Primordial Biochemicals Within Coacervate-Like Droplets and the Origins of Life
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40006901
PubMed Central
PMC11861507
DOI
10.3390/v17020146
PII: v17020146
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, coacervate droplets, environmental DNA, evolution, mitochondria, reactive oxygen species, viruses,
- MeSH
- energetický metabolismus MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- původ života * MeSH
- viry * metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
An organism is considered "alive" if it can grow, reproduce, respond to external stimuli, metabolize nutrients, and maintain stability. By this definition, both mitochondria and viruses exhibit the key characteristics of independent life. In addition to their capacity for self-replication under specifically defined conditions, both mitochondria and viruses can communicate via shared biochemical elements, alter cellular energy metabolism, and adapt to their local environment. To explain this phenomenon, we hypothesize that early viral prototype species evolved from ubiquitous environmental DNA and gained the capacity for self-replication within coacervate-like liquid droplets. The high mutation rates experienced in this environment streamlined their acquisition of standard genetic codes and adaptation to a diverse set of host environments. Similarly, mitochondria, eukaryotic intracellular organelles that generate energy and resolve oxygen toxicity, originally evolved from an infectious bacterial species and maintain their capacity for active functionality within the extracellular space. Thus, while mitochondria contribute profoundly to eukaryotic cellular homeostasis, their capacity for freestanding existence may lead to functional disruptions over time, notably, the overproduction of reactive oxygen species, a phenomenon strongly linked to aging-related disorders. Overall, a more in-depth understanding of the full extent of the evolution of both viruses and mitochondria from primordial precursors may lead to novel insights and therapeutic strategies to address neurodegenerative processes and promote healthy aging.
Zobrazit více v PubMed
Stefano G.B., Kream R.M. Prebiotic Formation of Protoalkaloids within Alkaline Oceanic Hydrothermal Vents in the Hadean Seafloor as a Prerequisite for Evolutionary Biodiversity. Med. Sci. Monit. 2020;26:e928415. doi: 10.12659/MSM.928415. PubMed DOI PMC
Whitmore L., McCauley M., Farrell J.A., Stammnitz M.R., Koda S.A., Mashkour N., Summers V., Osborne T., Whilde J., Duffy D.J. Inadvertent human genomic bycatch and intentional capture raise beneficial applications and ethical concerns with environmental DNA. Nat. Ecol. Evol. 2023;7:873–888. doi: 10.1038/s41559-023-02056-2. PubMed DOI PMC
Duffy D.J., Martindale M.Q. Perspectives on the expansion of human precision oncology and genomic approaches to sea turtle fibropapillomatosis. Commun. Biol. 2019;2:54. doi: 10.1038/s42003-019-0301-1. PubMed DOI PMC
Duffy D.J., Burkhalter B. When is a lab animal not a lab animal? Lab. Anim. 2020;49:95–98. doi: 10.1038/s41684-020-0504-6. PubMed DOI
Wessner D.R. The Origin of Viruses. Nat. Educ. 2010;3:37–39.
Koonin E.V., Martin W. On the origin of genomes and cells within inorganic compartments. Trends Genet. 2005;21:647–654. doi: 10.1016/j.tig.2005.09.006. PubMed DOI PMC
Iyer L.M., Koonin E.V., Leipe D.D., Aravind L. Origin and evolution of the archaeo-eukaryotic primase superfamily and related palm-domain proteins: Structural insights and new members. Nucleic Acids Res. 2005;33:3875–3896. doi: 10.1093/nar/gki702. PubMed DOI PMC
George J., Halami P.M. Presence of extracellular DNA & protein in biofilm formation by gentamicin-resistant Lactobacillus plantarum. Indian J. Med. Res. 2019;149:257–262. doi: 10.4103/ijmr.IJMR_2022_17. PubMed DOI PMC
Yang K., Wang L., Cao X., Gu Z., Zhao G., Ran M., Yan Y., Yan J., Xu L., Gao C., et al. The Origin, Function, Distribution, Quantification, and Research Advances of Extracellular DNA. Int. J. Mol. Sci. 2022;23:3690. doi: 10.3390/ijms232213690. PubMed DOI PMC
Atlante A., Valenti D. Mitochondria Have Made a Long Evolutionary Path from Ancient Bacteria Immigrants within Eukaryotic Cells to Essential Cellular Hosts and Key Players in Human Health and Disease. Curr. Issues Mol. Biol. 2023;45:4451–4479. doi: 10.3390/cimb45050283. PubMed DOI PMC
Stefano G.B., Kream R.M. Viruses Broaden the Definition of Life by Genomic Incorporation of Artificial Intelligence and Machine Learning Processes. Curr. Neuropharmacol. 2022;20:1888–1893. doi: 10.2174/1570159X20666220420121746. PubMed DOI PMC
Margulis L., Bermudes D. Symbiosis as a mechanism of evolution: Status of cell symbiosis theory. Symbiosis. 1985;1:101–124. PubMed
Cutler R.G. In: Evolutionary Biology of Senescence. Behnke J.A., Finch C.E., Moment G.B., editors. Plenum Press; New York, NY, USA: 1978. 388p
Stefano G., Büttiker P., Weissenberger S., Esch T., Anders M., Raboch J., Kream R., Ptacek R. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front. Cell. Infect. Microbiol. 2023;13:1130197. doi: 10.3389/fcimb.2023.1130197. PubMed DOI PMC
Stefano G.B., Kream R.M. Mitochondrial DNA Heteroplasmy as an Informational Reservoir Dynamically Linked to Metabolic and Immunological Processes Associated with COVID-19 Neurological Disorders. Cell. Mol. Neurobiol. 2022;42:99–107. doi: 10.1007/s10571-021-01117-z. PubMed DOI PMC
Chakraborty A., Bandyopadhaya A., Singh V.K., Kovacic F., Cha S., Oldham W.M., Tzika A.A., Rahme L.G. The bacterial quorum sensing signal 2’-aminoacetophenone rewires immune cell bioenergetics through the Ppargc1a/Esrra axis to mediate tolerance to infection. eLife. 2024;13:RP97568. doi: 10.7554/eLife.97568.3. PubMed DOI PMC
Maurice N.M., Sadikot R.T. Mitochondrial Dysfunction in Bacterial Infections. Pathogens. 2023;12:1005. doi: 10.3390/pathogens12081005. PubMed DOI PMC
Stefano G.B. Antibiotics and Antiviral Agents Can Trigger Mitochondrial Dysfunction that Leads to Psychiatric Disorders. Mind Bull. Mind-Body Med. Res. 2023;2:8–10. doi: 10.61936/themind/202307025. DOI
Stefano G.B., Samuel J., Kream R.M. Antibiotics May Trigger Mitochondrial Dysfunction Inducing Psychiatric Disorders. Med. Sci. Monit. 2017;23:101–106. doi: 10.12659/MSM.899478. PubMed DOI PMC
Warstler A., Bean J. Antimicrobial-Induced Cognitive Side Effects. Ment. Health Clin. 2016;6:207–214. doi: 10.9740/mhc.2016.07.207. PubMed DOI PMC
Jenkins H.L., Graham R., Porter J.S., Vieira L.M., De Almeida A.C.S., Hall A., O’Dea A., Coppard S.E., Waeschenbach A. Unprecedented Frequency of Mitochondrial Introns in Colonial Bilaterians. Sci. Rep. 2022;12:10889. doi: 10.1038/s41598-022-14477-3. PubMed DOI PMC
Wei W., Schon K.R., Elgar G., Orioli A., Tanguy M., Giess A., Tischkowitz M., Caulfield M.J., Chinnery P.F. Nuclear-Embedded Mitochondrial DNA Sequences in 66,083 Human Genomes. Nature. 2022;611:105–114. doi: 10.1038/s41586-022-05288-7. PubMed DOI PMC
Zhou W., Karan K.R., Gu W., Klein H.-U., Sturm G., De Jager P.L., Bennett D.A., Hirano M., Picard M., Mills R.E. Somatic Nuclear Mitochondrial DNA Insertions Are Prevalent in the Human Brain and Accumulate over Time in Fibroblasts. PLoS Biol. 2024;22:e3002723. doi: 10.1371/journal.pbio.3002723. PubMed DOI PMC
van Swaay D., Tang T.Y., Mann S., de Mello A. Microfluidic Formation of Membrane-Free Aqueous Coacervate Droplets in Water. Angew. Chem. Int. Ed. Engl. 2015;54:8398–8401. doi: 10.1002/anie.201502886. PubMed DOI
Agrawal A., Douglas J.F., Tirrell M., Karim A. Manipulation of coacervate droplets with an electric field. Proc. Natl. Acad. Sci. USA. 2022;119:e2203483119. doi: 10.1073/pnas.2203483119. PubMed DOI PMC
Moulik S.P., Rakshit A.K., Pan A., Naskar B. An Overview of Coacervates: The Special Disperse State of Amphiphilic and Polymeric Materials in Solution. Colloids Interfaces. 2022;6:45. doi: 10.3390/colloids6030045. DOI
Stefano G.B., editor. CRC Handbook of Comparative Opioid and Related Neuropeptide Mechanisms. Volume 2. CRC Press Inc.; Boca Raton, FL, USA: 1986. Conformational matching: A possible evolutionary force in the evolvement of signal systems; pp. 271–277.
Stefano G.B. The evolvement of signal systems: Conformational matching a determining force stabilizing families of signal molecules. Comp. Biochem. Physiol. C. 1988;90:287–294. doi: 10.1016/0742-8413(88)90001-1. PubMed DOI
Büttiker P., Boukherissa A., Weissenberger S., Ptacek R., Anders M., Raboch J., Stefano G.B. Cognitive Impact of Neurotropic Pathogens: Investigating Molecular Mimicry through Computational Methods. Cell. Mol. Neurobiol. 2024;44:72. doi: 10.1007/s10571-024-01509-x. PubMed DOI PMC
Stefano G.B., Büttiker P., Weissenberger S., Anders M., Raboch J., Kream R.M. Viruses May Be Redefined as Self-Replicating Entities: Expanding the Definition of Life. Mind-Bull. Mind-Body Med. Res. 2024;3:2–8. doi: 10.61936/themind/202412122. DOI
Darwin C. Origin of the Species. The Easton Press; Norwalk, CT, USA: 1976.