Fibrillarin methylates H2A in RNA polymerase I trans-active promoters in Brassica oleracea

. 2015 ; 6 () : 976. [epub] 20151106

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid26594224

Fibrillarin is a well conserved methyltransferase involved in several if not all of the more than 100 methylations sites in rRNA which are essential for proper ribosome function. It is mainly localized in the nucleoli and Cajal bodies inside the cell nucleus where it exerts most of its functions. In plants, fibrillarin binds directly the guide RNA together with Nop56, Nop58, and 15.5ka proteins to form a snoRNP complex that selects the sites to be methylated in pre-processing of ribosomal RNA. Recently, the yeast counterpart NOP1 was found to methylate histone H2A in the nucleolar regions. Here we show that plant fibrillarin can also methylate histone H2A. In Brassica floral meristem cells the methylated histone H2A is mainly localized in the nucleolus but unlike yeast or human cells it also localize in the periphery of the nucleus. In specialized transport cells the pattern is altered and it exhibits a more diffuse staining in the nucleus for methylated histone H2A as well as for fibrillarin. Here we also show that plant fibrillarin is capable of interacting with H2A and carry out its methylation in the rDNA promoter.

Zobrazit více v PubMed

Aittaleb M., Rashid R., Chen Q., Palmer J. R., Daniels C. J., Li H. (2003). Structure and function of archaeal box C/D sRNP core proteins. Nat. Struct. Biol. 10 256–263. 10.1038/nsb905 PubMed DOI

Backstrom S., Elfving N., Nilsson R., Wingsle G., Bjorklund S. (2007). Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit. Mol. Cell 26 717–729. 10.1016/j.molcel.2007.05.007 PubMed DOI

Boss W. F., Im Y. J. (2012). Phosphoinositide signaling. Annu. Rev. Plant Biol. 63 409–429. 10.1146/annurev-arplant-042110-103840 PubMed DOI

Castano E., Gross P., Wang Z., Roeder R. G., Oelgeschlager T. (2000). The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Dr1/DRAP1) and is required for transcription activation in human nuclear extracts. Proc. Natl. Acad. Sci. U.S.A. 97 7184–7189. 10.1073/pnas.140202297 PubMed DOI PMC

Castano E., Vorojeikina D. P., Notides A. C. (1997). Phosphorylation of serine-167 on the human oestrogen receptor is important for oestrogen response element binding and transcriptional activation. Biochem. J. 326(Pt 1), 149–157. 10.1042/bj3260149 PubMed DOI PMC

Chen Z. J., Pikaard C. S. (1997). Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. U.S.A. 94 3442–3447. 10.1073/pnas.94.7.3442 PubMed DOI PMC

Cockell M. M., Gasser S. M. (1999). The nucleolus: nucleolar space for RENT. Curr. Biol. 9 R575–R576. 10.1016/S0960-9822(99)80359-5 PubMed DOI

Garcia S. N., Pillus L. (1999). Net results of nucleolar dynamics. Cell 97 825–828. 10.1016/S0092-8674(00)80794-1 PubMed DOI

Gustavsson H. O., Rask L., Josefsson L. G. (1991). Transcription in vitro of a napin gene, napA, from Brassica napus with a HeLa cell nuclear extract. Hereditas 115 191–193. 10.1111/j.1601-5223.1991.tb03555.x PubMed DOI

Hoffmann C., Neumann H. (2015). In vivo mapping of FACT-histone interactions identifies a role of Pob3 C-terminus in H2A-H2B binding. ACS Chem. Biol. 10.1021/acschembio.5b00493 [Epub ahead of print]. PubMed DOI

Iwasaki W., Miya Y., Horikoshi N., Osakabe A., Taguchi H., Tachiwana H., et al. (2013). Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 3 363–369. 10.1016/j.fob.2013.08.007 PubMed DOI PMC

Jacobson M. R., Pederson T. (1998). A 7-methylguanosine cap commits U3 and U8 small nuclear RNAs to the nucleolar localization pathway. Nucleic Acids Res. 26 756–760. 10.1093/nar/26.3.756 PubMed DOI PMC

Jansen R. P., Hurt E. C., Kern H., Lehtonen H., Carmo-Fonseca M., Lapeyre B., et al. (1991). Evolutionary conservation of the human nucleolar protein fibrillarin and its functional expression in yeast. J. Cell Biol. 113 715–729. 10.1083/jcb.113.4.715 PubMed DOI PMC

Jiang H., Sha S. H., Schacht J. (2006). Kanamycin alters cytoplasmic and nuclear phosphoinositide signaling in the organ of Corti in vivo. J. Neurochem. 99 269–276. 10.1111/j.1471-4159.2006.04117.x PubMed DOI

Kim S. H., Macfarlane S., Kalinina N. O., Rakitina D. V., Ryabov E. V., Gillespie T., et al. (2007). Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl. Acad. Sci. U.S.A. 104 11115–11120. 10.1073/pnas.0704632104 PubMed DOI PMC

Knight B., Kubik S., Ghosh B., Bruzzone M. J., Geertz M., Martin V., et al. (2014). Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 28 1695–1709. 10.1101/gad.244434.114 PubMed DOI PMC

Kressler D., Linder P., De La Cruz J. (1999). Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell Biol. 19 7897–7912. 10.1128/MCB.19.12.7897 PubMed DOI PMC

Krogan N. J., Cagney G., Yu H., Zhong G., Guo X., Ignatchenko A., et al. (2006). Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440 637–643. 10.1038/nature04670 PubMed DOI

Kuroiwa T., Fujie M., Kuroiwa H. (1992). Studies on the behavior of mitochondrial DNA: synthesis of mitochondrial DNA occurs actively in a specific region just above the quiescent center in the root meristem of Pelargonium zonale. J. Cell Sci. 101 483–493.

Lemmon M. A. (2008). Membrane recognition by phospholipid-binding domains. Nat. Rev. Mol. Cell Biol. 9 99–111. 10.1038/nrm2328 PubMed DOI

Leonhardt H., Hake S. B. (2014). Histone glutamine methylation afFACTing rDNA transcription. Cell Res. 24 261–262. 10.1038/cr.2014.22 PubMed DOI PMC

Liu J. L., Gall J. G. (2007). U bodies are cytoplasmic structures that contain uridine-rich small nuclear ribonucleoproteins and associate with P bodies. Proc. Natl. Acad. Sci. U.S.A. 104 11655–11659. 10.1073/pnas.0704977104 PubMed DOI PMC

Marcel V., Ghayad S. E., Belin S., Therizols G., Morel A. P., Solano-Gonzalez E., et al. (2013). p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24 318–330. 10.1016/j.ccr.2013.08.013 PubMed DOI PMC

McLaughlin S., Wang J., Gambhir A., Murray D. (2002). PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31 151–175. 10.1146/annurev.biophys.31.082901.134259 PubMed DOI

Mellman D. L., Gonzales M. L., Song C., Barlow C. A., Wang P., Kendziorski C., et al. (2008). A PtdIns4,5P2-regulated nuclear poly(A) polymerase controls expression of select mRNAs. Nature 451 1013–1017. 10.1038/nature06666 PubMed DOI

Mironova A. A., Barykina N. V., Zatsepina O. V. (2014). [Cytological analysis of the reaction of the nucleolar RNA and RNA-binding proteins to oxidative stress in HeLa cells]. Tsitologiia 56 489–499. PubMed

Nemeth A., Langst G. (2011). Genome organization in and around the nucleolus. Trends Genet. 27 149–156. 10.1016/j.tig.2011.01.002 PubMed DOI

Oruganti S., Zhang Y., Li H., Robinson H., Terns M. P., Terns R. M., et al. (2007). Alternative conformations of the archaeal Nop56/58-fibrillarin complex imply flexibility in box C/D RNPs. J. Mol. Biol. 371 1141–1150. 10.1016/j.jmb.2007.06.029 PubMed DOI

Osborne S. L., Thomas C. L., Gschmeissner S., Schiavo G. (2001). Nuclear PtdIns(4,5)P2 assembles in a mitotically regulated particle involved in pre-mRNA splicing. J. Cell Sci. 114 2501–2511. PubMed

Pellizzoni L., Baccon J., Charroux B., Dreyfuss G. (2001). The survival of motor neurons (SMN) protein interacts with the snoRNP proteins fibrillarin and GAR1. Curr. Biol. 11 1079–1088. 10.1016/S0960-9822(01)00316-5 PubMed DOI

Perry R. P. (2005). The architecture of mammalian ribosomal protein promoters. BMC Evol. Biol. 5:15 10.1186/1471-2148-5-15 PubMed DOI PMC

Pih K. T., Yi M. J., Liang Y. S., Shin B. J., Cho M. J., Hwang I., et al. (2000). Molecular cloning and targeting of a fibrillarin homolog from Arabidopsis. Plant Physiol. 123 51–58. 10.1104/pp.123.1.51 PubMed DOI PMC

Rakitina D. V., Taliansky M., Brown J. W., Kalinina N. O. (2011). Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res. 39 8869–8880. 10.1093/nar/gkr594 PubMed DOI PMC

Rodriguez-Corona U., Sobol M., Rodriguez-Zapata L. C., Hozak P., Castano E. (2015). Fibrillarin from Archaea to human. Biol. Cell 107 159–174. 10.1111/boc.201400077 PubMed DOI

Saez-Vasquez J., Caparros-Ruiz D., Barneche F., Echeverria M. (2004). A plant snoRNP complex containing snoRNAs, fibrillarin, and nucleolin-like proteins is competent for both rRNA gene binding and pre-rRNA processing in vitro. Mol. Cell Biol. 24 7284–7297. 10.1128/MCB.24.16.7284-7297.2004 PubMed DOI PMC

Snaar S., Wiesmeijer K., Jochemsen A. G., Tanke H. J., Dirks R. W. (2000). Mutational analysis of fibrillarin and its mobility in living human cells. J. Cell Biol. 151 653–662. 10.1083/jcb.151.3.653 PubMed DOI PMC

Sobol M., Yildirim S., Philimonenko V. V., Marasek P., Castano E., Hozak P. (2013). UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 4 478–486. 10.4161/nucl.27154 PubMed DOI PMC

Stekhoven F. M. A. H. S., Bonga S. E. W., Flik G. (2004). Extranuclear histones in teleost gills: an evolutionary study. Fish Physiol. Biochem. 30 201–211. 10.1007/s10695-005-7442-5 DOI

Tessarz P., Santos-Rosa H., Robson S. C., Sylvestersen K. B., Nelson C. J., Nielsen M. L., et al. (2014). Glutamine methylation in histone H2A is an RNA-polymerase-I-dedicated modification. Nature 505 564–568. 10.1038/nature12819 PubMed DOI PMC

Tollervey D., Lehtonen H., Jansen R., Kern H., Hurt E. C. (1993). Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72 443–457. 10.1016/0092-8674(93)90120-F PubMed DOI

Tran E. J., Zhang X., Maxwell E. S. (2003). Efficient RNA 2’-O-methylation requires juxtaposed and symmetrically assembled archaeal box C/D and C’/D’. RNPs. EMBO J. 22 3930–3940. 10.1093/emboj/cdg368 PubMed DOI PMC

Ye K., Jia R., Lin J., Ju M., Peng J., Xu A., et al. (2009). Structural organization of box C/D RNA-guided RNA methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 106 13808–13813. 10.1073/pnas.0905128106 PubMed DOI PMC

Yildirim S., Castano E., Sobol M., Philimonenko V. V., Dzijak R., Venit T., et al. (2013). Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. J. Cell Sci. 126 2730–2739. 10.1242/jcs.123661 PubMed DOI

Yu H., Fukami K., Watanabe Y., Ozaki C., Takenawa T. (1998). Phosphatidylinositol 4,5-bisphosphate reverses the inhibition of RNA transcription caused by histone H1. Eur. J. Biochem. 251 281–287. 10.1046/j.1432-1327.1998.2510281.x PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...