulicna L., Rohozkova J., Hozak P. Multiple Aspects of PIP2 Involvement in C. elegans Gametogenesis. Int. J. Mol. 2018;18:2679. doi: 10.3390/ijms19092679. PubMed DOI PMC

Venit T., Semesta K., Farrukh S., Endara-Coll M., Havalda R., Hozak P., Percipalle P. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Commun. Biol. 2020;3:115. doi: 10.1038/s42003-020-0836-1. PubMed DOI PMC

Vidak S., Foisner R. Molecular insights into the premature aging disease progeria. Histochem. Cell Biol. 2016;145:401–417. doi: 10.1007/s00418-016-1411-1. PubMed DOI PMC

Cenni V., Capanni C., Mattioli E., Schena E., Squarzoni S., Bacalini M.G., Garagnani P., Salvioli S., Franceschi C., Lattanzi G. Lamin A involvement in ageing processes. Ageing Res. Rev. 2020;62:101073. doi: 10.1016/j.arr.2020.101073. PubMed DOI

Olive M., Harten I., Mitchell R., Beers J., Djabali K., Cao K., Erdos M.R., Blair C., Funke B., Smoot L., et al. Cardiovascular Pathology in Hutchinson-Gilford Progeria: Correlation with the Vascular Pathology of Aging. Arterioscler. Thromb. Vasc. Biol. 2010;30:2301–2309. doi: 10.1161/ATVBAHA.110.209460. PubMed DOI PMC

Kurz E.U., Lees-Miller S.P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair. 2004;3:889–900. doi: 10.1016/j.dnarep.2004.03.029. PubMed DOI

Moiseeva O., Lopes-Paciencia S., Huot G., Lessard F., Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging. 2016;8:366–381. doi: 10.18632/aging.100903. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace