• This record comes from PubMed

Glutamine synthetase type I (glnAI) represents a rewarding molecular marker in the classification of bifidobacteria and related genera

. 2020 Feb ; 65 (1) : 143-151. [epub] 20190508

Language English Country United States Media print-electronic

Document type Journal Article

Grant support
CZ.02.1.01/0.0/0.0/15_003/0000460 the project of excellence
QJ1510338 Czech National Agency for Agricultural Research
16-27449A Czech Health Research Council

Links

PubMed 31069634
DOI 10.1007/s12223-019-00716-0
PII: 10.1007/s12223-019-00716-0
Knihovny.cz E-resources

The family Bifidobacteriaceae constitutes an important phylogenetic group that particularly includes bifidobacterial taxa demonstrating proven or debated positive effects on host health. The increasingly widespread application of probiotic cultures in the twenty-first century requires detailed classification to the level of particular strains. This study aimed to apply the glutamine synthetase class I (glnAI) gene region (717 bp representing approximately 50% of the entire gene sequence) using specific PCR primers for the classification, typing, and phylogenetic analysis of bifidobacteria and closely related scardovial genera. In the family Bifidobacteriaceae, this is the first report on the use of this gene for such purposes. To achieve high-value results, almost all valid Bifidobacteriaceae type strains (75) and 15 strains isolated from various environments were evaluated. The threshold value of the glnAI gene identity among Bifidobacterium species (86.9%) was comparable to that of other phylogenetic/identification markers proposed for bifidobacteria and was much lower compared to the 16S rRNA gene. Further statistical and phylogenetic analyses suggest that the glnAI gene can be applied as a novel genetic marker in the classification, genotyping, and phylogenetic analysis of isolates belonging to the family Bifidobacteriaceae.

See more in PubMed

Syst Biol. 2007 Aug;56(4):564-77 PubMed

Res Microbiol. 2010 Mar;161(2):82-90 PubMed

Int J Syst Evol Microbiol. 2017 Aug;67(8):2842-2847 PubMed

Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92 PubMed

Syst Appl Microbiol. 2010 Nov;33(7):359-66 PubMed

Int J Syst Evol Microbiol. 2017 Oct;67(10):3987-3995 PubMed

Int J Syst Evol Microbiol. 2013 Dec;63(Pt 12):4439-46 PubMed

Infect Genet Evol. 2013 Dec;20:188-96 PubMed

Bioinformatics. 2010 Oct 1;26(19):2462-3 PubMed

J Microbiol. 2018 Oct;56(10):713-721 PubMed

Int J Syst Evol Microbiol. 2018 Feb;68(2):575-581 PubMed

Microbiologyopen. 2018 Aug;7(4):e00579 PubMed

Benef Microbes. 2014 Dec;5(4):377-88 PubMed

Front Microbiol. 2018 Aug 22;9:2007 PubMed

BMC Genomics. 2017 Aug 1;18(1):568 PubMed

PLoS One. 2011 Mar 31;6(3):e14792 PubMed

BMC Bioinformatics. 2003 Sep 11;4:41 PubMed

Int J Syst Evol Microbiol. 2001 Sep;51(Pt 5):1633-8 PubMed

Appl Environ Microbiol. 2003 Nov;69(11):6908-22 PubMed

BMC Evol Biol. 2009 Feb 26;9:48 PubMed

FEMS Microbiol Lett. 2012 Sep;334(1):1-15 PubMed

Appl Environ Microbiol. 2014 Oct;80(20):6383-94 PubMed

Int J Syst Evol Microbiol. 2014 May 27;64(9):2932-2938 PubMed

Mol Biol Evol. 2000 Feb;17(2):309-19 PubMed

Biochim Biophys Acta. 2000 Mar 7;1477(1-2):122-45 PubMed

Int J Syst Evol Microbiol. 2014 Apr;64(Pt 4):1434-51 PubMed

Int J Syst Evol Microbiol. 2017 Jul;67(7):2403-2411 PubMed

Folia Microbiol (Praha). 2010 Jul;55(4):336-9 PubMed

Int J Syst Evol Microbiol. 2007 Jul;57(Pt 7):1442-6 PubMed

Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):4350-3 PubMed

Int J Syst Evol Microbiol. 2018 Jan;68(1):461-466 PubMed

Syst Appl Microbiol. 2015 Jun;38(4):237-45 PubMed

Microbiome. 2016 May 03;4(1):18 PubMed

Nat Rev Gastroenterol Hepatol. 2014 Aug;11(8):506-14 PubMed

Int J Syst Evol Microbiol. 2017 Jul;67(7):2349-2356 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...