Mobility Coupled with Motivation Promotes Survival: The Evolution of Cognition as an Adaptive Strategy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
36671772
PubMed Central
PMC9855669
DOI
10.3390/biology12010080
PII: biology12010080
Knihovny.cz E-resources
- Keywords
- behavior, catecholamines, cognition, dopamine, evolution, mobility, morphine, motivation, reward, stress, μ3 receptor,
- Publication type
- Journal Article MeSH
- Review MeSH
Morphine plays a critical regulatory role in both simple and complex plant species. Dopamine is a critical chemical intermediate in the morphine biosynthetic pathway and may have served as a primordial agonist in developing catecholamine signaling pathways. While dopamine remains the preeminent catecholamine in invertebrate neural systems, epinephrine is the major product of catecholamine synthetic pathways in vertebrate species. Given that the enzymatic steps leading to the generation of morphine are similar to those constraining the evolutionary adaptation of the biosynthesis of catecholamines, we hypothesize that the emergence of these more advanced signaling pathways was based on conservation and selective "retrofitting" of pre-existing enzyme activities. This is consistent with observations that support the recruitment of enzymatically synthesized tetrahydrobiopterin (BH4), which is a cofactor for tyrosine hydroxylase, the enzyme responsible for dopamine production. BH4 is also an electron donor involved in the production of nitric oxide (NO). The links that coordinate BH4-mediated NO and catecholaminergic-mediated processes provide these systems with the capacity to regulate numerous downstream signaling pathways. We hypothesize that the evolution of catecholamine signaling pathways in animal species depends on the acquisition of a mobile lifestyle and motivationally driven feeding, sexual, and self-protective responses.
See more in PubMed
Kream R.M., Stefano G.B. De novo biosynthesis of morphine in animal cells: An evidence-based model. Med. Sci. Monit. 2006;12:RA207–RA219. PubMed
Stefano G.B., Kream R.M. Endogenous morphine synthetic pathway preceded and gave rise to catecholamine synthesis in evolution (Review) Int. J. Mol. Med. 2007;20:837–841. doi: 10.3892/ijmm.20.6.837. PubMed DOI
Giulivi C., Kato K., Cooper C.E. Nitric oxide regulation of mitochondrial oxygen consumption I: Cellular physiology. Am. J. Physiol. Cell. Physiol. 2006;291:C1225–C1231. doi: 10.1152/ajpcell.00307.2006. PubMed DOI
Gorren A.C., de Boer E., Wever R. The reaction of nitric oxide with copper proteins and the photodissociation of copper-NO complexes. Biochim. Biophys. Acta. 1987;916:38–47. doi: 10.1016/0167-4838(87)90208-1. PubMed DOI
Madsen L., Garras A., Asins G., Serra D., Hegardt F.G., Berge R.K. Mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase and carnitine palmitoyltransferase II as potential control sites for ketogenesis during mitochondrion and peroxisome proliferation. Biochem. Pharmacol. 1999;57:1011–1019. doi: 10.1016/S0006-2952(99)00004-0. PubMed DOI
Engelman D.T., Watanabe M., Maulik N., Cordis G.A., Engelman R.M., Rousou J.A., Flack J.E., 3rd, Deaton D.W., Das D.K. L-arginine reduces endothelial inflammation and myocardial stunning during ischemia/reperfusion. Ann. Thorac. Surg. 1995;60:1275–1281. doi: 10.1016/0003-4975(95)00614-Q. PubMed DOI
Forstermann U., Closs E.I., Pollock J.S., Nakane M., Schwarz P., Gath I., Kleinert H. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994;23:1121–1131. doi: 10.1161/01.HYP.23.6.1121. PubMed DOI
Hibbs J.B., Vavrin Z., Taintor R.R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J. Immunol. 1987;138:550–565. doi: 10.4049/jimmunol.138.2.550. PubMed DOI
Stefano G.B., Goumon Y., Bilfinger T.V., Welters I., Cadet P. Basal nitric oxide limits immune, nervous and cardiovascular excitation: Human endothelia express a mu opiate receptor. Prog. Neurobiol. 2000;60:513–530. doi: 10.1016/S0301-0082(99)00038-6. PubMed DOI
Zhu W., Mantione K.J., Shen L., Stefano G.B. In vivo and in vitro L-DOPA exposure increases ganglionic morphine levels. Med. Sci. Monit. 2005;11:MS1–MS5. PubMed
Zhu W., Mantione K.J., Shen L., Cadet P., Esch T., Goumon Y., Bianchi E., Sonetti D., Stefano G.B. Tyrosine and tyramine increase endogenous ganglionic morphine and dopamine levels in vitro and in vivo: CYP2D6 and tyrosine hydroxylase modulation demonstrates a dopamine coupling. Med. Sci. Monit. 2005;11:BR397–BR404. PubMed
Stefano G.B. Comparative aspects of opioid-dopamine interaction. Cell. Mol. Neurobiol. 1982;2:167–178. doi: 10.1007/BF00711145. PubMed DOI PMC
Stefano G.B., editor. Neurobiology of Mytilus Edulis. Manchester University Press; Manchester, UK: 1990. Norepinephrine: Presence and interaction with endogenous biogenic amines; pp. 93–103.
Iversen L.L., Iversen S.D., Snyder S.H. Biochemistry of Biogenic Amines. Plenum Press; New York, NY, USA: 1975.
Zhu W., Cadet P., Baggerman G., Mantione K.J., Stefano G.B. Human white blood cells synthesize morphine: CYP2D6 modulation. J. Immunol. 2005;175:7357–7362. doi: 10.4049/jimmunol.175.11.7357. PubMed DOI
Stefano G.B., Goumon Y., Casares F., Cadet P., Fricchione G.L., Rialas C., Peter D., Sonetti D., Guarna M., Welters I.D., et al. Endogenous morphine. Trends Neurosci. 2000;9:436–442. doi: 10.1016/S0166-2236(00)01611-8. PubMed DOI
Stefano G.B., Kream R.M. Dopamine, morphine, and nitric oxide: An evolutionary signaling triad. CNS Neurosci. Ther. 2010;16:e124–e137. doi: 10.1111/j.1755-5949.2009.00114.x. PubMed DOI PMC
Stefano G.B., Digenis A., Spector S., Leung M.K., Bilfinger T.V., Makman M.H., Scharrer B., Abumrad N.N. Opiate-like substances in an invertebrate, an opiate receptor on invertebrate and human immunocytes, and a role in immunosuppression. Proc. Natl. Acad. Sci. USA. 1993;90:11099–11103. doi: 10.1073/pnas.90.23.11099. PubMed DOI PMC
Cadet P., Mantione K.J., Zhu W., Kream R.M., Sheehan M., Stefano G.B. A functionally coupled mu3-like opiate receptor/nitric oxide regulatory pathway in human multi-lineage progenitor cells. J. Immunol. 2007;179:5839–5844. doi: 10.4049/jimmunol.179.9.5839. PubMed DOI
Stefano G.B., Fricchione G.L., Slingsby B.T., Benson H. The placebo effect and relaxation response: Neural processes and their coupling to constitutive nitric oxide. Brain Res. Rev. 2001;35:1–19. doi: 10.1016/S0165-0173(00)00047-3. PubMed DOI
Boettcher C., Fellermeier M., Boettcher C., Drager B., Zenk M.H. How human neuroblastoma cells make morphine. Proc. Natl. Acad. Sci. USA. 2005;102:8495–8500. doi: 10.1073/pnas.0503244102. PubMed DOI PMC
Bird D.A., Facchini P.J. Berberine bridge enzyme, a key branch-point enzyme in benzylisoquinoline alkaloid biosynthesis, contains a vacuolar sorting determinant. Planta. 2001;213:888–897. doi: 10.1007/s004250100582. PubMed DOI
Facchini P.J., De L.V. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J. Biol. Chem. 1994;269:26684–26690. doi: 10.1016/S0021-9258(18)47073-1. PubMed DOI
Facchini P.J., Park S.U. Developmental and inducible accumulation of gene transcripts involved in alkaloid biosynthesis in opium poppy. Phytochemistry. 2003;64:177–186. doi: 10.1016/S0031-9422(03)00292-9. PubMed DOI
Facchini P.J., De L.V. Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy. Phytochemistry. 1995;8:1119–1126. doi: 10.1016/0031-9422(94)00814-A. PubMed DOI
Park S.U., Johnson A.G., Penzes-Yost C., Facchini P.J. Analysis of promoters from tyrosine/dihydroxyphenylalanine decarboxylase and berberine bridge enzyme genes involved in benzylisoquinoline alkaloid biosynthesis in opium poppy. Plant Mol. Biol. 1999;40:121–131. doi: 10.1023/A:1026433112119. PubMed DOI
Samanani N., Facchini P.J. Isolation and partial characterization of norcoclaurine synthase, the first committed step in benzylisoquinoline biosynthesis, from poppy. Planta. 2001;213:898–906. doi: 10.1007/s004250100581. PubMed DOI
Samanani N., Facchini P.J. Purification and characterization of norcoclaurine synthase. The first committed enzyme in benzylisoquinoline alkaloid biosynthesis in plants. J. Biol. Chem. 2002;277:33878–33883. doi: 10.1074/jbc.M203051200. PubMed DOI
De-Eknamkul W., Zenk M.H. Enzymatic formation of (R)-reticuline from 1,2-dehydroreticuline in the opium poppy plant. Tetrahedron Lett. 1990;31:4855–4858. doi: 10.1016/S0040-4039(00)97751-7. DOI
Frenzel T., Zenk M.H. S-Adenosyl-L-methionine: 3’-hydroxy-N-methyl-(S)-coclaurine 4’-O-methyltransferase, a regio- and stereoselective enzyme of the (S)-reticuline pathway. Phytochemistry. 1990;29:3505–3511. doi: 10.1016/0031-9422(90)85265-H. DOI
Gerady R., Zenk M.H. Formation of salutaridine from (R)-reticuline by a membrane-bound cytochrome P-450 enzyme from Papaver somniferum. Phytochemistry. 1992;32:79–86. doi: 10.1016/0031-9422(92)80111-Q. DOI
Herbert R.B. The biosynthesis of isoquinoline alkaloids. In: Phillipson J.D., Roberts M.F., Zenk M.H., editors. The Chemistry and Biology of Isoquinoline Alkaloids. Springer; Berlin, Germany: 1985. pp. 213–228.
Lenz R., Zenk M.H. Closure of the oxide bridge in morphine biosynthesis. Tetrahedron Lett. 1994;35:3897–3900. doi: 10.1016/S0040-4039(00)76696-2. DOI
Lenz R., Zenk M.H. Stereospecific reduction of codeinone, the penultimate enzymatic step during morphine biosynthesis in Papaver somniferum. Tetrahedron Lett. 1995;36:2449–2452. doi: 10.1016/0040-4039(95)00278-K. DOI
Lenz R., Zenk M.H. Purification and properties of codeinone reductase (NADPH) from Papaver somniferum cell cultures. Eur. J. Biochem. 1995;233:132–139. doi: 10.1111/j.1432-1033.1995.132_1.x. PubMed DOI
Loeffler S., Zenk M.H. The hydroxylation step in the biosynthesis pathway leading from norcoclaurine to reticuline. Phytochemistry. 1990;29:3499–3503. doi: 10.1016/0031-9422(90)85264-G. DOI
Zhu W., Ma Y., Bell A., Esch T., Guarna M., Bilfinger T.V., Bianchi E., Stefano G.B. Presence of morphine in rat amygdala: Evidence for the mu3 opiate receptor subtype via nitric oxide release in limbic structures. Med. Sci. Monit. 2004;10:BR433–BR439. PubMed
Stefano G.B., Aiello E. Histoflourescent localization of serotonin and dopamine in the nervous system and gill of Mytilus edulis (Bivalvia) Biol. Bull. 1975;148:141–156. doi: 10.2307/1540655. PubMed DOI
Stefano G.B., Catapane E.J., Aiello E. Dopaminergic agents: Influence on serotonin in the molluscan nervous system. Science. 1976;194:539–541. doi: 10.1126/science.973139. PubMed DOI
Stefano G.B., Scharrer B. Endogenous morphine and related opiates, a new class of chemical messengers. Adv. Neuroimmunol. 1994;4:57–68. doi: 10.1016/S0960-5428(05)80001-4. PubMed DOI
Stefano G.B. Autoimmunovascular regulation: Morphine and anandamide stimulated nitric oxide release. J. Neuroimmunol. 1998;83:70–76. doi: 10.1016/S0165-5728(97)00223-3. PubMed DOI
Stefano G.B., Fricchione G.L. The biology of deception: The evolution of cognitive coping as a denial-like process. Med. Hypotheses. 1995;44:311–314. doi: 10.1016/0306-9877(95)90255-4. PubMed DOI
Stefano G.B., Fricchione G.L. The biology of deception: Emotion and morphine. Med. Hypotheses. 1995;49:51–54. doi: 10.1016/0306-9877(95)90301-1. PubMed DOI
Esch T. The ABC model of happiness—Neurobiological aspects of motivation and positive mood, and their dynamic changes through practice, the course of life. Biology. 2022;11:843. doi: 10.3390/biology11060843. PubMed DOI PMC
Stefano G.B., Scharrer B., Smith E.M., Hughes T.K., Jr., Magazine H.I., Bilfinger T.V., Hartman A.R., Fricchione G.L., Liu Y., Makman M.H. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 1996;16:109–144. doi: 10.1615/CritRevImmunol.v16.i2.10. PubMed DOI
Stefano G.B., Liu Y. Opiate antagonism of opioid actions on immunocyte activation and nitric oxide release. Anim. Biol. 1996;1:11–16.
Pryor S.C., Zhu W., Cadet P., Bianchi E., Guarna M., Stefano G.B. Endogenous morphine: Opening new doors for the treatment of pain and addiction. Expert Opin. Biol. Ther. 2005;5:893–906. doi: 10.1517/14712598.5.7.893. PubMed DOI
Kato K., Giulivi C. Critical overview of mitochondrial nitric-oxide synthase. Front. Biosci. 2006;11:2725–2738. doi: 10.2741/2002. PubMed DOI
Riobo N.A., Melani M., Sanjuan N., Fiszman M.L., Gravielle M.C., Carreras M.C., Cadenas E., Poderoso J.J. The modulation of mitochondrial nitric-oxide synthase activity in rat brain development. J. Biol. Chem. 2002;277:42447–42455. doi: 10.1074/jbc.M204580200. PubMed DOI
Cadet P., Mantione K.J., Stefano G.B. Molecular identification and functional expression of mu3, a novel alternatively spliced variant of the human mu opiate receptor gene. J. Immunol. 2003;170:5118–5123. doi: 10.4049/jimmunol.170.10.5118. PubMed DOI
Kream R.M., Sheehan M., Cadet P., Mantione K.J., Zhu W., Casares F.M., Stefano G.B. Persistence of evolutionary memory: Primordial six-transmembrane helical domain mu opiate receptors selectively linked to endogenous morphine signaling. Med. Sci. Monit. 2007;13:SC5–SC6. PubMed
Liu Q., Gao T., Liu W., Liu Y., Zhao Y., Liu Y., Li W., Ding K., Ma F., Li C. Functions of dopamine in plants: A review. Plant Signal. Behav. 2020;15:1827782. doi: 10.1080/15592324.2020.1827782. PubMed DOI PMC
Soares A.R., Marchiosi R., de Siqueira-Soares R.C., Barbosa de Lima R., Dantas dos Santos W., Ferrarese-Filho O. The role of L-DOPA in plants. Plant Signal. Behav. 2014;9:e28275. doi: 10.4161/psb.28275. PubMed DOI PMC
Morimoto S., Suemori K., Moriwaki J., Taura F., Tanaka H., Aso M., Tanaka M., Suemune H., Shimohigashi Y., Shoyama Y. Morphine metabolism in the opium poppy and its possible physiological function. Biochemical characterization of the morphine metabolite, bismorphine. J. Biol. Chem. 2001;276:38179–38184. doi: 10.1074/jbc.M107105200. PubMed DOI
Bozarth M.A. Pleasure systems in the brain. In: Wartburton D.M., editor. Pleasure: The Politics and the Reality. Wiley & Sons; New York, NY, USA: 1994. pp. 5–14.
Nestler E.J., Malenka R.C. The addicted brain. Sci. Am. 2004;290:78–85. doi: 10.1038/scientificamerican0304-78. PubMed DOI
Hui K.K.S., Liu J., Makris N., Gollub R.L., Chen A.J., Moore C.I., Kennedy D.N., Rosen B.R., Kwong K.K. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: Evidence from fMRI studies in normal subjects. Hum. Brain Mapp. 2000;9:13–25. doi: 10.1002/(SICI)1097-0193(2000)9:1<13::AID-HBM2>3.0.CO;2-F. PubMed DOI PMC
Esch T., Stefano G.B., Fricchione G.L., Benson H. The role of stress in neurodegenerative diseases and mental disorders. Neuroendocrinol. Lett. 2002;23:199–208. PubMed
Davidson R.J., Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn. Sci. 1999;3:11–21. doi: 10.1016/S1364-6613(98)01265-0. PubMed DOI
Esch T. Music medicine: Music in association with harm and healing. Musikphysiol. Musikermed. 2003;10:213–224.
Nestler E.J. Molecular basis of long-term plasticity underlying addiction. Nat. Rev. Neurosci. 2001;2:119–128. doi: 10.1038/35053570. PubMed DOI
Nestler E.J., Malenka R.C., Hyman S.E. Molecular Basis of Neuropharmacology. McGraw-Hill; Columbus, OH, USA: 2001.
Bianchi E., Guarna M., Tagliamonte A. Immunocytochemical localization of endogenous codeine and morphine. Adv. Neuroimmunol. 1994;4:83–92. doi: 10.1016/S0960-5428(05)80003-8. PubMed DOI
Guarna M., Bianchi E., Bartolini A., Ghelardini C., Galeotti N., Bracci L., Neri C., Sonetti D., Stefano G. Endogenous morphine modulates acute thermonociception in mice. J. Neurochem. 2002;80:271–277. doi: 10.1046/j.0022-3042.2001.00708.x. PubMed DOI
Rodriguez D.F., Navarro M. Role of the limbic system in dependence on drugs. Ann. Med. 1998;30:397–405. PubMed
Weiss F., Koob G.F. Drug addiction: Functional neurotoxicity of the brain reward systems. Neurotox. Res. 2001;3:145–156. doi: 10.1007/BF03033235. PubMed DOI
Esch T., Stefano G.B. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuroendocrinol. Lett. 2004;25:235–251. PubMed
Zhu W., Mantione K., Kream R.M., Stefano G.B. Alcohol-, nicotine-, and cocaine-evoked release of morphine from human white blood cells: Substances of abuse actions converge on endogenous morphine release. Med. Sci. Monit. 2006;12:BR350–BR354. PubMed
Bozarth M.A. Ventral tegmental reward system. In: Oreland L., Engel J., editors. Brain Reward Systems and Abuse. Raven Press; New York, NY, USA: 1987. pp. 1–17.
Mitchell J.B., Stewart J. Facilitation of sexual behaviors in the male rat associated with intra-VTA injections of opiates. Pharmacol. Biochem. Behav. 1990;35:643–650. doi: 10.1016/0091-3057(90)90302-X. PubMed DOI
Hamilton M.E., Bozarth M.A. Feeding elicited by dynorphin (1–13) microinjections into the ventral tegmental area in rats. Life Sci. 1988;43:941–946. doi: 10.1016/0024-3205(88)90271-8. PubMed DOI
Heath R.G., editor. The Role of Pleasure in Human Behavior. Hoeber; New York, NY, USA: 1964. Pleasure response of human subjects to direct stimulation of the brain; pp. 219–243.
Stefano G.B., Scharrer B., Bilfinger T.V., Salzet M., Fricchione G.L. A novel view of opiate tolerance. Adv. Neuroimmunol. 1996;6:265–277. doi: 10.1016/S0960-5428(96)00022-8. PubMed DOI
McClung C.A., Nestler E.J. Regulation of gene expression and cocaine reward by CREB and DeltaFosB. Nat. Neurosci. 2003;6:1208–1215. doi: 10.1038/nn1143. PubMed DOI
Zhang L., Lou D., Jiao H., Zhang D., Wang X., Xia Y., Zhang J., Xu M. Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J. Neurosci. 2004;24:3344–3354. doi: 10.1523/JNEUROSCI.0060-04.2004. PubMed DOI PMC
Murphy C.A., Russig H., Pezze M.A., Ferger B., Feldon J. Amphetamine withdrawal modulates FosB expression in mesolimbic dopaminergic target nuclei: Effects of different schedules of administration. Neuropharmacology. 2003;44:926–939. doi: 10.1016/S0028-3908(03)00074-1. PubMed DOI
Robinson T.E., Berridge K.C. Incentive-sensitization and addiction. Addiction. 2001;96:103–114. doi: 10.1046/j.1360-0443.2001.9611038.x. PubMed DOI
Bozarth M.A. New perspectives on cocaine addiction: Recent findings from animal research. Can. J. Physiol. Pharmacol. 1989;67:1158–1167. doi: 10.1139/y89-185. PubMed DOI
Rossetti Z.L., Hmaidan Y., Gessa G.L. Marked inhibition of mesolimbic dopamine release: A common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur. J. Pharmacol. 1992;221:227–234. doi: 10.1016/0014-2999(92)90706-A. PubMed DOI
Wise R.A., Bozarth M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 1987;94:469–492. doi: 10.1037/0033-295X.94.4.469. PubMed DOI
Thompson A.C., Kristal M.B. Opioids in the ventral tegmental area facilitate the onset of maternal behavior in the rat. Soc. Neurosci. Abstr. 1992;18:539.
Stefano G.B., Kream R.M. Prebiotic formation of protoalkaloids within alkaline oceanic hydrothermal vents in the Hadean seafloor as a prerequisite for evolutionary biodiversity. Med. Sci. Monit. 2020;26:e928415. doi: 10.12659/MSM.928415. PubMed DOI PMC
Esch T., Guarna M., Bianchi E., Zhu W., Stefano G.B. Commonalities in the central nervous system’s involvement with complementary medical therapies: Limbic morphinergic processes. Med. Sci. Monit. 2004;10:MS6–MS17. PubMed
Esch T., Stefano G.B. The neurobiology of love. Neuroendocrinol. Lett. 2005;26:175–192. PubMed
Salamon E., Esch T., Stefano G.B. The role of the amygdala in mediating sexual and emotional behavior via coupled nitric oxide release. Acta Pharmacol. Sin. 2005;26:389–395. doi: 10.1111/j.1745-7254.2005.00083.x. PubMed DOI
Stefano G.B., Fricchione G.L., Esch T. Relaxation: Molecular and physiological significance. Med. Sci. Monit. 2006;12:HY21–HY31. PubMed
Stefano G.B., Benson H., Fricchione G.L., Esch T. The Stress Response: Always Good and When It Is Bad. Medical Science International; New York, NY, USA: 2005.
Leisman G., Moustafa A.A., Tal S. Thinking, walking, talking: Integratory motor and cognitive brain function. Front. Public Health. 2016;4:94. doi: 10.3389/fpubh.2016.00094. PubMed DOI PMC
Yamazaki Y., Hikishima K., Saiki M., Inada M., Sasaki E., Lemon R.N., Price C.J., Okano H., Iriki A. Neural changes in the primate brain correlated with the evolution of complex motor skills. Sci. Rep. 2016;6:31084. doi: 10.1038/srep31084. PubMed DOI PMC
Herculano-Houzel S., Kaas J.H., de Oliveira-Souza R. Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. J. Comp. Neurol. 2016;524:448–455. doi: 10.1002/cne.23792. PubMed DOI
Suryanarayana S.M., Robertson B., Grillner S. The neural bases of vertebrate motor behaviour through the lens of evolution. Phil. Trans. R. Soc. 2022;377:20200521. doi: 10.1098/rstb.2020.0521. PubMed DOI PMC
Bakken T.E., Jorstad N.L., Hu Q., Lake B.B., Tian W., Kalmbach B.E., Crow M., Hodge R.D., Krienen F.M., Sorensen S.A., et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature. 2021;598:111–119. doi: 10.1038/s41586-021-03465-8. PubMed DOI PMC
Ioffe M.E. Brain mechanisms for the formation of new movements during learning: The evolution of classical concepts. Neurosci. Behav. Physiol. 2004;34:5–18. doi: 10.1023/B:NEAB.0000003241.12053.47. PubMed DOI
Michaelsen M.M., Esch T. Motivation and reward mechanisms in health behavior change processes. Brain Res. 2021;1757:147309. doi: 10.1016/j.brainres.2021.147309. PubMed DOI
Michaelsen M.M., Esch T. Functional mechanisms of health behavior change techniques: A conceptual review. Front. Psychol. 2022;13:725644. doi: 10.3389/fpsyg.2022.725644. PubMed DOI PMC