Multiple Aspects of PIP2 Involvement in C. elegans Gametogenesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-03346S
Grantová Agentura České Republiky
17-09103S
Grantová Agentura České Republiky
LTC17054
INTER COST
No. CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
P40 OD010440
NIH HHS - United States
RVO: 68378050
The Long-term conceptual development of the scientific organization
LM2015062
MEYS CR
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
PubMed
30201859
PubMed Central
PMC6163852
DOI
10.3390/ijms19092679
PII: ijms19092679
Knihovny.cz E-zdroje
- Klíčová slova
- C. elegans, PPK-1, nucleus, phosphatidylinositol 4,5-bisphosphate,
- MeSH
- buněčné jádro metabolismus MeSH
- Caenorhabditis elegans genetika růst a vývoj metabolismus MeSH
- chromozomy chemie MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem genetika MeSH
- gametogeneze * MeSH
- hermafroditické organismy genetika růst a vývoj metabolismus MeSH
- profáze meiózy I MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteiny Caenorhabditis elegans genetika MeSH
- proteiny s repeticemi bohatými na leucin MeSH
- proteiny metabolismus MeSH
- RNA interference MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositol-4,5-difosfát MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem MeSH
- Ppk-1 protein, C elegans MeSH Prohlížeč
- proteasomový endopeptidasový komplex MeSH
- proteiny Caenorhabditis elegans MeSH
- proteiny s repeticemi bohatými na leucin MeSH
- proteiny MeSH
One of the most studied phosphoinositides is phosphatidylinositol 4,5-bisphosphate (PIP2), which localizes to the plasma membrane, nuclear speckles, small foci in the nucleoplasm, and to the nucleolus in mammalian cells. Here, we show that PIP2 also localizes to the nucleus in prophase I, during the gametogenesis of C. elegans hermaphrodite. The depletion of PIP2 by type I PIP kinase (PPK-1) kinase RNA interference results in an altered chromosome structure and leads to various defects during meiotic progression. We observed a decreased brood size and aneuploidy in progeny, defects in synapsis, and crossover formation. The altered chromosome structure is reflected in the increased transcription activity of a tightly regulated process in prophase I. To elucidate the involvement of PIP2 in the processes during the C. elegans development, we identified the PIP2-binding partners, leucine-rich repeat (LRR-1) protein and proteasome subunit beta 4 (PBS-4), pointing to its involvement in the ubiquitin⁻proteasome pathway.
Zobrazit více v PubMed
MacQueen A.V., Villeneuve A.M. Nuclear reorganization and homologous chromosome pairing during meiotic prophase require C. elegans chk-2. Genes Dev. 2001;15:1674–1687. doi: 10.1101/gad.902601. PubMed DOI PMC
Nicklas B.R. Chromosome segregation mechanisms. Genetics. 1974;78:205–213. PubMed PMC
Ostergren G. The mechanism of co-orientation in bivalents and multivalents. Hereditas. 1951;37:85–156. doi: 10.1111/j.1601-5223.1951.tb02891.x. DOI
Bell O., Tiwari V.K., Thoma N.H., Schubeler D. Determinants and dynamics of genome accessibility. Nat. Rev. Genet. 2011;12:554–564. doi: 10.1038/nrg3017. PubMed DOI
Wang X., Zhao Y., Wong K., Ehlers P., Kohara Y., Jones S.J., Marra M.A., Holt R.A., Moerman D.G., Hansen D. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genom. 2009;10:213. doi: 10.1186/1471-2164-10-213. PubMed DOI PMC
Capitani S., Mazzotti G., Jovine R., Papa S., Maraldi N.M., Manzoli F.A. Effect of phosphatidylcholine vesicles on the activity of DNA polymerase-alpha. Mol. Cell. Biochem. 1979;27:135–138. doi: 10.1007/BF00215361. PubMed DOI
Capitani S., Caramelli E., Felaco M., Miscia S., Manzoli F.A. Effect of phospholipid vesicles on endogenous RNA polymerase activity of isolated rat liver nuclei. Physiol. Chem. Phys. 1981;13:153–158. PubMed
Manzoli F.A., Capitani S., Mazzotti G., Barnabei O., Maraldi N.M. Role of chromatin phospholipids on template availability and ultrastructure of isolated nuclei. Adv. Enzym. Regul. 1982;20:247–262. doi: 10.1016/0065-2571(82)90019-X. PubMed DOI
Maraldi N.M., Capitani S., Caramelli E., Cocco L., Barnabei O., Manzoli F.A. Conformational changes of nuclear chromatin related to phospholipid induced modifications of the template availability. Adv. Enzym. Regul. 1984;22:447–464. doi: 10.1016/0065-2571(84)90025-6. PubMed DOI
Cocco L., Gilmour R.S., Maraldi N.M., Martelli A.M., Papa S., Manzoli F.A. Increase of globin RNA synthesis induced by phosphatidylserine liposomes in isolated erythroleukemic cell nuclei. Morphological and functional features. Biol. Cell. 1985;54:49–56. doi: 10.1111/j.1768-322X.1985.tb00379.x. PubMed DOI
Capitani S., Cocco L., Maraldi N.M., Papa S., Manzoli F.A. Effect of phospholipids on transcription and ribonucleoprotein processing in isolated nuclei. Adv. Enzym. Regul. 1986;25:425–438. doi: 10.1016/0065-2571(86)90027-0. PubMed DOI
Kuvichkin V.V. DNA-lipid interactions in vitro and in vivo. Bioelectrochemistry. 2002;58:3–12. doi: 10.1016/S1567-5394(02)00123-8. PubMed DOI
Mazzotti G., Zini N., Rizzi E., Rizzoli R., Galanzi A., Ognibene A., Santi S., Matteucci A., Martelli A.M., Maraldi N.M. Immunocytochemical detection of phosphatidylinositol 4,5-bisphosphate localization sites within the nucleus. J. Histochem. Cytochem. 1995;43:181–191. doi: 10.1177/43.2.7822774. PubMed DOI
Boronenkov I.V., Loijens J.C., Umeda M., Anderson R.A. Phosphoinositide signaling pathways in nuclei are associated with nuclear speckles containing pre-mRNA processing factors. Mol. Biol. Cell. 1998;9:3547–3560. doi: 10.1091/mbc.9.12.3547. PubMed DOI PMC
Osborne S.L., Thomas C.L., Gschmeissner S., Schiavo G. Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 2001;114:2501–2511. PubMed
Yildirim S., Castano E., Sobol M., Philimonenko V.V., Dzijak R., Venit T., Hozák P. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 2013;126:2730–2739. doi: 10.1242/jcs.123661. PubMed DOI
Ulicna L., Kalendova A., Kalasova I., Vacik T., Hozák P. PIP2 epigenetically represses rRNA genes transcription interacting with PHF8. Biochim. Biophys. Acta. 2018;1863:266–275. doi: 10.1016/j.bbalip.2017.12.008. PubMed DOI
Sobol M., Krausová A., Yildirim S., Kalasová I., Fáberová V., Vrkoslav V., Philimonenko V., Marášek P., Pastorek L., Čapek M., et al. Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J. Cell Sci. 2018 doi: 10.1242/jcs.211094. PubMed DOI
Yu H.Y., Fukami K., Watanabe Y., Ozaki C., Takenawa T. Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 1998;251:281–287. doi: 10.1046/j.1432-1327.1998.2510281.x. PubMed DOI
Toska E., Campbell H.A., Shandilya J., Goodfellow S.J., Shore P., Medler K.F., Roberts S.G.E. Repression of Transcription by WT1-BASP1 Requires the Myristoylation of BASP1 and the PIP2-Dependent Recruitment of Histone Deacetylase. Cell Rep. 2012;2:462–469. doi: 10.1016/j.celrep.2012.08.005. PubMed DOI PMC
Loijens J.C., Anderson R.A. Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J. Biol. Chem. 1996;271:32937–32943. doi: 10.1074/jbc.271.51.32937. PubMed DOI
Ogg S.R., Ruvkun G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell. 1998;2:887–893. doi: 10.1016/S1097-2765(00)80303-2. PubMed DOI
Blondeau F., Laporte J., Bodin S., Superti-Furga G., Payrastre B., Mandel J.L. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet. 2000;22:2223–2229. doi: 10.1093/oxfordjournals.hmg.a018913. PubMed DOI
Klopfenstein D.R., Tomishige M., Stuurman N., Vale R.D. Role of phosphatidylinositol (4,5)bisphosphate organization in membrane transport by the Unc104 kinesin motor. Cell. 2002;109:347–358. doi: 10.1016/S0092-8674(02)00708-0. PubMed DOI PMC
Nicot A.S., Fares H., Payrastre B., Chisholm A.D., Labouesse M., Laporte J. The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol. Biol. Cell. 2006;17:3062–3074. doi: 10.1091/mbc.e05-12-1120. PubMed DOI PMC
Bae Y.K., Kim E., L’hernault S.W., Barr M.M. The CIL-1 PI 5-phosphatase localizes TRP Polycystins to cilia and activates sperm in C. elegans. Curr. Biol. 2009;19:1599–1607. doi: 10.1016/j.cub.2009.08.045. PubMed DOI PMC
Padmanabhan S., Mukhopadhyay A., Narasimhan S.D., Tesz G., Czech M.P., Tissenbaum H.A. A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell. 2009;136:939–951. doi: 10.1016/j.cell.2009.01.025. PubMed DOI PMC
Liu Z., Klaavuniemi T., Ono S. Distinct roles of four gelsolin-like domains of Caenorhabditis elegans gelsolin-like protein-1 in actin filament severing, barbed end capping, and phosphoinositide binding. Biochemistry. 2010;49:4349–4360. doi: 10.1021/bi100215b. PubMed DOI PMC
Lu N., Shen Q., Mahoney T.R., Neukomm L.J., Wang Y., Zhou Z. Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns(3)P critical for the degradation of apoptotic cells. PLoS Biol. 2012;10:e1001245. doi: 10.1371/journal.pbio.1001245. PubMed DOI PMC
Cheng S., Wang K., Zou W., Miao R., Huang Y., Wang H., Wang X. PtdIns(4,5)P2 and PtdIns3P coordinate to regulate phagosomal sealing for apoptotic cell clearance. J. Cell Biol. 2015;210:485–502. doi: 10.1083/jcb.201501038. PubMed DOI PMC
Weinkove D., Bastiani M., Chessa T.A.M., Joshi D., Hauth L., Cooke F.T., Divecha N., Kim S. Overexpression of PPK-1, the C. elegans Type 1 PIP kinase, inhibits growth cone collapse in the developing nervous system and causes axonal degeneration in adults. Dev. Biol. 2008;313:384–397. doi: 10.1016/j.ydbio.2007.10.029. PubMed DOI PMC
Xu X., Guo H., Wycuff D.L., Lee M. Role of phosphatidylinositol-4-phosphate 5′ kinase (ppk-1) in ovulation of Caenorhabditis elegans. Exp. Cell Res. 2007;313:2465–2475. doi: 10.1016/j.yexcr.2007.03.017. PubMed DOI PMC
Sobol M., Yildirim S., Philimonenko V.V., Marasek P., Castano E., Hozak P. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus. 2013;4:478–486. doi: 10.4161/nucl.27154. PubMed DOI PMC
Mellman D.L., Gonzales M.L., Song C., Barlow C.A., Wang P., Kendziorski C., Anderson R.A. A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature. 2008;451:1013–1017. doi: 10.1038/nature06666. PubMed DOI
Kumsta C., Hansen M.C. Elegans rrf-1 mutations maintain RNAi efficiency in the soma in addition to the germline. PLoS ONE. 2012;7:e35428. doi: 10.1371/journal.pone.0035428. PubMed DOI PMC
Tang L., Machacek T., Mamnum Y.M., Penkner A., Gloggnitzer J., Wegrostek C., Konrat R., Jantsch M.F., Loidl J., Jantsch V. Mutations in Caenorhabditis elegans him-19 show meiotic defects that worsen with age. Mol. Biol. Cell. 2010;21:885–896. doi: 10.1091/mbc.e09-09-0811. PubMed DOI PMC
Cortes D.B., McNally K.L., Mains P.E., McNally F.J. The asymmetry of female meiosis reduces the frequency of inheritance of unpaired chromosomes. eLife. 2015;4:e06056. doi: 10.7554/eLife.06056. PubMed DOI PMC
Zhou Z., Hartwieg E., Horvitz H.R. CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell. 2001;104:43–56. doi: 10.1016/S0092-8674(01)00190-8. PubMed DOI
Colaiacovo M.P., MacQueen A.J., Martinez-Perez E., McDonald K., Adamo A., La Volpe A., Villeneuve A.M. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell. 2003;5:463–474. doi: 10.1016/S1534-5807(03)00232-6. PubMed DOI
Kim H.M., Colaiacovo M.P. ZTF-8 interacts with the 9-1-1 complex and is required for DNA damage response and double-strand break repair in the C. elegans germline. PLoS Genet. 2014;10:e1004723. doi: 10.1371/journal.pgen.1004723. PubMed DOI PMC
Goodyer W., Kaitna S., Couteau F., Ward J.D., Boulton S.J., Zetka M. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev. Cell. 2008;14:263–274. doi: 10.1016/j.devcel.2007.11.016. PubMed DOI
Yokoo R., Zawadzki K.A., Nabeshima K., Drake M., Arur S., Villeneuve A.M. COSA-1 Reveals Separable Licensing and Reinforcement Steps and Efficient Homeostasis Governing Meiotic Crossovers. Cell. 2012;149:75–87. doi: 10.1016/j.cell.2012.01.052. PubMed DOI PMC
Merlet J., Burger J., Tavernier N., Richaudeau B., Gomes J.E., Pintard L. The CRL2LRR-1 ubiquitin ligase regulates cell cycle progression during C. elegans development. Development. 2010;137:3857–3866. doi: 10.1242/dev.054866. PubMed DOI PMC
Burger J., Merlet J., Tavernier N., Richaudeau B., Arnold A., Ciosk R., Bowerman B., Pintard L. CRL2(LRR-1) E3-ligase regulates proliferation and progression through meiosis in the Caenorhabditis elegans germline. PLoS Genet. 2013;9:e1003375. doi: 10.1371/journal.pgen.1003375. PubMed DOI PMC
Panbianco C., Weinkove D., Zanin E., Jones D., Divecha N., Gotta M., Ahringer J. A casein kinase 1 and PAR proteins regulate asymmetry of a PIP(2) synthesis enzyme for asymmetric spindle positioning. Dev. Cell. 2008;15:198–208. doi: 10.1016/j.devcel.2008.06.002. PubMed DOI PMC
Chakrabarti R., Sanyal S., Ghosh A., Bhar K., Das C., Siddhanta A. Phosphatidylinositol-4-phosphate 5-Kinase 1α Modulates Ribosomal RNA Gene Silencing through Its Interaction with Histone H3 Lysine 9 Trimethylation and Heterochromatin Protein HP1-α. J. Biol. Chem. 2015;290:20893–20903. doi: 10.1074/jbc.M114.633727. PubMed DOI PMC
Hodgkin J., Horovitz H.R., Brenner S. Nondisjunction mutants of the nematode Caenorhabditis elegans. Genetics. 1979;91:67–94. PubMed PMC
Sullivan T., Escalante-Alcalde D., Bhatt H., Anver M., Bhat N., Nagashima K., Stewart C.L., Burke B. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 1999;147:913–920. doi: 10.1083/jcb.147.5.913. PubMed DOI PMC
Starr D.A. A nuclear-envelope bridge positions nuclei and moves chromosomes. J. Cell Biol. 2009;122:577–586. doi: 10.1242/jcs.037622. PubMed DOI PMC
Penkner A., Tang L., Novatchkova M., Ladurner M., Fridkin A., Gruenbaum Y., Schweizer D., Loidl J., Jantsch V. The nuclear envelope protein Matefin/SUN-1 is required for homologous pairing in C. elegans meiosis. Dev. Cell. 2007;12:873–886. doi: 10.1016/j.devcel.2007.05.004. PubMed DOI
Jungmichel S., Sylvestersen K.B., Choudhary C., Nguyen S., Mann M., Nielsen M.L. Specificity and commonality of the phosphoinositide-binding proteome analyzed by quantitative mass spectrometry. Cell Rep. 2014;6:578–591. doi: 10.1016/j.celrep.2013.12.038. PubMed DOI
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PubMed PMC
Timmons L., Fire A. Specific interference by ingested dsRNA. Nature. 1998;395:854. doi: 10.1038/27579. PubMed DOI
Martinez-Perez E., Villeneuve A.M. HTP-1-dependent constraints coordinate homolog pairing and synapsis and promote chiasma formation during C. elegans meiosis. Genes Dev. 2005;19:2727–2743. doi: 10.1101/gad.1338505. PubMed DOI PMC
Singh V.A., Aballay A. Regulation of DAF-16-mediated Innate Immunity in Caenorhabditis elegans. J. Biol. Chem. 2009;284:35580–35587. doi: 10.1074/jbc.M109.060905. PubMed DOI PMC
Masuda T., Tomita M., Ishihama Y. Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Hebert A., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The one hour yeast proteome. Mol. Cell. Proteom. 2014;13:339–347. doi: 10.1074/mcp.M113.034769. PubMed DOI PMC
Cox J., Hein M.Y., Luber C.A., Paron I., Nagaraj N., Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteom. 2014;13:2513–2526. doi: 10.1074/mcp.M113.031591. PubMed DOI PMC
Harper N., Rillo R., Jover-Gil S., Assaf Z.J., Bhalla N., Dernburg A.F. Pairing centers recruit a Polo-like kinase to orchestrate meiotic chromosome dynamics in C. elegans. Dev. Cell. 2011;21:934–947. doi: 10.1016/j.devcel.2011.09.001. PubMed DOI PMC
Villeneuve A. A cis-acting locus that promotes crossing over between X chromosomes in Caenorhabditis elegans. Genetics. 1994;136:887–902. PubMed PMC