LIPRNAseq: a method to discover lipid interacting RNAs by sequencing
Language English Country Netherlands Media print-electronic
Document type Journal Article
Grant support
FC 1572
Consejo Nacional de Ciencia y Tecnología, Paraguay
CZ.1.05/1.1.00/02.0109
BIOCEV
CA19105
EpiLipidNET
LM2018129
Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_013/0001775
European Regional Development Fund
PubMed
37349607
DOI
10.1007/s11033-023-08548-5
PII: 10.1007/s11033-023-08548-5
Knihovny.cz E-resources
- Keywords
- Lipid-RNA, Phase separation, Phosphoinositide, RNA sequence,
- MeSH
- Phospholipids * metabolism MeSH
- Humans MeSH
- RNA * metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Phospholipids * MeSH
- RNA * MeSH
BACKGROUND: Current biological research extensively describes the interactions of molecules such as RNA with other nucleic acids or proteins. However, the relatively recent discovery of nuclear phospholipids playing biologically relevant processes outside membranes, as well as, RNA-lipid interactions shows the need for new methods to explore the identity of these RNAs. METHODS AND RESULTS: In this study, we describe the method for LIPID-RNA isolation followed by sequencing and analysis of the RNA that has the ability to interact with the selected lipids. Here we utilized specific phospholipid coated beads for selective RNA binding. We tested RNA from organisms belonging to different realms (human, plant, and yeast), and tested their ability to bind a specific lipid. CONCLUSIONS: The results show several RNAs differentially enriched in the pull-down of phosphatidyl Inositol 4,5 bisphosphate coated beads. This method is helpful to screen lipid-binding RNA, which may have relevant biological functions. The method can be used with different lipids and comparison of pull-downs and can narrow the selection of RNAs that interact with a particular lipid for further studies.
See more in PubMed
Yildirim S, Castano E, Sobol M et al (2013) Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J Cell Sci 126:2730–2739. https://doi.org/10.1242/jcs.123661 PubMed DOI
Hoboth P, Sztacho M, Šebesta O et al (2021) Nanoscale mapping of nuclear phosphatidylinositol phosphate landscape by dual-color dSTORM. Biochim Biophys Acta Mol Cell Biol Lipids 1866. https://doi.org/10.1016/j.bbalip.2021.158890
Sobol M, Krausová A, Yildirim S et al (2018) Nuclear phosphatidylinositol 4,5-bisphosphate islets contribute to efficient RNA polymerase II-dependent transcription. J Cell Sci 131. https://doi.org/10.1242/jcs.211094
Guo YE, Manteiga JC, Henninger JE et al (2019) Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572:543–548. https://doi.org/10.1038/s41586-019-1464-0 PubMed DOI PMC
Guo Q, Shi X, Wang X (2021) RNA and liquid-liquid phase separation. Noncoding RNA Res 6:92–99. https://doi.org/10.1016/j.ncrna.2021.04.003 PubMed DOI PMC
Kalasova I, Fáberová V, Kalendová A et al (2016) Tools for visualization of phosphoinositides in the cell nucleus. Histochem Cell Biol 145:485–496. https://doi.org/10.1007/s00418-016-1409-8 PubMed DOI
Castano E, Yildirim S, Fáberová V et al (2019) Nuclear Phosphoinositides—Versatile regulators of genome functions. https://doi.org/. Cells 1–19
Sobol M, Yildirim S, Philimonenko VV et al (2013) UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 4. https://doi.org/10.4161/nucl.27154
Lin A, Hu Q, Li C et al (2017) The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 19:238–251. https://doi.org/10.1038/ncb3473 PubMed DOI PMC
Li RH, Tian T, Ge QW et al (2021) A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling. Cell Res 31:1088–1105. https://doi.org/10.1038/s41422-021-00530-9 PubMed DOI PMC
Donia T, Jyoti B, Suizu F et al (2019) Identification of RNA aptamer which specifically interacts with PtdIns(3)P. Biochem Biophys Res Commun 517:146–154. https://doi.org/10.1016/j.bbrc.2019.07.034 PubMed DOI
Yamada A, Yu P, Lin W et al (2018) A RNA-Sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep 8. https://doi.org/10.1038/s41598-017-18407-6
Zhou M, Diao Z, Yue X et al (2016) Construction and analysis of dysregulated lncRNA-associated ceRNA network identified novel lncRNA biomarkers for early diagnosis of human pancreatic cancer. Oncotarget 7:56383–56394. https://doi.org/10.18632/oncotarget.10891 PubMed DOI PMC
Ni C, Jiang W, Wang Z et al (2021) LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry 26:4511–4528. https://doi.org/10.1038/s41380-020-0662-3 PubMed DOI
Ji H, Niu C, Zhan X et al (2020) Identification, functional prediction, and key lncRNA verification of cold stress-related lncRNAs in rats liver. Sci Rep 10. https://doi.org/10.1038/s41598-020-57451-7
Jiang P, Hou Y, Fu W et al (2018) Characterization of lncRNAs involved in cold acclimation of zebrafish ZF4 cells. PLoS ONE 13:1–13. https://doi.org/10.1371/journal.pone.0195468 DOI
Li S, Yu X, Lei N et al (2017) Genome-wide identification and functional prediction of cold and/or drought-responsive lncRNAs in cassava. Sci Rep 7. https://doi.org/10.1038/srep45981
Lambert N, Robertson A, Jangi M et al (2014) RNA Bind-n-Seq: quantitative Assessment of the sequence and structural binding specificity of RNA binding proteins. Mol Cell 54:887–900. https://doi.org/10.1016/j.molcel.2014.04.016 PubMed DOI PMC
Fujita T, Yuno M, Okuzaki D et al (2015) Identification of non-coding RNAs associated with telomeres using a combination of enChIP and RNA sequencing. PLoS ONE 10:1–12. https://doi.org/10.1371/journal.pone.0123387 DOI
Dobin A, Davis CA, Schlesinger F et al (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21. https://doi.org/10.1093/bioinformatics/bts635 PubMed DOI
Kim D, Langmead B, Salzberg SL (2015) HISAT: A fast spliced aligner with low memory requirements. Nat Methods 12:357–360. https://doi.org/10.1038/nmeth.3317 PubMed DOI PMC
Li B, Dewey CN (2011) RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12. https://doi.org/10.1186/1471-2105-12-323
Robinson MD, McCarthy DJ, Smyth GK (2009) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. https://doi.org/10.1093/bioinformatics/btp616 PubMed DOI PMC
Albi E, Viola Magni MP (2004) The role of intranuclear lipids. Biol Cell 96:657–667 PubMed DOI
Balaban C, Sztacho M, Antiga L et al (2023) PIP2-Effector protein MPRIP regulates RNA polymerase II condensation and transcription. Biomolecules 13:426. https://doi.org/10.3390/biom13030426 PubMed DOI PMC
Wang YH, Sheetz MP (2022) When PIP2 meets p53: Nuclear Phosphoinositide Signaling in the DNA damage response. Front Cell Dev Biol 10
Lu Y, Wu T, Gutman O et al (2020) Phase separation of TAZ compartmentalizes the transcription machinery to promote gene expression. Nat Cell Biol 22:453–464. https://doi.org/10.1038/s41556-020-0485-0 PubMed DOI
Gibson BA, Doolittle LK, Schneider MWG et al (2019) Organization of chromatin by intrinsic and regulated phase separation. Cell 179:470–484e21. https://doi.org/10.1016/j.cell.2019.08.037 PubMed DOI PMC
Maccaroni K, La Torre M, Burla R, Saggio I (2022) Phase separation in the Nucleus and at the Nuclear periphery during Post-Mitotic Nuclear Envelope Reformation. Cells 11
Czerniak T, Saenz JP (2022) Lipid membranes modulate the activity of RNA through sequence-dependent interactions. https://doi.org/10.1073/pnas.2119235119 . PNAS