Covariation in population trends and demography reveals targets for conservation action
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33653129
PubMed Central
PMC7934962
DOI
10.1098/rspb.2020.2955
Knihovny.cz E-zdroje
- Klíčová slova
- conservation, demography, migration, population trends, productivity,
- MeSH
- migrace zvířat * MeSH
- populační dynamika MeSH
- ptáci * MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.
Bird Ringing Centre National Museum Hornoměcholupská 34 CZ 10200 Praha 10 Czech Republic
BirdLife Norway Sandgata 30B 7012 Trondheim Norway
BirdLife Österreich Museumsplatz 1 10 7 8 A 1070 Wien Austria
British Trust for Ornithology The Nunnery Thetford IP24 2PU UK
Czech Society for Ornithology Na Belidle 34 150 00 Praha 5 Czech Republic
Dansk Ornitologisk Forening BirdLife Denmark Vesterbrogade 138 140 DK 1620 København 5 Denmark
Department of Biology Lund University Lund Sweden
Department of Ornithology Aranzadi Sciences Society Zorroagagaina 11 E20014 Donostia Spain
Estudio y Seguimiento de Aves SEO BirdLife Melquíades Biencinto Madrid Spain
Finnish Museum of Natural History FI 00014 University of Helsinki PO Box 17 Finland
Finnish Museum of Natural History LUOMUS PO Box 17 FI 00014 University of Helsinki Finland
Latvian Ornithological Society Skolas iela 3 Riga LV 1010 Latvia
MME BirdLife Hungary Monitoring Centre H 4401 Nyiregyháza 1 PO Box 286 Hungary
Museum and Institute of Zoology Polish Academy of Sciences Wilcza 64 00 679 Warszawa Poland
Nord University Røstad 7600 Levanger Norway
Norwegian Institute for Nature Research PO Box 5685 Torgarden NO 7485 Trondheim Norway
Polish Society for the Protection of Birds Odrowaza 24 05 270 Marki Poland
RSPB Centre for Conservation Science The Lodge Sandy SG19 2DL UK
School of Biological Sciences University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
SEO BirdLife Ciencia Ciudadana C Melquiades Biencinto 34 28053 Madrid Spain
Sovon Dutch Centre for Field Ornithology PO Box 6521 6503 GA Nijmegen The Netherlands
Swedish Museum of Natural History Bird Ringing Centre Box 50007 S 104 05 Stockholm Sweden
Swiss Ornithological Institute Seerose 1 CH 6204 Sempach Switzerland
University of Nyíregyháza and MME BirdLife Hungary Nyíregyháza Hungary
Zobrazit více v PubMed
Johnson CN, Balmford A, Brook BW, Buettel JC, Galetti M, Guangchun L, Wilmshurst JM. 2017. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270-275. (10.1126/science.aam9317) PubMed DOI
Batáry P, Dicks LV, Kleijn D, Sutherland WJ. 2015. The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 29, 1006-1016. (10.1111/cobi.12536) PubMed DOI PMC
Butler SJ, Boccaccio L, Gregory RD, Vorisek P, Norris K. 2010. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 137, 348-357. (10.1016/j.agee.2010.03.005) DOI
Robinson RA, Morrison CA, Baillie SR. 2014. Integrating demographic data: towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361-1372. (10.1111/2041-210X.12204) DOI
Morrison CA, Robinson RA, Butler SJ, Clark JA, Gill JA. 2016. Demographic drivers of decline and recovery in an Afro-Palaearctic migratory bird population. Proc. R. Soc. B 283, 20161387. (10.1098/rspb.2016.1387) PubMed DOI PMC
Díaz S, et al. . 2019. IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn, Germany: IPBES Secretariat.
Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Å Korpilovã¡ J, Gregory RD. 2014. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1-22. (10.1111/ibi.12118) DOI
Burfield IJ, van Bommel FPJ. 2004. Birds in Europe: population estimates, trends and conservation status. Cambridge, UK: BirdLife International.
Sanderson FJ, Donald PF, Pain DJ, Burfield IJ, van Bommel FPJ. 2006. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93-105. (10.1016/j.biocon.2006.02.008) DOI
Hewson CM, Noble DG. 2009. Population trends of breeding birds in British woodlands over a 32-year period: relationships with food, habitat use and migratory behaviour. Ibis 151, 464-486. (10.1111/j.1474-919X.2009.00937.x) DOI
Thaxter CB, Joys AC, Gregory RD, Baillie SR, Noble DG. 2010. Hypotheses to explain patterns of population change among breeding bird species in England. Biol. Conserv. 143, 2006-2019. (10.1016/j.biocon.2010.05.004) DOI
Ockendon N, Hewson CM, Johnston A, Atkinson PW. 2012. Declines in British-breeding populations of Afro-Palaearctic migrant birds are linked to bioclimatic wintering zone in Africa, possibly via constraints on arrival time advancement. Bird Study 59, 111-125. (10.1080/00063657.2011.645798) DOI
Morrison CA, Robinson RA, Clark JA, Risely K, Gill JA. 2013. Recent population declines in Afro-Palaearctic migratory birds: the influence of breeding and non-breeding seasons. Divers. Distrib. 19, 1051-1058. (10.1111/ddi.12084) DOI
Robinson RA, Meier CM, Witvliet W, Kéry M, Schaub M. 2020. Survival varies seasonally in a migratory bird: linkages between breeding and non-breeding periods. J. Anim. Ecol. 89, 2111-2121. (10.1111/1365-2656.13250) PubMed DOI
Wilson S, Saracco JF, Krikun R, Flockhart DTT, Godwin CM, Foster KR. 2018. Drivers of demographic decline across the annual cycle of a threatened migratory bird. Sci. Rep. 8, 1-11. (10.1038/s41598-017-17765-5) PubMed DOI PMC
Gregory RD, Van Strien A, Vorisek P, Gmelig Meyling AW, Noble DG, Foppen RPB, Gibbons DW. 2005. Developing indicators for European birds. Phil. Trans. R. Soc. B 360, 269-288. (10.1098/rstb.2004.1602) PubMed DOI PMC
R Core Development Team. 2014. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Robinson RA, Julliard R, Saracco JF. 2009. Constant effort: studying avian population processes using standardised ringing. Ringing Migr. 24, 199-204. (10.1080/03078698.2009.9674392) DOI
Bates D, Maechler M, Bolker B, Walker S, Christensen RH, Singmann H, Dai B, Scheipl F. 2014. Package ‘lme4’. Vienna, Austria: R Foundation for Statistical Computing.
Hewson CM, Thorup K, Pearce-Higgins JW, Atkinson PW. 2016. Population decline is linked to migration route in the common cuckoo. Nat. Commun. 7, 12296. (10.1038/ncomms12296) PubMed DOI PMC
Norris DR, Marra PP, Kyser TK, Sherry TW, Ratcliffe LM. 2004. Tropical winter habitat limits reproductive success on the temperate breeding grounds in a migratory bird. Proc. R. Soc. B 271, 59-64. (10.1098/rspb.2003.2569) PubMed DOI PMC
Hoffmann J, Postma E, Schaub M. 2015. Factors influencing double brooding in Eurasian hoopoes Upupa epops. Ibis 157, 17-30. (10.1111/ibi.12188) DOI
Finch T, Butler SJ, Franco AMA, Cresswell W. 2017. Low migratory connectivity is common in long-distance migrant birds. J. Anim. Ecol. 86, 662-673. (10.1111/1365-2656.12635) PubMed DOI
Lerche-Jørgensen M, Willemoes M, Tøttrup AP, Snell KRS, Thorup K. 2017. No apparent gain from continuing migration for more than 3000 kilometres: willow warblers breeding in Denmark winter across the entire northern savannah as revealed by geolocators. Mov. Ecol. 5, 1-7. (10.1186/s40462-017-0109-x) PubMed DOI PMC
Newton I. 2008. The migration ecology of birds. New York, NY: Academic Press.
Taylor CM, Stutchbury BJM. 2016. Effects of breeding versus winter habitat loss and fragmentation on the population dynamics of a migratory songbird. Ecol. Appl. 26, 424-437. (10.1890/14-1410) PubMed DOI
Mihoub J-B, Gimenez O, Pilard P, Sarrazin F. 2010. Challenging conservation of migratory species: Sahelian rainfalls drive first-year survival of the vulnerable lesser kestrel Falco naumanni. Biol. Conserv. 143, 839-847. (10.1016/j.biocon.2009.12.026) DOI
Newton I. 2007. Weather-related mass-mortality events in migrants. Ibis 149, 453-467. (10.1111/j.1474-919X.2007.00704.x) DOI
Morrison CA, Robinson RA, Clark JA, Gill JA. 2016. Causes and consequences of spatial variation in sex ratios in a declining bird species. J. Anim. Ecol. 85, 1298-1306. (10.1111/1365-2656.12556) PubMed DOI PMC
Winiarski JM, Moorman CE, Carpenter JP, Hess GR. 2017. Reproductive consequences of habitat fragmentation for a declining resident bird of the longleaf pine ecosystem. Ecosphere 8, e01898. (10.1002/ecs2.1898) DOI
Brickle NW, Harper DGC, Aebischer NJ, Cockayne SH. 2001. Effects of agricultural intensification on the breeding success of corn buntings Miliaria calandra. J. Appl. Ecol. 37, 742-755. (10.1046/j.1365-2664.2000.00542.x) DOI
Pellissier V, Touroult J, Julliard R, Siblet JP, Jiguet F. 2013. Assessing the Natura 2000 network with a common breeding birds survey. Anim. Conserv. 16, 566-574. (10.1111/acv.12030) DOI
Morrison CA, et al. . 2021. Data from: Covariation in population trends and demography reveals targets for conservation action. Dryad Digital Repository. (10.5061/dryad.76hdr7svs) PubMed DOI PMC
Demographic variation in space and time: implications for conservation targeting
Covariation in population trends and demography reveals targets for conservation action