A soluble fucose-specific lectin from Aspergillus fumigatus conidia--structure, specificity and possible role in fungal pathogenicity

. 2013 ; 8 (12) : e83077. [epub] 20131210

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24340081

Grantová podpora
R01 HL080414 NHLBI NIH HHS - United States
U54 GM062116 NIGMS NIH HHS - United States
GM62116 NIGMS NIH HHS - United States

Aspergillus fumigatus is an important allergen and opportunistic pathogen. Similarly to many other pathogens, it is able to produce lectins that may be involved in the host-pathogen interaction. We focused on the lectin AFL, which was prepared in recombinant form and characterized. Its binding properties were studied using hemagglutination and glycan array analysis. We determined the specificity of the lectin towards l-fucose and fucosylated oligosaccharides, including α1-6 linked core-fucose, which is an important marker for cancerogenesis. Other biologically relevant saccharides such as sialic acid, d-mannose or d-galactose were not bound. Blood group epitopes of the ABH and Lewis systems were recognized, Le(Y) being the preferred ligand among others. To provide a correlation between the observed functional characteristics and structural basis, AFL was crystallized in a complex with methyl-α,L-selenofucoside and its structure was solved using the SAD method. Six binding sites, each with different compositions, were identified per monomer and significant differences from the homologous AAL lectin were found. Structure-derived peptides were utilized to prepare anti-AFL polyclonal antibodies, which suggested the presence of AFL on the Aspergillus' conidia, confirming its expression in vivo. Stimulation of human bronchial cells by AFL led to IL-8 production in a dose-dependent manner. AFL thus probably contributes to the inflammatory response observed upon the exposure of a patient to A. fumigatus. The combination of affinity to human epithelial epitopes, production by conidia and pro-inflammatory activity is remarkable and shows that AFL might be an important virulence factor involved in an early stage of A. fumigatus infection.

Zobrazit více v PubMed

Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22: 447-465. doi:10.1128/CMR.00055-08. PubMed: 19597008. PubMed DOI PMC

Simon-Nobbe B, Denk U, Pöll V, Rid R, Breitenbach M (2008) The spectrum of fungal allergy. Int Arch Allergy Immunol 145: 58-86. doi:10.1159/000107578. PubMed: 17709917. PubMed DOI

Latgé JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12: 310-350. PubMed: 10194462. PubMed PMC

Singh N, Paterson DL (2005) Aspergillus infections in transplant recipients. Clin Microbiol Rev 18: 44-69. doi:10.1128/CMR.18.1.44-69.2005. PubMed: 15653818. PubMed DOI PMC

Kohno S, Izumikawa K, Ogawa K, Kurashima A, Okimoto N et al. (2010) Intravenous micafungin versus voriconazole for chronic pulmonary aspergillosis: a multicenter trial in Japan. J Infect 61: 410-418. doi:10.1016/j.jinf.2010.08.005. PubMed: 20797407. PubMed DOI

Klepser M (2011) The value of amphotericin B in the treatment of invasive fungal infections. J Crit Care 26: 225.e221-225.e210 PubMed: 20951541. PubMed

Gabius HJ (2009) The Sugar Code, Fundamentals of Glycosciences. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. 569 p.

Sharon N (2006) Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760: 527-537. doi:10.1016/j.bbagen.2005.12.008. PubMed: 16564136. PubMed DOI

Tronchin G, Esnault K, Renier G, Filmon R, Chabasse D et al. (1997) Expression and identification of a laminin-binding protein in Aspergillus fumigatus conidia. Infect Immun 65: 9-15. PubMed: 8975886. PubMed PMC

Bouchara JP, Sanchez M, Chevailler A, Marot-Leblond A, Lissitzky JC et al. (1997) Sialic acid-dependent recognition of laminin and fibrinogen by Aspergillus fumigatus conidia. Infect Immun 65: 2717-2724. PubMed: 9199441. PubMed PMC

Tronchin G, Esnault K, Sanchez M, Larcher G, Marot-Leblond A et al. (2002) Purification and partial characterization of a 32-kilodalton sialic acid-specific lectin from Aspergillus fumigatus . Infect Immun 70: 6891-6895. doi:10.1128/IAI.70.12.6891-6895.2002. PubMed: 12438366. PubMed DOI PMC

Lamarre C, Sokol S, Debeaupuis JP, Henry C, Lacroix C et al. (2008) Transcriptomic analysis of the exit from dormancy of Aspergillus fumigatus conidia. BMC Genomics 9: 417. doi:10.1186/1471-2164-9-417. PubMed: 18796135. PubMed DOI PMC

Singh RS, Tiwary AK, Bhari R (2008) Screening of Aspergillus species for occurrence of lectins and their characterization. J Basic Microbiol 48: 112-117. doi:10.1002/jobm.200700314. PubMed: 18383222. PubMed DOI

Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS et al. (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus . Nature 438: 1151-1156. doi:10.1038/nature04332. PubMed: 16372009. PubMed DOI

Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, et al. (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus . Plos Genetics 4: - PubMed PMC

Wimmerova M, Mitchell E, Sanchez JF, Gautier C, Imberty A (2003) Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J Biol Chem 278: 27059-27067. doi:10.1074/jbc.M302642200. PubMed: 12732625. PubMed DOI

Shamsi KS, Pierce A, Ashton AS, Halade DG, Richardson A et al. (2012) Proteomic Screening of Glycoproteins in Human Plasma for Frailty. Biomarkers - J Gerontol A Biol Sci Med Sci. PubMed PMC

Fujihashi M, Peapus DH, Kamiya N, Nagata Y, Miki K (2003) Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites. Biochemistry 42: 11093-11099. doi:10.1021/bi034983z. PubMed: 14503859. PubMed DOI

Kostlánová N, Mitchell EP, Lortat-Jacob H, Oscarson S, Lahmann M et al. (2005) The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J Biol Chem 280: 27839-27849. doi:10.1074/jbc.M505184200. PubMed: 15923179. PubMed DOI

Audfray A, Claudinon J, Abounit S, Ruvoen-Clouet N, Larson G et al. (2011) The fucose-binding lectin from opportunistic pathogen Burkholderia ambifaria binds to both plant and human oligosaccharidic epitopes. J Biol Chem. PubMed PMC

Matsumura K, Higashida K, Ishida H, Hata Y, Yamamoto K et al. (2007) Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. J Biol Chem 282: 15700-15708. doi:10.1074/jbc.M701195200. PubMed: 17383961. PubMed DOI

Kuboi S, Ishimaru T, Tamada S, Bernard EM, Perlin DS et al. (2013) Molecular characterization of AfuFleA, an L-fucose-specific lectin from Aspergillus fumigatus. J Infect Chemother. PubMed: 23695231 PubMed

Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-786. doi:10.1038/nmeth.1701. PubMed: 21959131. PubMed DOI

Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17: 849-850. doi:10.1093/bioinformatics/17.9.849. PubMed: 11590105. PubMed DOI

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. doi:10.1093/bioinformatics/btm404. PubMed: 17846036. PubMed DOI

Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 78: 1606-1619. doi:10.1016/S0006-3495(00)76713-0. PubMed: 10692345. PubMed DOI PMC

Schuck P (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal Biochem 320: 104-124. doi:10.1016/S0003-2697(03)00289-6. PubMed: 12895474. PubMed DOI

Kabsch W (2010) Xds. Acta Crystallogr D Biol Crystallogr 66: 125-132. doi:10.1107/S0907444909047337. PubMed: 20124692. PubMed DOI PMC

Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P et al. (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67: 235-242. doi:10.1107/S0907444910045749. PubMed: 21460441. PubMed DOI PMC

Pape T, Schneider TR (2004) HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs. Journal of Applied Crystallography 37: 843-844. doi:10.1107/S0021889804018047. DOI

Langer G, Cohen SX, Lamzin VS, Perrakis A (2008) Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat Protoc 3: 1171-1179. doi:10.1038/nprot.2008.91. PubMed: 18600222. PubMed DOI PMC

Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA et al. (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67: 355-367. doi:10.1107/S0907444911001314. PubMed: 21460454. PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66: 486-501. doi:10.1107/S0907444910007493. PubMed: 20383002. PubMed DOI PMC

Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276: 172-174. doi:10.1016/0014-5793(90)80535-Q. PubMed: 1702393. PubMed DOI

Balloy V, Sallenave JM, Wu Y, Touqui L, Latgé JP et al. (2008) Aspergillus fumigatus-induced interleukin-8 synthesis by respiratory epithelial cells is controlled by the phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2 pathways and not by the toll-like receptor-MyD88 pathway. J Biol Chem 283: 30513-30521. doi:10.1074/jbc.M803149200. PubMed: 18703508. PubMed DOI PMC

Lameignere E, Malinovská L, Sláviková M, Duchaud E, Mitchell EP et al. (2008) Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem J 411: 307-318. doi:10.1042/BJ20071276. PubMed: 18215132. PubMed DOI

Kobayashi Y, Tateno H, Dohra H, Moriwaki K, Miyoshi E et al. (2012) A novel core fucose-specific lectin from the mushroom Pholiota squarrosa. J Biol Chem 287: 33973-33982. doi:10.1074/jbc.M111.327692. PubMed: 22872641. PubMed DOI PMC

Singh B, Oellerich M, Kumar R, Kumar M, Bhadoria DP et al. (2010) Immuno-reactive molecules identified from the secreted proteome of Aspergillus fumigatus . J Proteome Res 9: 5517-5529. doi:10.1021/pr100604x. PubMed: 20828163. PubMed DOI

Tielker D, Hacker S, Loris R, Strathmann M, Wingender J et al. (2005) Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation. Microbiology 151: 1313-1323. doi:10.1099/mic.0.27701-0. PubMed: 15870442. PubMed DOI

Sulák O, Cioci G, Lameignère E, Balloy V, Round A et al. (2011) Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog 7: e1002238 PubMed: 21909279. PubMed PMC

Imberty A, Varrot A (2008) Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol 18: 567-576. doi:10.1016/j.sbi.2008.08.001. PubMed: 18809496. PubMed DOI

Becker DJ, Lowe JB (2003) Fucose: biosynthesis and biological function in mammals. Glycobiology 13: 41R-53R. doi:10.1093/glycob/cwg054. PubMed: 12651883. PubMed DOI

Zhang Z, Liu R, Noordhoek JA, Kauffman HF (2005) Interaction of airway epithelial cells (A549) with spores and mycelium of Aspergillus fumigatus. J Infect 51: 375-382. doi:10.1016/j.jinf.2004.12.012. PubMed: 16321648. PubMed DOI

Taylor ME, Drickamer K (2007) Paradigms for glycan-binding receptors in cell adhesion. Curr Opin Cell Biol 19: 572-577. doi:10.1016/j.ceb.2007.09.004. PubMed: 17942297. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...