Prebiotic Formation of Protoalkaloids within Alkaline Oceanic Hydrothermal Vents in the Hadean Seafloor as a Prerequisite for Evolutionary Biodiversity
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu úvodníky
PubMed
32959807
PubMed Central
PMC7519947
DOI
10.12659/msm.928415
PII: 928415
Knihovny.cz E-zdroje
- MeSH
- alkaloidy * MeSH
- biodiverzita * MeSH
- biologická evoluce * MeSH
- hydrotermální průduchy * MeSH
- oceány a moře MeSH
- Publikační typ
- úvodníky MeSH
- Geografické názvy
- oceány a moře MeSH
- Názvy látek
- alkaloidy * MeSH
The primordial origin of abiotic nitrogen fixation, which is not dependent on prokaryotes, reflects the importance of available nitrogenous compounds as an essential requirement for the emergence of life and evolutionary biodiversity. It has been hypothesized that synthesis of oxidized nitrogen in the form of nitrate (NO3-) and nitrite (NO2-), occurred in the prebiotic anoxic Hadean atmosphere. The sustained influx of atmospheric NO3- and NO2- into prebiotic Hadean oceans have been proposed to provide the essential substrates for abiotic synthesis of compounds such as ammonia (NH3) within oceanic alkaline hydrothermal vents in the seafloor. Because NH3 is an essential chemical precursor for nitrogen-containing molecular components of proteins and nucleic acids, abiotic production in high concentrations within Hadean oceanic alkaline hydrothermal vents is required for the emergence of diverse life forms. The chemical evolution of nitrogenous compounds includes the functional development of alkaloids. This commentary aims to critically discuss the possible origin of nitrogen-containing alkaloids and evolutionary processes in higher organisms, including the diverse biomedical mechanisms involved.
Zobrazit více v PubMed
Kitadai N, Maruyama S. Origins of building blocks of life: A review. Geoscience Frontiers. 2018;9(4):1117–53.
Sojo V, Herschy B, Whicher A, et al. The origin of life in alkaline hydrothermal vents. Astrobiology. 2016;16(2):181–97. PubMed
Wong ML, Charnay BD, Gao P, et al. Nitrogen oxides in early earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology. 2017;17(10):975–83. PubMed
Stirling A, Rozgonyi T, Krack M, Bernasconi M. Prebiotic NH3 formation: Insights from simulations. Inorg Chem. 2016;55(4):1934–39. PubMed
Russell MJ. Green rust: The simple organizing ‘seed’ of all life? Life (Basel) 2018;8(3):35. PubMed PMC
Garvin J, Buick R, Anbar AD, et al. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science. 2009;323(5917):1045–48. PubMed
Stefano GB, Kream RM. Alkaloids, nitric oxide, and nitrite reductases: evolutionary coupling as key regulators of cellular bioenergetics with special relevance to the human microbiome. Med Sci Monit. 2018;24:3153–58. PubMed PMC
Kornblum HI, Loughlin SE, Leslie FM. Effects of morphine on DNA synthesis in neonatal rat brain. Brain Res. 1987;428(1):45–52. PubMed
Stiene-Martin A, Hauser KF. Morphine suppresses DNA synthesis in cultured murine astrocytes from cortex, hippocampus and striatum. Neurosci Lett. 1993;157(1):1–3. PubMed
Stefano GB, Mantione KJ, Capellan L, et al. Morphine stimulates nitric oxide release in human mitochondria. J Bioenerg Biomembr. 2015;47(5):409–17. PubMed
Ciani E, Calvanese V, Crochemore C, et al. Proliferation of cerebellar precursor cells is negatively regulated by nitric oxide in newborn rat. J Cell Sci. 2006;119(Pt 15):3161–70. PubMed