The threonine-tRNA ligase gene region is applicable in classification, typing, and phylogenetic analysis of bifidobacteria
Jazyk angličtina Země Jižní Korea Médium print-electronic
Typ dokumentu časopisecké články
PubMed
30267314
DOI
10.1007/s12275-018-8167-3
PII: 10.1007/s12275-018-8167-3
Knihovny.cz E-zdroje
- Klíčová slova
- Bifidobacterium, classification, genetic marker, phylogenetics, thrS gene,
- MeSH
- bakteriální geny MeSH
- bakteriální proteiny genetika MeSH
- Bifidobacterium klasifikace enzymologie genetika MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- multilokusová sekvenční typizace MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- threonin-tRNA-ligasa genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
- ribozomální DNA MeSH
- RNA ribozomální 16S MeSH
- threonin-tRNA-ligasa MeSH
In the modern era, molecular genetic techniques are crucial in ecological studies, as well as in the classification, typing, and phylogenetic analysis of prokaryotes. These techniques are mainly aimed at whole genome comparisons and PCR-derived experiments, including amplifying the 16S rRNA and other various housekeeping genes used in taxonomy, as well as MLST (multilocus sequence typing) and MLSA (multilocus sequence analysis) of different taxonomic bacterial groups. The gene encoding threonine-tRNA ligase (thrS) is a gene potentially applicable as an identification and phylogenetic marker in bacteria. It is widely distributed in bacterial genomes and is subject to evolutionary selection pressure due to its important function in protein synthesis. In this study, specific primers were used to amplify a thrS gene fragment (~740 bp) in 36 type and 30 wild strains classified under family Bifidobacteriaceae. The full-length gene has not yet been considered as a possible identification, classification, and phylogenetic marker in bifidobacteria. The thrS sequences revealed higher sequence variability (82.7% of pairwise identities) among members of the family than that shown by 16S rRNA gene sequences (96.0%). Although discrepancies were found between the thrS-derived and previously reported whole genome phylogenetic analyses, the main phylogenetic groups of bifidobacteria were properly assigned. Most wild strains of bifidobacteria were better differentiated based on their thrS sequences than on their 16S rRNA gene identities. Phylogenetic confidence of the evaluated gene with respect to other alternative genetic markers widely used in taxonomy of bifidobacteria (fusA, GroELhsp60, pyrG, and rplB genes) was confirmed using the localized incongruence difference - Templeton analysis.
Zobrazit více v PubMed
Int J Syst Evol Microbiol. 2014 May 27;64(9):2932-2938 PubMed
Appl Environ Microbiol. 2014 Oct;80(20):6383-94 PubMed
PLoS One. 2013;8(2):e57923 PubMed
Int J Syst Evol Microbiol. 2006 Dec;56(Pt 12):2783-92 PubMed
PLoS One. 2013 Oct 17;8(10):e77033 PubMed
Syst Appl Microbiol. 2010 Nov;33(7):359-66 PubMed
Appl Environ Microbiol. 2014 Oct;80(20):6290-302 PubMed
Res Microbiol. 2010 Mar;161(2):82-90 PubMed
FEMS Microbiol Lett. 1997 Sep 15;154(2):377-83 PubMed
Int J Syst Evol Microbiol. 2002 May;52(Pt 3):809-12 PubMed
Int J Syst Evol Microbiol. 2007 Jan;57(Pt 1):81-91 PubMed
Infect Genet Evol. 2013 Dec;20:188-96 PubMed
Int J Syst Evol Microbiol. 2013 Nov;63(Pt 11):4350-3 PubMed
Nutr Rev. 2009 Feb;67(2):77-82 PubMed
Curr Microbiol. 2017 Nov;74(11):1324-1331 PubMed
Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed
Syst Appl Microbiol. 2013 Feb;36(1):11-6 PubMed
Appl Environ Microbiol. 2003 Nov;69(11):6908-22 PubMed
J Bacteriol. 1991 Jan;173(2):697-703 PubMed
Lett Appl Microbiol. 2005;41(4):355-60 PubMed
Microbiol Mol Biol Rev. 2000 Mar;64(1):202-36 PubMed
Int J Syst Evol Microbiol. 2001 Sep;51(Pt 5):1633-8 PubMed
PLoS One. 2015 Feb 06;10(2):e0117912 PubMed
Eur J Clin Microbiol Infect Dis. 2014 Apr;33(4):537-44 PubMed
FEMS Microbiol Lett. 2000 Oct 1;191(1):17-24 PubMed
BMC Genomics. 2017 Aug 1;18(1):568 PubMed
FEMS Microbiol Rev. 2001 Jan;25(1):39-67 PubMed
Int J Food Microbiol. 2011 Sep 1;149(1):88-105 PubMed
Behav Brain Res. 2015;287:59-72 PubMed
BMC Microbiol. 2016 Jun 21;16(1):117 PubMed
BMC Microbiol. 2007 Aug 21;7:79 PubMed
FEMS Microbiol Ecol. 2011 Dec;78(3):617-28 PubMed
Int J Syst Evol Microbiol. 2017 Jul;67(7):2349-2356 PubMed
Int J Syst Bacteriol. 1996 Jan;46(1):102-11 PubMed
Microbiologyopen. 2018 Aug;7(4):e00579 PubMed
Syst Appl Microbiol. 2015 Jun;38(4):237-45 PubMed
Syst Biol. 2007 Aug;56(4):564-77 PubMed
Int J Syst Evol Microbiol. 2017 Jul;67(7):2403-2411 PubMed