Biological dinitrogen fixation by selected soil cyanobacteria as affected by strain origin, morphotype, and light conditions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- acetylen metabolismus MeSH
- fixace dusíku * MeSH
- nitrogenasa metabolismus MeSH
- půdní mikrobiologie * MeSH
- sinice klasifikace enzymologie fyziologie MeSH
- studené klima MeSH
- světlo * MeSH
- tma MeSH
- tropické klima MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylen MeSH
- nitrogenasa MeSH
The potential for N(2) fixation by heterocystous cyanobacteria isolated from soils of different geographical areas was determined as nitrogenase activity (NA) using the acetylene reduction assay. Morphology of cyanobacteria had the largest influence on NA determined under light conditions. NA was generally higher in species lacking thick slime sheaths. The highest value (1446 nmol/h C(2)H(4) per g fresh biomass) was found in the strain of branched cyanobacterium Hassalia (A Has1) from the polar region. A quadratic relationship between NA and biomass was detected in the Tolypothrix group under light conditions. The decline of NA in dark relative to light conditions ranged from 37 to 100 % and differed among strains from distinct geographical areas. Unlike the NA of temperate and tropical strains, whose decline in dark relative to light was 24 and 17 %, respectively, the NA of polar strains declined to 1 % in the dark. This difference was explained by adaptation to different light conditions in temperate, tropical, and polar habitats. NA was not related to the frequency of heterocysts in strains of the colony-forming cyanobacterium Nostoc. Colony morphology and life cycle are therefore more important for NA then heterocyst frequency. NA values probably reflect the environmental conditions where the cyanobacterium was isolated and the physiological and morphological state of the strain.
Zobrazit více v PubMed
Appl Environ Microbiol. 1998 Aug;64(8):2770-9 PubMed
FEMS Microbiol Ecol. 2007 Apr;60(1):85-97 PubMed
J Gen Microbiol. 1961 Jul;25:365-74 PubMed
Microb Ecol. 2000 Jan;39(1):12-21 PubMed
Folia Microbiol (Praha). 2004;49(4):435-40 PubMed
Bacteriol Rev. 1971 Jun;35(2):171-205 PubMed
FEMS Microbiol Ecol. 2007 Mar;59(3):661-70 PubMed
Res Microbiol. 2001 Jan-Feb;152(1):95-103 PubMed
Environ Microbiol. 2004 Apr;6(4):400-15 PubMed
Curr Microbiol. 2003 May;46(5):380-4 PubMed
Microb Ecol. 1998 Mar;35(2):147-55 PubMed
Nature. 1968 Nov 23;220(5169):810-2 PubMed
FEMS Microbiol Lett. 2006 Jul;260(2):134-42 PubMed
Appl Environ Microbiol. 2004 Jan;70(1):240-7 PubMed
Appl Environ Microbiol. 1993 Mar;59(3):899-904 PubMed
Appl Environ Microbiol. 2004 Feb;70(2):973-83 PubMed