Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26594224
PubMed Central
PMC4635213
DOI
10.3389/fpls.2015.00976
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica, RNA polymerase I, histones, methylation, phosphoinositide,
- Publikační typ
- časopisecké články MeSH
Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.
Zobrazit více v PubMed
Aittaleb M., Rashid R., Chen Q., Palmer J. R., Daniels C. J., Li H. (2003). Structure and function of archaeal box C/D sRNP core proteins. Nat. Struct. Biol. 10 256–263. 10.1038/nsb905 PubMed DOI
Backstrom S., Elfving N., Nilsson R., Wingsle G., Bjorklund S. (2007). Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26 717–729. 10.1016/j.molcel.2007.05.007 PubMed DOI
Boss W. F., Im Y. J. (2012). Phosphoinositide signaling. Annu. Rev. Plant Biol. 63 409–429. 10.1146/annurev-arplant-042110-103840 PubMed DOI
Castano E., Gross P., Wang Z., Roeder R. G., Oelgeschlager T. (2000). The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Dr1/DRAP1) and is required for transcription activation in human nuclear extracts. Proc. Natl. Acad. Sci. U.S.A. 97 7184–7189. 10.1073/pnas.140202297 PubMed DOI PMC
Castano E., Vorojeikina D. P., Notides A. C. (1997). Phosphorylation of serine-167 on the human oestrogen receptor is important for oestrogen response element binding and transcriptional activation. Biochem. J. 326(Pt 1), 149–157. 10.1042/bj3260149 PubMed DOI PMC
Chen Z. J., Pikaard C. S. (1997). Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. U.S.A. 94 3442–3447. 10.1073/pnas.94.7.3442 PubMed DOI PMC
Cockell M. M., Gasser S. M. (1999). The nucleolus: nucleolar space for RENT. Curr. Biol. 9 R575–R576. 10.1016/S0960-9822(99)80359-5 PubMed DOI
Garcia S. N., Pillus L. (1999). Net results of nucleolar dynamics. Cell 97 825–828. 10.1016/S0092-8674(00)80794-1 PubMed DOI
Gustavsson H. O., Rask L., Josefsson L. G. (1991). Transcription in vitro of a napin gene, napA, from Brassica napus with a HeLa cell nuclear extract. Hereditas 115 191–193. 10.1111/j.1601-5223.1991.tb03555.x PubMed DOI
Hoffmann C., Neumann H. (2015). In vivo mapping of FACT-histone interactions identifies a role of Pob3 C-terminus in H2A-H2B binding. ACS Chem. Biol. 10.1021/acschembio.5b00493 [Epub ahead of print]. PubMed DOI
Iwasaki W., Miya Y., Horikoshi N., Osakabe A., Taguchi H., Tachiwana H., et al. (2013). Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 3 363–369. 10.1016/j.fob.2013.08.007 PubMed DOI PMC
Jacobson M. R., Pederson T. (1998). A 7-methylguanosine cap commits U3 and U8 small nuclear RNAs to the nucleolar localization pathway. Nucleic Acids Res. 26 756–760. 10.1093/nar/26.3.756 PubMed DOI PMC
Jansen R. P., Hurt E. C., Kern H., Lehtonen H., Carmo-Fonseca M., Lapeyre B., et al. (1991). Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J. Cell Biol. 113 715–729. 10.1083/jcb.113.4.715 PubMed DOI PMC
Jiang H., Sha S. H., Schacht J. (2006). Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo. J. Neurochem. 99 269–276. 10.1111/j.1471-4159.2006.04117.x PubMed DOI
Kim S. H., Macfarlane S., Kalinina N. O., Rakitina D. V., Ryabov E. V., Gillespie T., et al. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl. Acad. Sci. U.S.A. 104 11115–11120. 10.1073/pnas.0704632104 PubMed DOI PMC
Knight B., Kubik S., Ghosh B., Bruzzone M. J., Geertz M., Martin V., et al. (2014). Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 28 1695–1709. 10.1101/gad.244434.114 PubMed DOI PMC
Kressler D., Linder P., De La Cruz J. (1999). Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 19 7897–7912. 10.1128/MCB.19.12.7897 PubMed DOI PMC
Krogan N. J., Cagney G., Yu H., Zhong G., Guo X., Ignatchenko A., et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 637–643. 10.1038/nature04670 PubMed DOI
Kuroiwa T., Fujie M., Kuroiwa H. (1992). Studies on the behavior of mitochondrial DNA: synthesis of mitochondrial DNA occurs actively in a specific region just above the quiescent center in the root meristem of Pelargonium zonale. J. Cell Sci. 101 483–493.
Lemmon M. A. (2008). Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9 99–111. 10.1038/nrm2328 PubMed DOI
Leonhardt H., Hake S. B. (2014). Histone glutamine methylation afFACTing rDNA transcription. Cell Res. 24 261–262. 10.1038/cr.2014.22 PubMed DOI PMC
Liu J. L., Gall J. G. (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. U.S.A. 104 11655–11659. 10.1073/pnas.0704977104 PubMed DOI PMC
Marcel V., Ghayad S. E., Belin S., Therizols G., Morel A. P., Solano-Gonzalez E., et al. (2013). p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24 318–330. 10.1016/j.ccr.2013.08.013 PubMed DOI PMC
McLaughlin S., Wang J., Gambhir A., Murray D. (2002). PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31 151–175. 10.1146/annurev.biophys.31.082901.134259 PubMed DOI
Mellman D. L., Gonzales M. L., Song C., Barlow C. A., Wang P., Kendziorski C., et al. (2008). A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451 1013–1017. 10.1038/nature06666 PubMed DOI
Mironova A. A., Barykina N. V., Zatsepina O. V. (2014). [Cytological analysis of the reaction of the nucleolar RNA and RNA-binding proteins to oxidative stress in HeLa cells]. Tsitologiia 56 489–499. PubMed
Nemeth A., Langst G. (2011). Genome organization in and around the nucleolus. Trends Genet. 27 149–156. 10.1016/j.tig.2011.01.002 PubMed DOI
Oruganti S., Zhang Y., Li H., Robinson H., Terns M. P., Terns R. M., et al. (2007). Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs. J. Mol. Biol. 371 1141–1150. 10.1016/j.jmb.2007.06.029 PubMed DOI
Osborne S. L., Thomas C. L., Gschmeissner S., Schiavo G. (2001). Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114 2501–2511. PubMed
Pellizzoni L., Baccon J., Charroux B., Dreyfuss G. (2001). The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11 1079–1088. 10.1016/S0960-9822(01)00316-5 PubMed DOI
Perry R. P. (2005). The architecture of mammalian ribosomal protein promoters. BMC Evol. Biol. 5:15 10.1186/1471-2148-5-15 PubMed DOI PMC
Pih K. T., Yi M. J., Liang Y. S., Shin B. J., Cho M. J., Hwang I., et al. (2000). Molecular cloning and targeting of a fibrillarin homolog from Arabidopsis. Plant Physiol. 123 51–58. 10.1104/pp.123.1.51 PubMed DOI PMC
Rakitina D. V., Taliansky M., Brown J. W., Kalinina N. O. (2011). Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res. 39 8869–8880. 10.1093/nar/gkr594 PubMed DOI PMC
Rodriguez-Corona U., Sobol M., Rodriguez-Zapata L. C., Hozak P., Castano E. (2015). Fibrillarin from Archaea to human. Biol. Cell 107 159–174. 10.1111/boc.201400077 PubMed DOI
Saez-Vasquez J., Caparros-Ruiz D., Barneche F., Echeverria M. (2004). A plant snoRNP complex containing snoRNAs, fibrillarin, and nucleolin-like proteins is competent for both rRNA gene binding and pre-rRNA processing in vitro. Mol. Cell Biol. 24 7284–7297. 10.1128/MCB.24.16.7284-7297.2004 PubMed DOI PMC
Snaar S., Wiesmeijer K., Jochemsen A. G., Tanke H. J., Dirks R. W. (2000). Mutational analysis of fibrillarin and its mobility in living human cells. J. Cell Biol. 151 653–662. 10.1083/jcb.151.3.653 PubMed DOI PMC
Sobol M., Yildirim S., Philimonenko V. V., Marasek P., Castano E., Hozak P. (2013). UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 4 478–486. 10.4161/nucl.27154 PubMed DOI PMC
Stekhoven F. M. A. H. S., Bonga S. E. W., Flik G. (2004). Extranuclear histones in teleost gills: an evolutionary study. Fish Physiol. Biochem. 30 201–211. 10.1007/s10695-005-7442-5 DOI
Tessarz P., Santos-Rosa H., Robson S. C., Sylvestersen K. B., Nelson C. J., Nielsen M. L., et al. (2014). Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505 564–568. 10.1038/nature12819 PubMed DOI PMC
Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E. C. (1993). Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72 443–457. 10.1016/0092-8674(93)90120-F PubMed DOI
Tran E. J., Zhang X., Maxwell E. S. (2003). Efficient RNA 2’-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C’/D’. RNPs. EMBO J. 22 3930–3940. 10.1093/emboj/cdg368 PubMed DOI PMC
Ye K., Jia R., Lin J., Ju M., Peng J., Xu A., et al. (2009). Structural organization of box C/D RNA-guided RNA methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 106 13808–13813. 10.1073/pnas.0905128106 PubMed DOI PMC
Yildirim S., Castano E., Sobol M., Philimonenko V. V., Dzijak R., Venit T., et al. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 126 2730–2739. 10.1242/jcs.123661 PubMed DOI
Yu H., Fukami K., Watanabe Y., Ozaki C., Takenawa T. (1998). Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 251 281–287. 10.1046/j.1432-1327.1998.2510281.x PubMed DOI
Fibrillarin Ribonuclease Activity is Dependent on the GAR Domain and Modulated by Phospholipids
Nuclear Phosphoinositides-Versatile Regulators of Genome Functions
Novel Ribonuclease Activity Differs between Fibrillarins from Arabidopsis thaliana