Prenatal exposure to alcohol and its impact on reward processing and substance use in adulthood

. 2024 May 28 ; 14 (1) : 220. [epub] 20240528

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38806472

Grantová podpora
NU20J-04-00022 Agentura Pro Zdravotnický Výzkum České Republiky (Czech Health Research Council)
CZ.02.1.01/0.0/0.0/17 043/0009632 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
LX22NPO5107 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 38806472
PubMed Central PMC11133468
DOI 10.1038/s41398-024-02941-9
PII: 10.1038/s41398-024-02941-9
Knihovny.cz E-zdroje

Heavy maternal alcohol drinking during pregnancy has been associated with altered neurodevelopment in the child but the effects of low-dose alcohol drinking are less clear and any potential safe level of alcohol use during pregnancy is not known. We evaluated the effects of prenatal alcohol on reward-related behavior and substance use in young adulthood and the potential sex differences therein. Participants were members of the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort who participated in its neuroimaging follow-up in young adulthood. A total of 191 participants (28-30 years; 51% men) had complete data on prenatal exposure to alcohol, current substance use, and fMRI data from young adulthood. Maternal alcohol drinking was assessed during mid-pregnancy and pre-conception. Brain response to reward anticipation and reward feedback was measured using the Monetary Incentive Delay task and substance use in young adulthood was assessed using a self-report questionnaire. We showed that even a moderate exposure to alcohol in mid-pregnancy but not pre-conception was associated with robust effects on brain response to reward feedback (six frontal, one parietal, one temporal, and one occipital cluster) and with greater cannabis use in both men and women 30 years later. Moreover, mid-pregnancy but not pre-conception exposure to alcohol was associated with greater cannabis use in young adulthood and these effects were independent of maternal education and maternal depression during pregnancy. Further, the extent of cannabis use in the late 20 s was predicted by the brain response to reward feedback in three out of the nine prenatal alcohol-related clusters and these effects were independent of current alcohol use. Sex differences in the brain response to reward outcome emerged only during the no loss vs. loss contrast. Young adult men exposed to alcohol prenatally had significantly larger brain response to no loss vs. loss in the putamen and occipital region than women exposed to prenatal alcohol. Therefore, we conclude that even moderate exposure to alcohol prenatally has long-lasting effects on brain function during reward processing and risk of cannabis use in young adulthood.

Zobrazit více v PubMed

Mårdby AC, Lupattelli A, Hensing G, Nordeng H. Consumption of alcohol during pregnancy-A multinational European study. Women Birth. 2017;30:e207–e13. doi: 10.1016/j.wombi.2017.01.003. PubMed DOI

Ethen MK, Ramadhani TA, Scheuerle AE, Canfield MA, Wyszynski DF, Druschel CM, et al. Alcohol consumption by women before and during pregnancy. Matern Child Health J. 2009;13:274–85. doi: 10.1007/s10995-008-0328-2. PubMed DOI PMC

Flak AL, Su S, Bertrand J, Denny CH, Kesmodel US, Cogswell ME. The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: a meta-analysis. Alcohol Clin Exp Res. 2014;38:214–26. doi: 10.1111/acer.12214. PubMed DOI

Kalinowski A, Humphreys K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction. 2016;111:1293–8. doi: 10.1111/add.13341. PubMed DOI

Jacobson JL, Jacobson SW. Effects of prenatal alcohol exposure on child development. Alcohol Res Health. 2002;26:282–6. PubMed PMC

Lange S, Probst C, Gmel G, Rehm J, Burd L, Popova S. Global prevalence of fetal alcohol spectrum disorder among children and youth: a systematic review and meta-analysis. JAMA Pediatr. 2017;171:948–56. doi: 10.1001/jamapediatrics.2017.1919. PubMed DOI PMC

Riley EP, Infante MA, Warren KR. Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev. 2011;21:73–80. doi: 10.1007/s11065-011-9166-x. PubMed DOI PMC

Doney R, Lucas BR, Jones T, Howat P, Sauer K, Elliott EJ. Fine motor skills in children with prenatal alcohol exposure or fetal alcohol spectrum disorder. J Dev Behav Pediatr. 2014;35:598–609. doi: 10.1097/DBP.0000000000000107. PubMed DOI

Fryer SL, McGee CL, Matt GE, Riley EP, Mattson SN. Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure. Pediatrics. 2007;119:e733–41. doi: 10.1542/peds.2006-1606. PubMed DOI

Sowell ER, Lu LH, O’Hare ED, McCourt ST, Mattson SN, O’Connor MJ, et al. Functional magnetic resonance imaging of verbal learning in children with heavy prenatal alcohol exposure. Neuroreport. 2007;18:635–9. doi: 10.1097/WNR.0b013e3280bad8dc. PubMed DOI

O’Hare ED, Lu LH, Houston SM, Bookheimer SY, Mattson SN, O’Connor MJ, et al. Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Hum Brain Mapp. 2009;30:3200–8. doi: 10.1002/hbm.20741. PubMed DOI PMC

Astley SJ, Aylward EH, Olson HC, Kerns K, Brooks A, Coggins TE, et al. Functional magnetic resonance imaging outcomes from a comprehensive magnetic resonance study of children with fetal alcohol spectrum disorders. J Neurodev Disord. 2009;1:61–80. doi: 10.1007/s11689-009-9004-0. PubMed DOI PMC

Malisza KL, Allman AA, Shiloff D, Jakobson L, Longstaffe S, Chudley AE. Evaluation of spatial working memory function in children and adults with fetal alcohol spectrum disorders: a functional magnetic resonance imaging study. Pediatr Res. 2005;58:1150–7. doi: 10.1203/01.pdr.0000185479.92484.a1. PubMed DOI

Nguyen VT, Chong S, Tieng QM, Mardon K, Galloway GJ, Kurniawan ND. Radiological studies of fetal alcohol spectrum disorders in humans and animal models: an updated comprehensive review. Magn Reson Imaging. 2017;43:10–26. doi: 10.1016/j.mri.2017.06.012. PubMed DOI

Paolozza A, Treit S, Beaulieu C, Reynolds JN. Diffusion tensor imaging of white matter and correlates to eye movement control and psychometric testing in children with prenatal alcohol exposure. Hum Brain Mapp. 2017;38:444–56. doi: 10.1002/hbm.23371. PubMed DOI PMC

Fan J, Meintjes EM, Molteno CD, Spottiswoode BS, Dodge NC, Alhamud AA, et al. White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning. Hum Brain Mapp. 2015;36:2470–82. doi: 10.1002/hbm.22785. PubMed DOI PMC

Treit S, Chen Z, Zhou D, Baugh L, Rasmussen C, Andrew G, et al. Sexual dimorphism of volume reduction but not cognitive deficit in fetal alcohol spectrum disorders: A combined diffusion tensor imaging, cortical thickness and brain volume study. Neuroimage Clin. 2017;15:284–97. doi: 10.1016/j.nicl.2017.05.006. PubMed DOI PMC

Lebel C, Roussotte F, Sowell ER. Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychol Rev. 2011;21:102–18. doi: 10.1007/s11065-011-9163-0. PubMed DOI PMC

Wozniak JR, Muetzel RL. What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders? Neuropsychol Rev. 2011;21:133–47. doi: 10.1007/s11065-011-9162-1. PubMed DOI

Lees B, Mewton L, Jacobus J, Valadez EA, Stapinski LA, Teesson M, et al. Association of prenatal alcohol exposure with psychological, behavioral, and neurodevelopmental outcomes in children from the adolescent brain cognitive development study. Am J Psychiatry. 2020;177:1060–72. doi: 10.1176/appi.ajp.2020.20010086. PubMed DOI PMC

Bandoli G, Hayes S, Delker E. Low to moderate prenatal alcohol exposure and neurodevelopmental outcomes: a narrative review and methodological considerations. Alcohol Res. 2023;43:01. doi: 10.35946/arcr.v43.1.01. PubMed DOI PMC

Baer JS, Sampson PD, Barr HM, Connor PD, Streissguth AP. A 21-year longitudinal analysis of the effects of prenatal alcohol exposure on young adult drinking. Arch Gen Psychiatry. 2003;60:377–85. doi: 10.1001/archpsyc.60.4.377. PubMed DOI

Duko B, Pereira G, Tait RJ, Bedaso A, Newnham J, Betts K, et al. Prenatal alcohol exposure and offspring subsequent alcohol use: A systematic review. Drug Alcohol Depend. 2022;232:109324. doi: 10.1016/j.drugalcdep.2022.109324. PubMed DOI

Zaso MJ, Youngentob SL, Park A. Characterizing the role of early alcohol reexposure in associations of prenatal alcohol exposure with adolescent alcohol outcomes. Alcohol Clin Exp Res. 2021;45:1436–47. doi: 10.1111/acer.14632. PubMed DOI PMC

Macleod J, Hickman M, Bowen E, Alati R, Tilling K, Smith GD. Parental drug use, early adversities, later childhood problems and children’s use of tobacco and alcohol at age 10: birth cohort study. Addiction. 2008;103:1731–43. doi: 10.1111/j.1360-0443.2008.02301.x. PubMed DOI

Roselli V, Guo C, Huang D, Wen D, Zona D, Liang T, et al. Prenatal alcohol exposure reduces posterior dorsomedial striatum excitability and motivation in a sex- and age-dependent fashion. Neuropharmacology. 2020;180:108310. doi: 10.1016/j.neuropharm.2020.108310. PubMed DOI PMC

Schneider ML, Moore CF, Barnhart TE, Larson JA, DeJesus OT, Mukherjee J, et al. Moderate-level prenatal alcohol exposure alters striatal dopamine system function in rhesus monkeys. Alcohol Clin Exp Res. 2005;29:1685–97. doi: 10.1097/01.alc.0000179409.80370.25. PubMed DOI

Hausknecht K, Shen YL, Wang RX, Haj-Dahmane S, Shen RY. Prenatal ethanol exposure persistently alters endocannabinoid signaling and endocannabinoid-mediated excitatory synaptic plasticity in ventral tegmental area dopamine neurons. J Neurosci. 2017;37:5798–808. doi: 10.1523/JNEUROSCI.3894-16.2017. PubMed DOI PMC

Basavarajappa BS. Fetal alcohol spectrum disorder: potential role of endocannabinoids signaling. Brain Sci. 2015;5:456–93. doi: 10.3390/brainsci5040456. PubMed DOI PMC

Shen RY, Hannigan JH, Kapatos G. Prenatal ethanol reduces the activity of adult midbrain dopamine neurons. Alcohol Clin Exp Res. 1999;23:1801–7. doi: 10.1111/j.1530-0277.1999.tb04076.x. PubMed DOI

Aghaie CI, Hausknecht KA, Wang R, Dezfuli PH, Haj-Dahmane S, Kane CJM, et al. Prenatal ethanol exposure and postnatal environmental intervention alter dopaminergic neuron and microglia morphology in the ventral tegmental area during adulthood. Alcohol Clin Exp Res. 2020;44:435–44. doi: 10.1111/acer.14275. PubMed DOI PMC

Becker HC, Randall CL, Salo AL, Saulnier JL, Weathersby RT. Animal research: charting the course for FAS. Alcohol Health Res World. 1994;18:10–6. PubMed PMC

Barbier E, Houchi H, Warnault V, Pierrefiche O, Daoust M, Naassila M. Effects of prenatal and postnatal maternal ethanol on offspring response to alcohol and psychostimulants in long evans rats. Neuroscience. 2009;161:427–40. doi: 10.1016/j.neuroscience.2009.03.076. PubMed DOI

Dodge NC, Jacobson JL, Jacobson SW. Effects of fetal substance exposure on offspring substance use. Pediatr Clin North Am. 2019;66:1149–61. doi: 10.1016/j.pcl.2019.08.010. PubMed DOI PMC

Spear NE, Molina JC. Fetal or infantile exposure to ethanol promotes ethanol ingestion in adolescence and adulthood: a theoretical review. Alcohol Clin Exp Res. 2005;29:909–29. doi: 10.1097/01.ALC.0000171046.78556.66. PubMed DOI

Keller RW, Jr., LeFevre R, Raucci J, Carlson JN, Glick SD. Enhanced cocaine self-administration in adult rats prenatally exposed to cocaine. Neurosci Lett. 1996;205:153–6. doi: 10.1016/0304-3940(96)12409-5. PubMed DOI

Dodge NC, Jacobson JL, Lundahl LH, Jacobson SW. Prenatal alcohol exposure and attention-deficit/hyperactivity disorder independently predict greater substance use in young adulthood. Alcohol Clin Exp Res (Hoboken) 2023;47:1143–55. doi: 10.1111/acer.15076. PubMed DOI PMC

Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: Insights from rodent models. Alcohol. 2016;51:1–15. doi: 10.1016/j.alcohol.2015.12.002. PubMed DOI PMC

Terasaki LS, Gomez J, Schwarz JM. An examination of sex differences in the effects of early-life opiate and alcohol exposure. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150123. doi: 10.1098/rstb.2015.0123. PubMed DOI PMC

Dhingra I, Zhang S, Zhornitsky S, Wang W, Le TM, Li CR. Sex differences in neural responses to reward and the influences of individual reward and punishment sensitivity. BMC Neurosci. 2021;22:12. doi: 10.1186/s12868-021-00618-3. PubMed DOI PMC

Piler P, Kandrnal V, Kukla L, Andryskova L, Svancara J, Jarkovsky J, et al. Cohort Profile: The European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46:1379–f. PubMed PMC

Golding J. European longitudinal study of pregnancy and childhood (ELSPAC) Paediatric and Perinatal Epidemiology. 1989;3:460–9. doi: 10.1111/j.1365-3016.1989.tb00533.x. PubMed DOI

Knutson B, Westdorp A, Kaiser E, Hommer D. FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage. 2000;12:20–7. doi: 10.1006/nimg.2000.0593. PubMed DOI

Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54. doi: 10.1016/j.dcn.2018.03.001. PubMed DOI PMC

Villafuerte S, Trucco EM, Heitzeg MM, Burmeister M, Zucker RA. Genetic variation in GABRA2 moderates peer influence on externalizing behavior in adolescents. Brain Behav. 2014;4:833–40. doi: 10.1002/brb3.291. PubMed DOI PMC

Andrews MM, Meda SA, Thomas AD, Potenza MN, Krystal JH, Worhunsky P, et al. Individuals family history positive for alcoholism show functional magnetic resonance imaging differences in reward sensitivity that are related to impulsivity factors. Biol Psychiatry. 2011;69:675–83. doi: 10.1016/j.biopsych.2010.09.049. PubMed DOI PMC

Balodis IM, Potenza MN. Anticipatory reward processing in addicted populations: a focus on the monetary incentive delay task. Biol Psychiatry. 2015;77:434–44. doi: 10.1016/j.biopsych.2014.08.020. PubMed DOI PMC

Beck A, Schlagenhauf F, Wüstenberg T, Hein J, Kienast T, Kahnt T, et al. Ventral striatal activation during reward anticipation correlates with impulsivity in alcoholics. Biol Psychiatry. 2009;66:734–42. doi: 10.1016/j.biopsych.2009.04.035. PubMed DOI

Villafuerte S, Heitzeg MM, Foley S, Yau WY, Majczenko K, Zubieta JK, et al. Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Mol Psychiatry. 2012;17:511–9. doi: 10.1038/mp.2011.33. PubMed DOI PMC

Wrase J, Schlagenhauf F, Kienast T, Wüstenberg T, Bermpohl F, Kahnt T, et al. Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage. 2007;35:787–94. doi: 10.1016/j.neuroimage.2006.11.043. PubMed DOI

Yau WY, Zubieta JK, Weiland BJ, Samudra PG, Zucker RA, Heitzeg MM. Nucleus accumbens response to incentive stimuli anticipation in children of alcoholics: relationships with precursive behavioral risk and lifetime alcohol use. J Neurosci. 2012;32:2544–51. doi: 10.1523/JNEUROSCI.1390-11.2012. PubMed DOI PMC

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–41. doi: 10.1016/j.neuroimage.2013.08.048. PubMed DOI PMC

Power JD, Schlaggar BL, Petersen SE. Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage. 2015;105:536–51. doi: 10.1016/j.neuroimage.2014.10.044. PubMed DOI PMC

Pupíková M, Šimko P, Lamoš M, Gajdoš M, Rektorová I. Inter-individual differences in baseline dynamic functional connectivity are linked to cognitive aftereffects of tDCS. Sci Rep. 2022;12:20754. doi: 10.1038/s41598-022-25016-5. PubMed DOI PMC

Gabriel K, Hofmann C, Glavas M, Weinberg J. The hormonal effects of alcohol use on the mother and fetus. Alcohol Health Res World. 1998;22:170–7. PubMed PMC

Eckstrand KL, Ding Z, Dodge NC, Cowan RL, Jacobson JL, Jacobson SW, et al. Persistent dose-dependent changes in brain structure in young adults with low-to-moderate alcohol exposure in utero. Alcohol Clin Exp Res. 2012;36:1892–902. doi: 10.1111/j.1530-0277.2012.01819.x. PubMed DOI PMC

Rachdaoui N, Sarkar DK. Pathophysiology of the effects of alcohol abuse on the endocrine system. Alcohol Res. 2017;38:255–76. PubMed PMC

Converse AK, Moore CF, Holden JE, Ahlers EO, Moirano JM, Larson JA, et al. Moderate-level prenatal alcohol exposure induces sex differences in dopamine d1 receptor binding in adult rhesus monkeys. Alcohol Clin Exp Res. 2014;38:2934–43. doi: 10.1111/acer.12575. PubMed DOI PMC

AD C, DL C The Modulation of DopamineReceptor Sensitivity by Thyroid Hormones: A Behavioral and Neurochemical Investigation. In: PM B, GN W, DM J, editors. Pharmacology and Functional Regulation of Dopaminergic Neurons Satellite Symposia of the IUPHAR 10th International Congress of Pharmacology. London: Palgrave Macmillan; 1998.

Overstreet DH, Crocker AD, Lawson CA, McIntosh GH, Crocker JM. Alterations in the dopaminergic system and behaviour in rats reared on iodine-deficient diets. Pharmacol Biochem Behav. 1984;21:561–5. doi: 10.1016/S0091-3057(84)80040-4. PubMed DOI

Northcote J, Livingston M. Accuracy of self-reported drinking: observational verification of ‘last occasion’ drink estimates of young adults. Alcohol Alcohol. 2011;46:709–13. doi: 10.1093/alcalc/agr138. PubMed DOI

Howlett H, Mackenzie S, Gray WK, Rankin J, Nixon L, Richardson A, et al. Assessing prevalence of alcohol consumption in early pregnancy: self-report compared to blood biomarker analysis. Eur J Med Genet. 2018;61:531–8. doi: 10.1016/j.ejmg.2018.05.009. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...