Lamin A/C and PI(4,5)P2-A Novel Complex in the Cell Nucleus
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-05608S
Czech Science Foundation
18-19714S
Czech Science Foundation
17-09103S
Czech Science Foundation
16-03346S
Czech Science Foundation
15-08738S
Czech Science Foundation
68378050
Czech Academy of Sciences, Institute of Molecular Genetics: RVO:
LTC19048
Ministry of Education Youth and Sports
LTC20024
Ministry of Education Youth and Sports
CA19105 action
COST: EpiLipidNET
LM2018129
Ministry of Education Youth and Sports
LM2023050
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
CA15214 action
COST: EuroCellNet
PubMed
38474363
PubMed Central
PMC10931150
DOI
10.3390/cells13050399
PII: cells13050399
Knihovny.cz E-zdroje
- Klíčová slova
- NM1, PI(4,5)P2, cell nucleus, lamin A/C, nuclear lamina, nuclear myosin 1, nucleoplasm, phosphoinositides, phosphorylation,
- MeSH
- buněčné jádro * metabolismus MeSH
- interfáze MeSH
- intermediární filamenta metabolismus MeSH
- lamin typ A * metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lamin typ A * MeSH
Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.
Zobrazit více v PubMed
Gruenbaum Y., Foisner R. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 2015;84:131–164. doi: 10.1146/annurev-biochem-060614-034115. PubMed DOI
Prokocimer M., Davidovich M., Nissim-Rafinia M., Wiesel-Motiuk N., Bar D.Z., Barkan R., Meshorer E., Gruenbaum Y. Nuclear lamins: Key regulators of nuclear structure and activities. J. Cell. Mol. Med. 2009;13:1059–1085. doi: 10.1111/j.1582-4934.2008.00676.x. PubMed DOI PMC
Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D.K., Solimando L., Goldman R.D. Nuclear lamins: Major factors in the structural organization and function of the nucleus and chromatin. Genes. Dev. 2008;22:832–853. doi: 10.1101/gad.1652708. PubMed DOI PMC
Shimi T., Pfleghaar K., Kojima S., Pack C.G., Solovei I., Goldman A.E., Adam S.A., Shumaker D.K., Kinjo M., Cremer T., et al. The A- and B-type nuclear lamin networks: Microdomains involved in chromatin organization and transcription. Genes. Dev. 2008;22:3409–3421. doi: 10.1101/gad.1735208. PubMed DOI PMC
Kreienkamp R., Graziano S., Coll-Bonfill N., Bedia-Diaz G., Cybulla E., Vindigni A., Dorsett D., Kubben N., Batista L.F.Z., Gonzalo S. A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin. Cell Rep. 2018;22:2006–2015. doi: 10.1016/j.celrep.2018.01.090. PubMed DOI PMC
Oca R.M.d., Shoemaker C.J., Gucek M., Cole R.N., Wilson K.L. Barrier-to-Autointegration Factor Proteome Reveals Chromatin-Regulatory Partners. PLoS ONE. 2009;4:e7050. PubMed PMC
Dittmer T., Misteli T. The lamin protein family. Genome Biol. 2011;12:222. doi: 10.1186/gb-2011-12-5-222. PubMed DOI PMC
Gruenbaum Y., Medalia O. Lamins: The structure and protein complexes. Curr. Opin. Cell Biol. 2015;32:7–12. doi: 10.1016/j.ceb.2014.09.009. PubMed DOI
Maraldi N.M., Capanni C., Cenni V., Fini M., Lattanzi G. Laminopathies and lamin-associated signaling pathways. J. Cell. Biochem. 2011;112:979–992. doi: 10.1002/jcb.22992. PubMed DOI
Cattin M.E., Ferry A., Vignaud A., Mougenot N., Jacquet A., Wahbi K., Bertrand A.T., Bonne G. Mutation in lamin A/C sensitizes the myocardium to exercise-induced mechanical stress but has no effect on skeletal muscles in mouse. Neuromuscul. Disord. 2016;26:490–499. doi: 10.1016/j.nmd.2016.05.010. PubMed DOI
Bertrand A.T., Brull A., Azibani F., Benarroch L., Chikhaoui K., Stewart C.L., Medalia O., Ben Yaou R., Bonne G. Lamin A/C Assembly Defects in LMNA-Congenital Muscular Dystrophy Is Responsible for the Increased Severity of the Disease Compared with Emery-Dreifuss Muscular Dystrophy. Cells. 2020;9:844. doi: 10.3390/cells9040844. PubMed DOI PMC
Worman H.J. Nuclear lamins and laminopathies. J. Pathol. 2012;226:316–325. doi: 10.1002/path.2999. PubMed DOI PMC
Prokocimer M., Barkan R., Gruenbaum Y. Hutchinson-Gilford progeria syndrome through the lens of transcription. Aging Cell. 2013;12:533–543. doi: 10.1111/acel.12070. PubMed DOI
Benarroch L., Cohen E., Atalaia A., Ben Yaou R., Bonne G., Bertrand A.T. Preclinical Advances of Therapies for Laminopathies. J. Clin. Med. 2021;10:4834. doi: 10.3390/jcm10214834. PubMed DOI PMC
Turgay Y., Eibauer M., Goldman A.E., Shimi T., Khayat M., Ben-Harush K., Dubrovsky-Gaupp A., Sapra K.T., Goldman R.D., Medalia O. The molecular architecture of lamins in somatic cells. Nature. 2017;543:261–264. doi: 10.1038/nature21382. PubMed DOI PMC
Hozák P., Sasseville A.M.-J., Raymond Y., Cook P.R. Lamin proteins form an internal nucleoskeleton as well as a peripheral lamina in human cells. J. Cell Sci. 1995;108:635–644. doi: 10.1242/jcs.108.2.635. PubMed DOI
Moir R.D., Yoon M., Khuon S., Goldman R.D. Nuclear Lamins A and B1: Different Pathways of Assembly during Nuclear Envelope Formation in Living Cells. J. Cell Biol. 2000;151:1155–1168. doi: 10.1083/jcb.151.6.1155. PubMed DOI PMC
Naetar N., Korbei B., Kozlov S., Kerenyi M.A., Dorner D., Kral R., Gotic I., Fuchs P., Cohen T.V., Bittner R., et al. Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat. Cell Biol. 2008;10:1341–1348. doi: 10.1038/ncb1793. PubMed DOI
Kolb T., Maass K., Hergt M., Aebi U., Herrmann H. Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus. 2011;2:425–433. doi: 10.4161/nucl.2.5.17765. PubMed DOI
Eriksson J.E., Dechat T., Grin B., Helfand B., Mendez M., Pallari H.M., Goldman R.D. Introducing intermediate filaments: From discovery to disease. J. Clin. Investig. 2009;119:1763–1771. doi: 10.1172/JCI38339. PubMed DOI PMC
Liu S.Y., Ikegami K. Nuclear lamin phosphorylation: An emerging role in gene regulation and pathogenesis of laminopathies. Nucleus. 2020;11:299–314. doi: 10.1080/19491034.2020.1832734. PubMed DOI PMC
Buxboim A., Swift J., Irianto J., Spinler K.R., Dingal P.C., Athirasala A., Kao Y.R., Cho S., Harada T., Shin J.W., et al. Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 2014;24:1909–1917. doi: 10.1016/j.cub.2014.07.001. PubMed DOI PMC
Naetar N., Ferraioli S., Foisner R. Lamins in the nuclear interior—Life outside the lamina. J. Cell Sci. 2017;130:2087–2096. doi: 10.1242/jcs.203430. PubMed DOI
Kochin V., Shimi T., Torvaldson E., Adam S.A., Goldman A., Pack C.G., Melo-Cardenas J., Imanishi S.Y., Goldman R.D., Eriksson J.E. Interphase phosphorylation of lamin A. J. Cell Sci. 2014;127 Pt. 12:2683–2696. doi: 10.1242/jcs.141820. PubMed DOI PMC
Ikegami K., Secchia S., Almakki O., Lieb J.D., Moskowitz I.P. Phosphorylated Lamin A/C in the Nuclear Interior Binds Active Enhancers Associated with Abnormal Transcription in Progeria. Dev. Cell. 2020;52:699–713. doi: 10.1016/j.devcel.2020.02.011. PubMed DOI PMC
Towbin B.D., Meister P., Pike B.L., Gasser S.M. Cold Spring Harbor Symposia on Quantitative Biology. Volume 75. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY. USA: 2010. Repetitive Transgenes in C. elegans Accumulate Heterochromatic Marks and Are Sequestered at the Nuclear Envelope in a Copy Numberand Lamin-Dependent Manner; pp. 555–565. PubMed
Gesson K., Rescheneder P., Skoruppa M.P., von Haeseler A., Dechat T., Foisner R. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Genome Res. 2016;26:462–473. doi: 10.1101/gr.196220.115. PubMed DOI PMC
Capanni C., Del Coco R., Mattioli E., Camozzi D., Columbaro M., Schena E., Merlini L., Squarzoni S., Maraldi N.M., Lattanzi G. Emerin-prelamin A interplay in human fibroblasts. Biol. Cell. 2009;101:541–554. doi: 10.1042/BC20080175. PubMed DOI
Holaska J.M., Wilson K.L. An emerin “proteome”: Purification of distinct emerin-containing complexes from HeLa cells suggests molecular basis for diverse roles including gene regulation, mRNA splicing, signaling, mechanosensing, and nuclear architecture. Biochemistry. 2007;46:8897–8908. doi: 10.1021/bi602636m. PubMed DOI PMC
Ranade D., Pradhan R., Jayakrishnan M., Hegde S., Sengupta K. Lamin A/C and Emerin depletion impacts chromatin organization and dynamics in the interphase nucleus. BMC Mol. Cell Biol. 2019;20:11. doi: 10.1186/s12860-019-0192-5. PubMed DOI PMC
Pradhan R., Nallappa M.J., Sengupta K. Lamin A/C modulates spatial organization and function of the Hsp70 gene locus via nuclear myosin I. J. Cell Sci. 2020;133:jcs236265. doi: 10.1242/jcs.236265. PubMed DOI
Fomproix N., Percipalle P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 2004;294:140–148. doi: 10.1016/j.yexcr.2003.10.028. PubMed DOI
Kysela K., Philimonenko A.A., Philimonenko V.V., Janacek J., Kahle M., Hozak P. Nuclear distribution of actin and myosin I depends on transcriptional activity of the cell. Histochem. Cell Biol. 2005;124:347–358. doi: 10.1007/s00418-005-0042-8. PubMed DOI
Percipalle P., Visa N. Molecular functions of nuclear actin in transcription. J. Cell Biol. 2006;172:967–971. doi: 10.1083/jcb.200512083. PubMed DOI PMC
Sarshad A., Sadeghifar F., Louvet E., Mori R., Bohm S., Al-Muzzaini B., Vintermist A., Fomproix N., Ostlund A.K., Percipalle P. Nuclear myosin 1c facilitates the chromatin modifications required to activate rRNA gene transcription and cell cycle progression. PLoS Genet. 2013;9:e1003397. doi: 10.1371/journal.pgen.1003397. PubMed DOI PMC
Sarshad A.A., Percipalle P. New insight into role of myosin motors for activation of RNA polymerases. Int. Rev. Cell Mol. Biol. 2014;311:183–230. doi: 10.1016/B978-0-12-800179-0.00004-0. PubMed DOI
Ye J., Zhao J., Hoffmann-Rohrer U., Grummt I. Nuclear myosin I acts in concert with polymeric actin to drive RNA polymerase I transcription. Genes. Dev. 2008;22:322–330. doi: 10.1101/gad.455908. PubMed DOI PMC
Hokanson D.E., Ostap E.M. Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proc. Natl. Acad. Sci. USA. 2005;103:3118–3123. doi: 10.1073/pnas.0505685103. PubMed DOI PMC
Yin H.L., Janmey P.A. Phosphoinositide regulation of the actin cytoskeleton. Annu. Rev. Physiol. 2003;65:761–789. doi: 10.1146/annurev.physiol.65.092101.142517. PubMed DOI
Skare P., Karlsson R. Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian pro¢lin I. FEBS Lett. 2002;522:119–124. doi: 10.1016/S0014-5793(02)02913-7. PubMed DOI
Rando O.J., Zhao K., Janmey P., Crabtree G.R. Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA. 2002;99:2824–2829. doi: 10.1073/pnas.032662899. PubMed DOI PMC
York J.D. Regulation of nuclear processes by inositol polyphosphates. Biochim. Biophys. Acta. 2006;1761:552–559. doi: 10.1016/j.bbalip.2006.04.014. PubMed DOI
Lewis A.E., Sommer L., Arntzen M.O., Strahm Y., Morrice N.A., Divecha N., D’Santos C.S. Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol. Cell. Proteom. 2011;10:S1–S15. doi: 10.1074/mcp.M110.003376. PubMed DOI PMC
Philimonenko V.V., Zhao J., Iben S., Dingova H., Kysela K., Kahle M., Zentgraf H., Hofmann W.A., de Lanerolle P., Hozak P., et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 2004;6:1165–1172. doi: 10.1038/ncb1190. PubMed DOI
Sobol M., Yildirim S., Philimonenko V.V., Marasek P., Castano E., Hozak P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Hofmann W.A., Johnson T., Klapczynski M., Fan J.L., de Lanerolle P. From transcription to transport: Emerging roles for nuclear myosin I. Biochem. Cell Biol. 2006;84:418–426. doi: 10.1139/o06-069. PubMed DOI
Venit T., Dzijak R., Kalendova A., Kahle M., Rohozkova J., Schmidt V., Rulicke T., Rathkolb B., Hans W., Bohla A., et al. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus. PLoS ONE. 2013;8:e61406. doi: 10.1371/journal.pone.0061406. PubMed DOI PMC
Sobol M., Krausova A., Yildirim S., Kalasova I., Faberova V., Vrkoslav V., Philimonenko V., Marasek P., Pastorek L., Capek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018;131:jcs211094. doi: 10.1242/jcs.211094. PubMed DOI
Jungmichel S., Sylvestersen K.B., Choudhary C., Nguyen S., Mann M., Nielsen M.L. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep. 2014;6:578–591. doi: 10.1016/j.celrep.2013.12.038. PubMed DOI
Stierle V., Couprie J., Ostlund C., Krimm I., Zinn-Justin S., Hossenlopp P., Worman H.J., Courvalin J.-C., Duband-Goulet I. The Carboxyl-Terminal Region Common to Lamins A and C Contains a DNA Binding Domain. Biochemistry. 2003;42:4819–4828. doi: 10.1021/bi020704g. PubMed DOI
Goldberg M., Harel A., Gruenbaum Y. The Nuclear Lamina: Molecular Organization and Interaction with Chromatin. Crit. Rev. Eukaryot. Gene Expr. 1999;9:285–293. doi: 10.1615/CritRevEukarGeneExpr.v9.i3-4.130. PubMed DOI
Mattout A., Goldberg M., Tzur Y., Margalit A., Gruenbaum Y. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. Pt 1J. Cell Sci. 2007;120:77–85. doi: 10.1242/jcs.03325. PubMed DOI
Hodge K., ten Have S. Cell Fractionation—Cytoplasmic, Nucleoplasmic and Nucleoli Fractionation. 2012. [(accessed on 5 October 2023)]. Available online: https://www.lamondlab.com/newwebsite/Protocols%20for%20Website/Cellular%20Fractionation%20Protocol.pdf.
Hoboth P., Šebesta O., Sztacho M., Castano E., Hozák P. Dual-color dSTORM imaging and ThunderSTORM image reconstruction and analysis to study the spatial organization of the nuclear phosphatidylinositol phosphates. MethodsX. 2021;8:101372. doi: 10.1016/j.mex.2021.101372. PubMed DOI PMC
Hoboth P., Šebesta O., Hozák P. How Single-Molecule Localization Microscopy Expanded Our Mechanistic Understanding of RNA Polymerase II Transcription. Int. J. Mol. Sci. 2021;22:6694. doi: 10.3390/ijms22136694. PubMed DOI PMC
Mou F., Forest T., Baines J.D. US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J. Virol. 2007;81:6459–6470. doi: 10.1128/JVI.00380-07. PubMed DOI PMC
Al-Saaidi R., Bross P. Do lamin A and lamin C have unique roles? Chromosoma. 2015;124:1–12. doi: 10.1007/s00412-014-0484-7. PubMed DOI
Ghosh S., Zhou Z. Genetics of aging, progeria and lamin disorders. Curr. Opin. Genet. Dev. 2014;26:41–46. doi: 10.1016/j.gde.2014.05.003. PubMed DOI
Rana R.A., Cataldi A., Di Pietro R., Mazzotti G., Centurione L., Robuffo I., Vitale M., Miscia S. Evidence for an early and transient involvement of nuclear inositol lipids in subcellular signalling events related to DNA repair processes. Cell. Signal. 1994;6:475–480. doi: 10.1016/0898-6568(94)90095-7. PubMed DOI
Wang Y.H., Hariharan A., Bastianello G., Toyama Y., Shivashankar G.V., Foiani M., Sheetz M.P. DNA damage causes rapid accumulation of phosphoinositides for ATR signaling. Nat. Commun. 2017;8:2118. doi: 10.1038/s41467-017-01805-9. PubMed DOI PMC
Wang Y.H., Sheetz M.P. When PIP(2) Meets p53: Nuclear Phosphoinositide Signaling in the DNA Damage Response. Front. Cell Dev. Biol. 2022;10:903994. doi: 10.3389/fcell.2022.903994. PubMed DOI PMC
Liu B., Wang J., Chan K.M., Tjia W.M., Deng W., Guan X., Huang J.D., Li K.M., Chau P.Y., Chen D.J., et al. Genomic instability in laminopathy-based premature aging. Nat. Med. 2005;11:780–785. doi: 10.1038/nm1266. PubMed DOI
Liu Y., Rusinol A., Sinensky M., Wang Y., Zou Y. DNA Damage Responses in Progeroid Syndromes Arising from Defective Maturation of Prelamin A. J. Cell Sci. 2006;119:4644–4649. doi: 10.1242/jcs.03263. PubMed DOI PMC
Sztacho M., Sobol M., Balaban C., Lopes S.E.E., Hozák P. Nuclear phosphoinositides and phase separation: Important players in nuclear compartmentalization. Adv. Biol. Regul. 2019;71:111–117. doi: 10.1016/j.jbior.2018.09.009. PubMed DOI
Simon D.N., Zastrow M.S., Wilson K.L. Direct actin binding to A- and B-type lamin tails and actin filament bundling by the lamin A tail. Nucleus. 2010;1:264–272. doi: 10.4161/nucl.11799. PubMed DOI PMC
Yamagata A., Kristensen D.B., Takeda Y., Miyamoto Y., Okada K., Inamatsu M., Yoshizato K. Mapping of phosphorylated proteins on two-dimensional polyacrylamide gels using protein phosphatase. Proteomics. 2002;2:1267–1276. doi: 10.1002/1615-9861(200209)2:9<1267::AID-PROT1267>3.0.CO;2-R. PubMed DOI
Ardito F., Giuliani M., Perrone D., Troiano G., Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review) Int. J. Mol. Med. 2017;40:271–280. doi: 10.3892/ijmm.2017.3036. PubMed DOI PMC
Nishi H., Hashimoto K., Panchenko A.R. Phosphorylation in protein-protein binding: Effect on stability and function. Structure. 2011;19:1807–1815. doi: 10.1016/j.str.2011.09.021. PubMed DOI PMC
Torvaldson E., Kochin V., Eriksson J.E. Phosphorylation of lamins determine their structural properties and signaling functions. Nucleus. 2015;6:166–171. doi: 10.1080/19491034.2015.1017167. PubMed DOI PMC
Machowska M., Piekarowicz K., Rzepecki R. Regulation of lamin properties and functions: Does phosphorylation do it all? Open Biol. 2015;5:150094. doi: 10.1098/rsob.150094. PubMed DOI PMC
Shimizu T., Cao C.X., Shao R.G., Pommier Y. Lamin B phosphorylation by protein kinase calpha and proteolysis during apoptosis in human leukemia HL60 cells. J. Biol. Chem. 1998;273:8669–8674. doi: 10.1074/jbc.273.15.8669. PubMed DOI
Karoutas A., Akhtar A. Functional mechanisms and abnormalities of the nuclear lamina. Nat. Cell Biol. 2021;23:116–126. doi: 10.1038/s41556-020-00630-5. PubMed DOI
Ovsiannikova N.L., Lavrushkina S.V., Ivanova A.V., Mazina L.M., Zhironkina O.A., Kireev I.I. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. Biochem. (Mosc.) 2021;86:1288–1300. doi: 10.1134/S0006297921100102. PubMed DOI
Tenga R., Medalia O. Structure and unique mechanical aspects of nuclear lamin filaments. Curr. Opin. Struct. Biol. 2020;64:152–159. doi: 10.1016/j.sbi.2020.06.017. PubMed DOI
Boubriak I.I., Malhas A.N., Drozdz M.M., Pytowski L., Vaux D.J. Stress-induced release of Oct-1 from the nuclear envelope is mediated by JNK phosphorylation of lamin B1. PLoS ONE. 2017;12:e0177990. doi: 10.1371/journal.pone.0177990. PubMed DOI PMC
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozak P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozak P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI
Shin Y., Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science. 2017;357:eaaf4382. doi: 10.1126/science.aaf4382. PubMed DOI
Owen I., Shewmaker F. The Role of Post-Translational Modifications in the Phase Transitions of Intrinsically Disordered Proteins. Int. J. Mol. Sci. 2019;20:5501. doi: 10.3390/ijms20215501. PubMed DOI PMC
Dumelie J.G., Chen Q., Miller D., Attarwala N., Gross S.S., Jaffrey S.R. Biomolecular condensates create phospholipid-enriched microenvironments. Nat. Chem. Biol. 2023 doi: 10.1038/s41589-023-01474-4. PubMed DOI PMC
Nevzorov I., Sidorenko E., Wang W., Zhao H., Vartiainen M.K. Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization. EMBO Rep. 2018;19:290–304. doi: 10.15252/embr.201744296. PubMed DOI PMC
Venit T., Kalendova A., Petr M., Dzijak R., Pastorek L., Rohozkova J., Malohlava J., Hozak P. Nuclear myosin I regulates cell membrane tension. Sci. Rep. 2016;6:30864. doi: 10.1038/srep30864. PubMed DOI PMC
Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;114:2501–2511. doi: 10.1242/jcs.114.13.2501. PubMed DOI
YU H., FUKAMI K., WATANABE Y., OZAKI C., TAKENAWA T. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 1998;251:281–287. doi: 10.1046/j.1432-1327.1998.2510281.x. PubMed DOI
Ulicna L., Rohozkova J., Hozak P. Multiple Aspects of PIP2 Involvement in C. elegans Gametogenesis. Int. J. Mol. 2018;18:2679. doi: 10.3390/ijms19092679. PubMed DOI PMC
Venit T., Semesta K., Farrukh S., Endara-Coll M., Havalda R., Hozak P., Percipalle P. Nuclear myosin 1 activates p21 gene transcription in response to DNA damage through a chromatin-based mechanism. Commun. Biol. 2020;3:115. doi: 10.1038/s42003-020-0836-1. PubMed DOI PMC
Vidak S., Foisner R. Molecular insights into the premature aging disease progeria. Histochem. Cell Biol. 2016;145:401–417. doi: 10.1007/s00418-016-1411-1. PubMed DOI PMC
Cenni V., Capanni C., Mattioli E., Schena E., Squarzoni S., Bacalini M.G., Garagnani P., Salvioli S., Franceschi C., Lattanzi G. Lamin A involvement in ageing processes. Ageing Res. Rev. 2020;62:101073. doi: 10.1016/j.arr.2020.101073. PubMed DOI
Olive M., Harten I., Mitchell R., Beers J., Djabali K., Cao K., Erdos M.R., Blair C., Funke B., Smoot L., et al. Cardiovascular Pathology in Hutchinson-Gilford Progeria: Correlation with the Vascular Pathology of Aging. Arterioscler. Thromb. Vasc. Biol. 2010;30:2301–2309. doi: 10.1161/ATVBAHA.110.209460. PubMed DOI PMC
Kurz E.U., Lees-Miller S.P. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair. 2004;3:889–900. doi: 10.1016/j.dnarep.2004.03.029. PubMed DOI
Moiseeva O., Lopes-Paciencia S., Huot G., Lessard F., Ferbeyre G. Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase. Aging. 2016;8:366–381. doi: 10.18632/aging.100903. PubMed DOI PMC